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ABSTRACT 

 

COMPARISON OF DIFFERENT YOLO ARCHITECTURES IN 

MICROSCOPIC CELL COUNTING USING CONVOLUTIONAL NEURAL 

NETWORKS 

 

Tujani, Alba 

 

M.Sc., Department of Computer Engineering 

 

Supervisor: Dr. Arban Uka 

 

As automation continues to advance rapidly, cell detection and counting plays a significant, 

crucial role in medical image processing’s automatic analysis. Accurately detecting and locating 

cells seems to be an extremely difficult task given their size, structure, and adherence to one 

another. In order to avoid time-consuming manual work, researchers are ever so eager in trying to 

implement and experiment with new technologies, to achieve a highly performative automatic cell 

segmentation. 

Nevertheless, due to different image acquisition techniques, non-uniform backgrounds, 

variations in cell shapes or size, morphological properties and many other factors, obtaining perfect 

results is not always so easy. In this paper we study a convolutional neural network approach using 

YOLOv5 and YOLOv6 architectures for cell segmentation in microscopic images.  

 

Key words: medical image analysis, machine learning, yolo, classification, cell-counting, cnn 
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ABSTRAKT 

KRAHASIMI I ARKITEKTURAVE TË NDRYSHME YOLO NË NUMËRIMIN 

E QELIZAVE MIKROSKOPIKE ME PËRDORIMIN E RRJETEVE NEURALE 

KOVOLUCIONALE 

 

Tujani, Alba 

 

Master Shkencor, Departamenti i Inxhinierise Kompjuterike 

 

Udhëheqësi: Dr. Arban Uka 

 

Ndërsa automatizimi vazhdon të përparojë me shpejtësi, identifikimi dhe numërimi i 

qelizave luan një rol të rëndësishëm dhe vendimtar në analizën automatike të përpunimit të 

imazheve mjekësore. Zbulimi i saktë dhe lokalizimi i qelizave është një detyrë jashtëzakonisht e 

vështirë duke pasur parasysh madhësinë, strukturën dhe afërsinë e tyre me njëra-tjetrën. Për të 

shmangur punën manuale që kërkon shumë kohë, studiuesit janë gjithnjë në përpjekje për të 

zbuluar dhe eksperimentuar me teknologji të reja, për të arritur një segmentim automatik të 

qelizave sa më performues. 

Sidoqoftë, për shkak të teknikave të ndryshme të marrjes së imazhit, sfondeve jo uniforme, 

variacioneve në forma ose madhësi të qelizave, vetive morfologjike dhe shumë faktorëve të tjerë, 

arritja e rezultateve të përsosura nuk është gjithmonë aq e lehtë. Në këtë punim ne studiojmë një 

qasje të rrjetit nervor konvolucional duke përdorur arkitekturat YOLOv5 dhe YOLOv6 për 

segmentimin e qelizave në imazhet mikroskopike. 

 

Fjalët kyçe: machine learning, mikroskopi, klasifikim, numerim qelizash, yolo, cnn 
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CHAPTER 1 

1. INTRODUCTION 
 

1.1  Cell Counting 
 

Cell counting plays a crucial role in the field of medicine, particularly in the diagnosis and 

treatment of diseases. The number of cells present in a microscopic image can provide important 

information about the health or growth of cells and tissues, and can be used to monitor the 

progression of various diseases, such as cancer. In the past, cell counting was typically 

performed manually by a human, which was time-consuming, prone to error, and lacked 

accuracy. However, with the advent of computer vision and artificial intelligence, automated cell 

counting has emerged as a more efficient and reliable solution for cell counting in medicine. [1] 

Automated cell counting algorithms use computer vision techniques to detect and count cells in 

images, reducing the workload of medical professionals and providing more accurate results. 

These algorithms have the potential to revolutionize the field of medicine, providing faster and 

more precise diagnoses, and improving the accuracy of clinical trials. The advancements in this 

field have the potential to positively impact patient care and overall health outcomes. In this 

paper, we will be analyzing two different YOLO architectures, YOLOv5 and YOLOv6. With 

their ability to process large amounts of data in a short amount of time, they are poised to 

revolutionize the field of cell counting. 

 

1.2  Thesis Objective and scope of works 
 

In this research our aim is to create some deep learning methods by making use of pre-existing 

convolutional neural network. The proposed systems will aim to accurately and efficiently count 

the number of cells in microscopic images. By integrating YOLO, we will be able to effectively 

detect and localize cells in the images, even in the presence of cluttered background and varying 

cell shapes and sizes. The performance of the two models will be evaluated in terms of accuracy 



 

2 
 

and speed. The ultimate goal is to contribute to the advancement of cellular analysis by providing 

a reliable and efficient cell counting solution for researchers in the field of biology and medical 

science. 

 

1.3  Organization of the thesis 
 

This thesis is organized in six chapters as below: 

I. In Chapter 1 – we present an introduction to the objective. We talk about what our work 

consists of and the final goal of all the study. 

II. Chapter 2 consists of a literature review in medical imaging and the challenges faced 

during working on the thesis. 

III. Chapter 3 presents the neural networks, computer vision techniques and other 

methodologies we have used in this work.  

IV. Chapter 4 includes the necessary methodologies in supporting our thesis. We describe 

the dataset, the model architecture and also the implementation. 

V. Chapter 5 describes the results obtained from the implementation. 

VI. Chapter 6 concludes the interpretation of the results and explores the future work and 

research of this topic. 
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CHAPTER 2 

2. LITERATURE REVIEW 
 

2.1  Medical Imaging 
 

In order to achieve an early detection, diagnosis but also treatment of different diseases, over many 

years there have been introduced different medical imaging techniques such as computed 

tomography, magnetic resonance imaging, positron emission tomography, ultrasounds, X-Ray etc. 

The results and interpretations are usually done by the experts of the fields. The reason we had to 

rely on the professionals was because of the knowledge they possess about the target domains. But 

lately, the researchers and medical professionals have started to gain from computer-assisted 

interventions due to the huge variances in pathology and the probable exhaustion of the human 

expertise. Given the introduction of many machine learning techniques, computational medical 

image processing is surely progressing.  

2.2  Challenges 
 

The main challenge of this research was the labelling of the images. We started with a raw dataset 

of cell images had to be processed and labelled manually along the contours of the nuclei. We 

experimented with many techniques and open-source applications to understand and see what 

would be the best fit for our type of images and models. 

Because of the fact that the density of cells can be quite high, we often observed close proximity 

of them and this made it harder to differentiate from one another. Also, in some of the cases, it was 

not very easy to distinguish the nucleus properly. This was related to some of the cells appearing 

to have “burst”. 
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Figure 1- Cell Image example 

 

Another challenge would be the resolution and contrast of the images that were used for our 

dataset. This can lead to a lower accuracy of the model, as it can produce false positive or false 

negative results when detecting the cells.  

 

Figure 2- Cell Image with crowded cells 
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2.3  Image Analysis and Neural Networks  
 

Convolutional Neural Networks (CNNs) have been used extensively for image processing in a 

variety of disciplines, including security, surveillance, deep fake identification, autonomous 

driving, space exploration, sign language translations and counting. Medical diagnostics has 

benefited greatly from the innovative designs of Convolutional Neural Networks. These 

implementations make different tasks like cancer or anomalies detection easier and rapider.  

In a CNN, the input image is processed through multiple layers, each of which performs a specific 

function, such as feature detection or classification. The key to a CNN's ability to analyze images 

is its use of convolutional layers, which are designed to detect specific features in the image. These 

convolutional layers scan the image, looking for patterns and features, and then use this 

information to make decisions about the image. One of the key advantages of CNNs is their ability 

to reduce the dimensionality of the input data. This makes them more efficient and less prone to 

overfitting, which is a common problem in other types of neural networks. Another advantage of 

CNNs is their ability to handle data of varying scales, such as images with different resolutions or 

orientations. This makes them well-suited to a wide range of image analysis tasks, including object 

recognition, image classification, and segmentation. 

In recent years, CNNs have achieved state-of-the-art results on many image - analysis tasks, 

outperforming traditional computer vision techniques. They have been applied to a wide range of 

domains, making them a crucial tool for the field of image analysis. 
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CHAPTER 3 

3. NEURAL NETWORKS 

 

3.1  Artificial Neuron 
 

The first introduction of the Artificial Neurons was done in 1943 by McCulloch and Pitts in “A 

logical Calculus of Ideas Immanent in Nervous Activity”. Their presentation was very closely 

related to how the human nervous system (and neurons) works. The calculations are done by what 

we call propositional logic. It wasn’t until the 1990s when there was really a rise of interest in 

Artificial Neural Networks. [16] 

The artificial neuron can have more than one inputs and only one output. The inputs can contain 

different values of information and when they are activated, the output information is activated as 

well. Many neurons can be organized together in the most basic, simple Artificial Neural Network 

(ANN), called a perceptron. Each input value is connected and multiplied to the weight. Weight 

starts as a randomly generated number. The result after the multiplication is passed to an activation 

function in the body. Then finally the product is outputted. 

Many perceptrons can form a Multi-Layered Perceptron, the basic form of Deep Neural Networks. 

Different from what we saw above, here the middle layers that remain hidden are introduced.  

First, the forward passing prediction is made by the backpropagation method. It reverses through 

each layer, measuring the contribution of each connection's error (reverse pass). The connection 

weights are slightly adjusted to lessen the inaccuracy. This is also called ‘tweaking’. [16] 

The backpropagation technique can be combined with various activation functions. Some notable 

activation functions include: 

1. The Sigmoid (Logistic) Activation Function S(z) = 1/ (1 + ez) 

A S-shaped , differentiable, monotonic function that exists between 0 to 1. It is mostly 

used for those cases when there is a need to predict a probability of the output.  
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2. The hyperbolic tangent function tanh (z) = 2σ(2z) – 1 

It is S-shaped, very similar to the Sigmoid activation function. Any real value can be used 

as an input and it has an output value that ranges from –1 to 1. This range contributes to 

causing each layer’s output to be almost normalized. The larger the input, the closer the 

output will be to 1. The hyperbolic tangent function is a continuous function. 

 

3. The Rectified Linear Activation Unit Function – ReLU (z) = max(0,z) 

It is also continuous, but not differentiable at the point z = 0 (Gradient Descent bounces 

around since the slope changes abruptly). It returns 0 for any negative value as input, and 

the if the input is a positive value, it is returned as an output as well. This function is 

quick to be calculated. It does not have a maximum output value and this can help reduce 

some issues during Gradient Descent [32]. But because of the negative values input 

producing a 0 output, the ability of the model to train properly is decreased. 

 

4. Leaky ReLU – f(z) = max(0.01*x, x) 

An attempt to solve the problem mentioned above. When the value is not 0.01 it is called 

Randomized ReLU. Range of this function is –infinity to infinity. It is also monotonic, 

together with its derivative. 

 

 

Figure 3- Sigmoid Function 
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Figure 4 - Sigmoid vs Tanh Function 

 

Figure 5 - ReLU vs Leaky ReLU 

 

3.2  Convolutional Neural Network Layers 
 

The input layer of CNNs serves the main goal of initializing the input image data, in order to make 

its dimensions zero-centered. The scale of the input data is then normalized in between [0,1] to 

accelerate the converging speed and decreases the redundancy by whitening the data.  

The core of the CNNs is actually the Convolutional Layer. A CONV kernel filter slides on the 

original image. It then multiplies the value of each pixel of the data and adds them as the 

convolutional result. This rule is called a convolution [2]. Additionally, a technique known as 

shared weight is used to filter various portions of an image using the same CONV kernel, allowing 

neutral cells with the same feature to be identified and categorized as belonging to the same object 
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category. The Kernel size, depth, stride, zero-padding, and filter number are a few examples of 

parameters. The following is the output size calculating algorithm: 

 

𝐻𝑜𝑢𝑡 = 1 + 
𝐻𝑖𝑛+(2∗𝑝𝑎𝑑)−𝐾ℎ𝑒𝑖𝑔ℎ𝑡

𝑆
                                   𝑊𝑜𝑢𝑡 = 1 + 

𝑊𝑖𝑛+(2∗𝑝𝑎𝑑)−𝐾𝑤𝑖𝑑𝑡ℎ

𝑆
  

 

where Hout is the output height, Hin is the input height, Kheight is the Kernel height (same applies 

for the width). 

The next layer is the Active Layer, which makes the result of the Convolutional layer nonlinear. It 

solves the vanishing gradient problem of underfitting. Sigmoid, Tanh, ReLU, Leaky ReLU and 

more functions can be used for it, but Leaky ReLU is the most used one. [2] 

The Pooling Layer decreases the dimension of results obtained from the Convolutional Layer. It 

is located between two convolutional layers. Three different pooling techniques exist: general 

pooling, overlapping pooling, and spatial pyramid pooling (SPP). The width of the general pooling 

typically coincides with stride. The two common methods are maximum pooling and average 

pooling. Typically, the stride is wider than the overlapping pooling. Any size image's 

convolutional features can be converted into the same number of dimensions using SPP. This SPP 

benefit enables CNN to handle a variety of image types while also preventing information loss due 

to cropping and warping. 

Often, the last layers of CNNs are the Fully Connected Layers. They send the data processed to 

the output while simplifying and speeding up the calculation. 

 

3.3  Computer Vision Techniques 
 

Because it straddles a number of research and development domains, including computer science, 

physics, mathematics and biology, computer vision can be difficult to define. The fundamental 

function of computer vision is the automatic information extraction from digital images. [32] 

Making sense of images—that is, separating meaningful, semantic information from images —is 
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a key objective of computer vision (objects present in images, their position and quantity). Several 

sub-domains can be created from this general issue: 

1. Object classification 

This is the simplest technique of computer vision and has a main goal to classify the image into 

one or more different categories. An object classifier takes an image as input and can 

differentiate between different objects in the picture. It would for example say that there are cars 

present in the image, or cells, or people. But it is limited and cannot elaborate in any more details 

about the data present, such as how many people are there, or the car color and its position. 

2. Object detection 

It makes use of image classification to detect the objects in visual data. It is used to identify the 

objects inside bounding boxes and also extract the type of the objects in an image. 

3. Semantic Segmentation 

It classifies every pixel of the image to specify what type of objects is in it. In other words, every 

pixel plays a role. It does this without differentiating between the object instances. Semantic 

segmentation is also defined as the task of clustering parts of an image together which belong to 

the same object class. 

4. Object and instance segmentation 

Similar to semantic segmentation but on a more complex level, instance segmentation can 

categorize the objects in an image at the pixel level. It implies that Instance Segmentation can 

group comparable object types into various groups. For instance, if the image consists of 

different vehicles, semantic segmentation will allow us to recognize that there are different cars, 

whereas instance segmentation will allow us to identify the cars according to their color, shape, 

etc. 

We define a feature in computer vision as a piece of information that is taken from data that is 

related to the task at hand and is frequently formally expressed as a one- or two-dimensional 

vector. Features include some prominent visual elements, distinct edges, patches, and more. The 

features should be easy to be distinguished and extracted from new, other images. And they also 

must contain all the necessary information that is needed for more recognition. 

Convolutional Neural Network can handle multidimensional data. It uses three-dimensional data 

(height, width, and depth) as input for images and arranges its own neurons in a similar volume. 
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This leads to a unique feature of CNNs: each neuron in a CNN only has access to select 

components in the nearby region of the previous layer, as opposed to fully connected networks, 

where neurons are connected to all elements from the previous layer. This area is referred to as 

the neurons' receptive field, and it is typically square and encompasses all channels (or the filter 

size) [32] 

 

Figure 6 - Receptive field and layers of CNN 

 

3.4  Evaluating Model’s performance 

 
When working with neural networks, something we encounter in every research is the Mean 

Average Precision (mAP) metric. We use mAP to analyze the performance of object detection 

and segmentation systems. The formula of mAP is based on: the Confusion Matrix, Intersection 

over Union (IoU), Recall and Precision.  

In order to understand the Confusion Matrix, we need to be introduced to the basic four elements 

of it:  

• True Positives (TP) – The model has predicted a label which matches correctly as the 

ground truth 

• True Negatives (TN) – The model did not predict a label which is not a ground truth 

• False Positives (FP) – The model predicted a label, which is not part of the ground truth 

(Type I error) 

• False Negatives – The model did not predict a label, which is a ground truth (Type II 

error) 
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Figure 7- Confusion Matrix 

 

True and false positives are defined by the number of predictions matching or not matching the 

ground truth boxes. Intersection over Union (IoU), also known as the Jaccard index, displays the 

overlap of the predicted bounding box coordinates to the ground truth box. Higher IoU implies a 

closer match between the predicted and actual bounding box coordinates. 

𝐼𝑜𝑈(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

|𝐴 ∩ 𝐵|

|𝐴 + 𝐵| − |𝐴 ∩ 𝐵|
 

𝐴 and 𝐵 are the number of elements that each set contains. 𝐴 ⋂ 𝐵 is the intersection of the two 

sets, otherwise meaning the number of elements they have in common. 𝐴 ⋃ 𝐵 is the union of the 

sets and therefore |𝐴 ⋃ 𝐵| represents the total number of elements the two sets cover together. 

The ratio of IoU varies from 0 (the sets/boxes do not overlap at all) to 1 (the sets/boxes overlap 

entirely).  
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Figure 8 - Intersection over Union 

Recall is calculated as the ratio between the TP to the total number of samples. What Recall is 

actually measuring is the model's ability to detect the positive samples. The higher this value is, 

the better the model is considered to be.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Precision value measures how well the model can find the true positives out of all positive 

predictions. In other words: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Since sometimes it can be difficult to have a clear comparison of models with low precision and 

high recall (or vice versa), F-score is used to help us measure it in a more efficient way. It uses 

Harmonic Mean in place of Arithmetic Mean by punishing extreme values more. F1 is designed 

to work well on unbalanced data.  

𝐹1 =  
2 𝑥 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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Finally, coming back to the mAP, it is calculated as the weighted mean of precisions at each 

threshold; the weight is the increase in recall from the prior threshold. Depending on different 

contexts, its interpretation can also vary.  

While average precision gives information about the performance of a model for a single class, 

we use mAP to get a global score. This corresponds to the mean of the average precision for each 

class. mAP summarizes a precision-recall curve as the weighted mean of precisions achieved at 

each threshold, with the increase in recall from the previous threshold used as the weight: 

𝐴𝑃 =  ∑

𝑛

(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛 

Pn and Rn are the precision and recall respectively at the nth threshold. 
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CHAPTER 4 

4. METHODOLOGY 
 

4.1  YOLO  
 

YOLO is a real time object recognition algorithm that is based on regression. This means that 

instead of selecting interesting parts of an image, it predicts classes and bounding boxes for the 

whole image in one run of the algorithm.  

Each bounding box contains four descriptors that are: the center of the bounding box, the width 

and height, the value that corresponds to the class of the object. The network divides the image 

into regions and predicts the probabilities for each of them. Each grid cell in YOLO will have an 

associated vector in the output that tells if the object exists in that grid, the class of the object 

(which in our case is the cell nucleus) and the predicted bounding box for that object. 

YOLO makes use of only convolutional layers and is invariant to the size of the input image. 

Candidate boxes from images are extracted directly by the network and then object detection is 

performed through the entire image features.  

YOLO surpasses CNN's maximum speed cap and achieves an outstanding balance between speed 

and accuracy. It is extremely fast while outperforming state-of-the-art techniques like Faster R-

CNN. Secondly, YOLO uses a global reasoning approach and encodes contextual data about the 

image. False positives on background are therefore less likely to be predicted. 
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Figure 9- Basic YOLO Architecture (Adapted from [26] ) 

 

A Fully Convolutional One-stage Object Detection uses pixel-wise prediction for object detection. 

 

Figure 10 – One Stage Detector 

The deep learning architecture that serves as a feature extractor is called the Backbone. In essence, 

each backbone model is a classification model. There are a few models like VGG16, SqeueezeNet, 

MobileNet and ShuffleNet that can be utilized in the backbone. They are all intended only for CPU 

training. Its design has a critical influence on the inference efficiency because it carries a high 

portion of computation cost [21]. 
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The feature aggregator, also known as the Neck, is a subset of the bag of specials. It can collect 

feature maps from different stages of the backbone. It builds up the pyramid feature maps. 

Head is made up of different convolutional layers. The final detection result according to the 

features passed by the neck, is predicted in the end. The head can be categorized in two ways: 

anchor based and anchor free. What this really means is a structural perspective, a parameter-

coupled head or parameter-decoupled head [21]. 

 

4.2  YOLOv5 
 

YOLOv5 was released in June 2020 and is available in five models: n, s,m,l,x. Each letter 

corresponds to: nano – extra small model, small model, medium size model, large model and extra-

large model. 

The detection accuracy and performance of them differs and can be better observed in the graph 

below: 

 

Figure 11 - Comparison of YOLOv5 models (Adapted with permission from [23]) 
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The difference of the five models is the number of layers and the parameters. But no difference in 

terms of operations was observed. 

YOLOv5 supports also instance segmentation. This is achieved by introducing a fully connected 

neural network, the ProtoNet, in addition to the object detection head. Prototype masks are 

produced by ProtoNet for the segmentation model, in a similar way to a Fully Connected Network.  

All YOLOv5 models contain a CSP-Darknet53 as a backbone, Spatial Pyramid Pooling (SPP) 

and Path Aggregation Network (PANet) as a neck and the head used is the same as the one in 

YOLOv4. The activation functions are the Sigmoid Linear Unit and the Sigmoid Activation 

Function. 

It has been observed that YOLOv5 is faster to train than its ancestor YOLOv4. The model is also 

considerably lighter. It is however worthy to be noted that both YOLOv4 and YOLOv5 have the 

same mAP, at least in the benchmark and studies made by Roboflow. 

 

 

Figure 12 - Network architecture of YOLOv5 (Adapted from [23]) 
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4.3  YOLOv6 
 

The network design, label assignment, loss function, data augmentation, business-friendly 

changes, quantization, and deployment are the components that make up the renovated YOLOv6 

design. [21] It uses a Varifocal loss (VFL) for classification and Distribution Focal loss (DFL) for 

detection.  

Focal loss gives rise to VFL. This indicates that it already handles and weighs difficult and simple 

cases differently during training. The importance of the positive and negative examples is also 

handled differently by VFL. The learning signals from the two samples are balanced as a result. 

DFL is used for box regression loss in the YOLOv6 Medium and Large models. The continuous 

box location distribution is viewed by DFL as a discretized probability distribution. 

 

When the borders of the ground truth are hazy, it is particularly useful for detection. It was also 

tried using DFLv2, which added a lightweight sub-network. However, this required additional 

computations, and no improvements above DFL were noted. Therefore, DFL is still used as the 

localization loss function.  

In YOLOv6 there have been also introduced longer training epochs, quantization and knowledge 

distillation. YOLOv6 uses knowledge distillation to increase the models' accuracy. This is also 

possible without having a significant computation expense. A teacher model is used in knowledge 

distillation to train a student model. Along with the ground truth, the instructor model's predictions 

serve as soft labels to train the student model. In order to duplicate the performance of the teacher 

model, we essentially train a smaller and simpler model (relative to the teacher). [21] 



 

20 
 

 

Figure 13 Teacher Student in Self-Distillation 

The type of knowledge distillation will determine whether the teacher model is pre-trained or not. 

Additionally, the teacher model may be a bigger model or perhaps the same model. Since YOLOv6 

trains users through self-distillation, the student model serves as the teacher model. But in this 

instance, the teacher model has already been taught. The optimization procedure reduces the KL-

divergence between the student's and teacher's predictions for YOLOv6 training. 

ResNets can perform better in classification performance, but they lack speed during inference. 

VGGs on the other hand are much faster as they contain effective 3*3 convolutions. Their 

downside is as expected, the accuracy. YOLOv6 models use reparametrized backbones. The 

network structure changes during training and inference. In the backbone, RepBlocks with skip 

connections (reparametrized VGG) are the foundation of the network for nano, tiny and small 

architectures. During inference, RepConv blocks are used instead.  
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Figure 14 - RepVGG during training and RepConv during inference 

In Medium and Large models of the network, the architecture actually uses reparametrized 

versions of the CSP backbone, also known as the CSPStackRep. 

As for the Neck, following YOLOv4 and YOLOv5, the YOLOv6 aggregates the multi-scale 

feature maps using Path Aggregation Network (PAN) topology [25]. PAN is intended to boost 

information flow in a proposal-based instance segmentation framework [25]. In particular, bottom-

up route augmentation shortens the information flow between lower layers and the topmost feature, 

enhancing the feature hierarchy with precise localization signals in lower layers. The use of 

adaptive feature pooling, which connects feature grid and all feature levels, allows for the direct 

propagation of important information from each feature level to the subsequent proposal 

subnetworks. To further enhance mask prediction, a supplemental branch is constructed that 

captures several perspectives for each proposal. 

In order to have RepPAN, the neck is enhanced using RepBlocks or CSPStackRep Blocks. 

We can also observe some changes in the head structure. To increase its efficiency, decoupled 

head is simplified and referred to as the Efficient Decoupled Head. As a result, the classification 

and detection branches split off from the backbone independently and do not exchange any 

parameters. This further cuts down on computations and also offers greater precision. 
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Figure 15 - YOLOv6 (N and S) Framework 

We can see how the efficient decoupled head is written in our implementation code [cit yolov5]. 

It is optimized with hybrid channels methods. 

   def __init__(self, num_classes=80, num_layers=3, inplace=True, head_layers=None, use_dfl=True, reg_max=16):  # detection 

layer 

        super().__init__() 

        assert head_layers is not None 

        self.nc = num_classes  # number of classes 

        self.no = num_classes + 5  # number of outputs per anchor 

        self.nl = num_layers  # number of detection layers 

        self.grid = [torch.zeros(1)] * num_layers 

        self.prior_prob = 1e-2 

        self.inplace = inplace 

        stride = [8, 16, 32] if num_layers == 3 else [8, 16, 32, 64] # strides computed during build 

        self.stride = torch.tensor(stride) 

        self.use_dfl = use_dfl 

        self.reg_max = reg_max 

        self.proj_conv = nn.Conv2d(self.reg_max + 1, 1, 1, bias=False) 

        self.grid_cell_offset = 0.5 

        self.grid_cell_size = 5.0 

 

        # Init decouple head 

        self.stems = nn.ModuleList() 

        self.cls_convs = nn.ModuleList() 

        self.reg_convs = nn.ModuleList() 

        self.cls_preds = nn.ModuleList() 

        self.reg_preds = nn.ModuleList() 

 

        # Efficient decoupled head layers 

        for i in range(num_layers): 

            idx = i*5 

            self.stems.append(head_layers[idx]) 

            self.cls_convs.append(head_layers[idx+1]) 

            self.reg_convs.append(head_layers[idx+2]) 

            self.cls_preds.append(head_layers[idx+3]) 

            self.reg_preds.append(head_layers[idx+4]) 

 

YOLOv6 model is then built with its respective head, neck and backbone: 
 

def build_network(config, channels, num_classes, num_layers, fuse_ab=False, distill_ns=False): 

    depth_mul = config.model.depth_multiple 

    width_mul = config.model.width_multiple 

    num_repeat_backbone = config.model.backbone.num_repeats 
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    channels_list_backbone = config.model.backbone.out_channels 

    fuse_P2 = config.model.backbone.get('fuse_P2') 

    cspsppf = config.model.backbone.get('cspsppf') 

    num_repeat_neck = config.model.neck.num_repeats 

    channels_list_neck = config.model.neck.out_channels 

    use_dfl = config.model.head.use_dfl 

    reg_max = config.model.head.reg_max 

    num_repeat = [(max(round(i * depth_mul), 1) if i > 1 else i) for i in (num_repeat_backbone + num_repeat_neck)] 

    channels_list = [make_divisible(i * width_mul, 8) for i in (channels_list_backbone + channels_list_neck)] 

 

    block = get_block(config.training_mode) 

    BACKBONE = eval(config.model.backbone.type) 

    NECK = eval(config.model.neck.type) 

 

    if 'CSP' in config.model.backbone.type: 

        backbone = BACKBONE( 

            in_channels=channels, 

            channels_list=channels_list, 

            num_repeats=num_repeat, 

            block=block, 

            csp_e=config.model.backbone.csp_e, 

            fuse_P2=fuse_P2, 

            cspsppf=cspsppf 

        ) 

        neck = NECK( 

            channels_list=channels_list, 

            num_repeats=num_repeat, 

            block=block, 

            csp_e=config.model.neck.csp_e 

        ) 

    else: 

        backbone = BACKBONE( 

            in_channels=channels, 

            channels_list=channels_list, 

            num_repeats=num_repeat, 

            block=block, 

            fuse_P2=fuse_P2, 

            cspsppf=cspsppf 

        ) 

        neck = NECK( 

            channels_list=channels_list, 

            num_repeats=num_repeat, 

            block=block 

        ) 

 

YOLOv6 is an anchor-free detector. This makes it stand out among other models, as a result of its 

optimized generalization ability and the simplification in decoding prediction results. A reduction 

in cost of post-processing is observed. In YOLOv6 we use anchor point-based paradigm. Its box 

regression branch actually predicts the distance from the anchor point to the four sides of the 

bounding boxes [21].  
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4.4  Dataset 
 

We have accumulated many microscopic images of cells and have labelled manually each of them 

using the open-source annotation-tool Roboflow [22]. The main focus was the nucleus of the cell. 

The user can select a specific area in the image, right where the cell nucleus would be. These are 

our bounding boxes and we have labelled them with a C – meaning Cell.  

 

Figure 16 - Labelling of the dataset 

Roboflow can divide the dataset randomly into three separate folders: Train, Valid and Test, with 

a default of 70%, 20% and 10% of the images respectively.  

Then we can select the format of the annotations to be used for our network. We have used 90 

images of size 1280x1024 for our dataset with around 10 hours of labelling. Because of the very 

small size of the objects we want to detect, a resizing was not done on the images. This is to ensure 

that the quality of the photos would not be lost.  
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Roboflow can then export the images and the respective annotations in our desired format 

(YOLOv5 or v6) with a simple API key that is added to the code, or in the traditional download 

way. 

 

4.5  Implementation 
 

The first implementation we are going to observe is the YOLOv5. We have defined only one class 

– C, as mentioned above.  It bounds the nucleus of the cells. The other part of the image will be 

considered a background. We have used an existing repository from Github [23] 

The network used a batch size of 64 and trained for 300 epochs.  The best results were reached at 

epoch 194. We did the pre-processing steps and training on Google Colab and lasted for about 18 

minutes.  

The generic COCO pretrained checkpoint is used for the weights. Also, to enable a faster training, 

cache is set on. 

For the second implementation with YOLOv6, we have similarly cloned the repository from 

Github [24]. The preparation of the dataset included the separation of the images in the train, valid 

and test folders. This separation was also done on the label files. 

In the data.yaml file we have specified the path for each of the folders, number of classes (nc = 

1) and the name of the class (nucleus).  

For the configuration of the network structure, training settings, optimizers and data 

augmentation hyperparameters, we have downloaded the pre-trained YOLOv6s finetuned model. 

In this file we can see the different layers and types used for the backbone, neck and head. It is to 

be noted that this configuration also downloads the pre-trained weights from YOLOv5. Batch 

number in this second implementation was set to 64 as well and we trained for 400 epochs for 

around 51 minutes. 
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CHAPTER 5 

5. RESULTS AND DISCUSSION 
 

5.1 YOLOv5 

 
This network was able to achieve a mean average precision of 73% in terms of accuracy (0.738). 

We can see the increase of the mAP over the epochs in the graph below. It is apparent that there 

are a few fluctuations in the curve. It is important to mention that even though accuracy was 73%, 

every cell nucleus in the cell is counted. A lower than 100% accuracy in this case indicates that 

the predicted bounding boxes surface is not entirely correct. But the element within it is detected. 

 

Figure 17 - YOLOv5 mAP 

 

A similar behavior is seen in the precision curve. The final precision value for our training reached 

0.763. 

 

Figure 18 - YOLOv5 Precision 
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The fluctuations in Recall are not as big as in the previous curves. Value looks stable in the last 

100 epochs or so. Recall reached an average value of 0.734. 

 

Figure 19 - YOLOv5 Recall 

We can also observe the box loss for our latest experiment. This basically measures how “tight” 

the predicted bounding boxes are to the ground truth object. The model shows an improvement in 

locating the center of the object, with a final value of 0.05239 in the latest epoch. 

 

Figure 20 - YOLOv5 Box loss 

Having the precision and recall values, we can now calculate the F1 score, resulting in 0.748. 

 

mAP PRECISION RECALL BOX LOSS F1 - SCORE 

0.738 0. 763 0.734 0.05239 0.748 

Table 1 – YOLOv5 Results 
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We have also plotted the F1-Confidence curve that shows the best F1 score of 0.75 at a threshold 

of confidence of 0.416. 

 

 

 

Figure 21 - YOLOv5 F1 Score 

In a similar way we have also plotted the precision-confidence curve, with the highest value 1 

reached at the confidence threshold of 0.770, and the precision-recall curve.  This shows the 

tradeoff between precision and recall for different thresholds. The higher the Area under the Curve 

(AUC) is, the better the performance of the model is considered to be. 



 

29 
 

 

Figure 22 - YOLOv5 Precision Confidence Curve 

 

 

Figure 23 - YOLOv5 Precision Recall Curve 

After the training, we have run the detection on some of our test images, to see the output of the 

model. You can see in the figures to come, the detected cells in our medical images.  
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Figure 24 - Detection results in YOLOv5 

 

Figure 25 - Detection results in YOLOv5 
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Figure 26- Detection results in YOLOv5 

 

Figure 27 - Detection results in YOLOv5 
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We can see that the model was able to detect almost every nucleus present in the images.  

 

5.2  YOLOv6 
 

Class loss started off a bit high in the beginning of the training. It then experienced a decrease and 

appeared stable in the last iterations. 

 

 

Figure 28 - Class loss YOLOv6 

Here we can observe a comparison between different runs we have done of the training process 

(latest is in green): 

 

Figure 29 - Comparison in class loss 

 

For Intersection over Union loss, we see that our latest experiment showed a bigger decrease than 

the others: 
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Figure 30 - IoU loss 

 

Figure 31 - IoU loss comparison 

The mAP did not appear promising in the beginning. However, we observe here as well an 

improvement in its value, compared to the other experiments. 

 

 

Figure 32 - mAP in YOLOv6 
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Figure 33 - mAP Comparison 

After 350 epochs, mAP showed a decrease from 0.3 to 0.2. 

The mAP@[0.5:0.95], showing the average mAP over different IoU thresholds (from 0.5 to 0.95), 

had the highest value in 0.073. 

The model achieved a precision value of 0.118 and a Recall value of 0.098. 

We have calculated the F1-score with the above values, resulting in 0.2141. 

mAP PRECISION RECALL F1 - SCORE 

0.3 0.118 0.098 0.2141 

Table 2 – YOLOv6 Results 

 

Lastly in the table and chart below, we can have a clearer view in the comparison of the two 

models. 

 

 mAP PRECISION RECALL F1-SCORE 

YOLOv5 0.73 0.76 0.75 0.74 

YOLOv6 0.3 0.118 0.098 0.2141 

Table 3 – Comparison of YOLOv5 and YOLOv6 

 

mailto:mAP@[0.5:0.95
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Figure 34 - Comparison between YOLOv5 and YOLOv6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

YOLOv5 YOLOv6

YOLOv5 vs. YOLOv6

mAP Precision Recall F1-Score



 

36 
 

CHAPTER 6 

 

6.1  Conclusions 
 

Through these experiments we have observed the behavior of two different YOLO models when 

trying to achieve a detection of cells in microscopic images.  

In YOLOv5 the results show a good model for this task. The F1-score is high, meaning that in the 

prediction the number of false positives and false negatives were low. YOLOv5 showed a high 

accuracy as well, while not obtaining a lot of time to train.  

The same, unfortunately could not be determined for YOLOv6. For this kind of detection, its 

ancestor showed more promising results, so we propose using the version 5 for cell segmentation 

in images. The trainings, however, do suggest that with larger amount of data, or by using a bigger 

YOLOv6 model, for example the large one with more parameters, the results could reach better 

levels.  

We can also conclude that high accuracy can be achieved even without pre-processing steps or 

techniques done to the images. In a much larger dataset, with more training epochs, the model can 

be trained to better identify the cells’ nuclei.  

 

6.2  Future Work 
 

YOLO is a very powerful and fast detection model. However, there is the challenge of high number 

of operations and computational demand. Future research can be concentrated on implementing 

deep learning frameworks more quickly and on developing more effective pruning techniques for 

smaller, more precise detection networks. The networks can be then incorporated in mobile device 

CPUs, due to their small weight. 

Furthermore, pruning strategies can be used for additional detection tasks where hardware storage 

and computing resources are scarce, and focus not only on cell counting.  

With CNN's architectural improvements, the extraction of features can be made more robust by 

using cutting-edge convolutional techniques including tiled, transposed, and dilated convolution. 
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These convolutions may be used to further enhance the procedure, depending on the applications 

and underlying datasets. Models that have been trained for one job in particular may not perform 

well on other tasks that are comparable, leading to the model's inability to detect new data. For 

more accurate generalized models, various regularization techniques such as LP-Normalization, 

dropouts could be tested. 
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CHAPTER 8 

8. Appendix 
 

YOLOv5 train.py 
 

  # Model 
    check_suffix(weights, '.pt')  # check weights 
    pretrained = weights.endswith('.pt') 
    if pretrained: 
        with torch_distributed_zero_first(LOCAL_RANK): 
            weights = attempt_download(weights)  # download if not found locally 
        ckpt = torch.load(weights, map_location='cpu')  # load checkpoint to CPU to avoid CUDA memory leak 
        model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create 
        exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys 
        csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32 
        csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)  # intersect 
        model.load_state_dict(csd, strict=False)  # load 
        LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}')  # report 
    else: 
        model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create 
    amp = check_amp(model)  # check AMP 
 
    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------ 
        callbacks.run('on_train_epoch_start') 
        model.train() 
 
        # Update image weights (optional, single-GPU only) 
        if opt.image_weights: 
            cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights 
            iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights 
            dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx 
 
        # Update mosaic border (optional) 
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) 
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        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders 
 
        mloss = torch.zeros(3, device=device)  # mean losses 
        if RANK != -1: 
            train_loader.sampler.set_epoch(epoch) 
        pbar = enumerate(train_loader) 
        LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size')) 
        if RANK in {-1, 0}: 
            pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT)  # progress bar 
        optimizer.zero_grad() 
        for i, (imgs, targets, paths, _) in pbar:  # batch ------------------------------------------------------------- 
            callbacks.run('on_train_batch_start') 
            ni = i + nb * epoch  # number integrated batches (since train start) 
            imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0 
 
            # Warmup 
            if ni <= nw: 
                xi = [0, nw]  # x interp 
                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou) 
                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) 
                for j, x in enumerate(optimizer.param_groups): 
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 
                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)]) 
                    if 'momentum' in x: 
                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) 
 
            # Multi-scale 
            if opt.multi_scale: 
                sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs  # size 
                sf = sz / max(imgs.shape[2:])  # scale factor 
                if sf != 1: 
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple) 
                    imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) 
 
            # Forward 
            with torch.cuda.amp.autocast(amp): 
                pred = model(imgs)  # forward 
                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size 
                if RANK != -1: 
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode 
                if opt.quad: 
                    loss *= 4. 
 
            # Backward 
            scaler.scale(loss).backward() 
 
            # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html 
            if ni - last_opt_step >= accumulate: 
                scaler.unscale_(optimizer)  # unscale gradients 
                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)  # clip gradients 
                scaler.step(optimizer)  # optimizer.step 
                scaler.update() 
                optimizer.zero_grad() 
                if ema: 
                    ema.update(model) 
                last_opt_step = ni 
 
            # Log 
            if RANK in {-1, 0}: 
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses 
                mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'  # (GB) 
                pbar.set_description(('%11s' * 2 + '%11.4g' * 5) % 
                                     (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])) 
                callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss)) 
                if callbacks.stop_training: 
                    return 
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            # end batch ------------------------------------------------------------------------------------------------ 
       if RANK in {-1, 0}: 
            # mAP 
            callbacks.run('on_train_epoch_end', epoch=epoch) 
            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights']) 
            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop 
            if not noval or final_epoch:  # Calculate mAP 
                results, maps, _ = validate.run(data_dict, 
                                                batch_size=batch_size // WORLD_SIZE * 2, 
                                                imgsz=imgsz, 
                                                half=amp, 
                                                model=ema.ema, 
                                                single_cls=single_cls, 
                                                dataloader=val_loader, 
                                                save_dir=save_dir, 
                                                plots=False, 
                                                callbacks=callbacks, 
                                                compute_loss=compute_loss) 
 
            # Update best mAP 
            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95] 
            stop = stopper(epoch=epoch, fitness=fi)  # early stop check 
            if fi > best_fitness: 
                best_fitness = fi 
            log_vals = list(mloss) + list(results) + lr 
            callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi) 
 
            # Save model 
            if (not nosave) or (final_epoch and not evolve):  # if save 
                ckpt = { 
                    'epoch': epoch, 
                    'best_fitness': best_fitness, 
                    'model': deepcopy(de_parallel(model)).half(), 
                    'ema': deepcopy(ema.ema).half(), 
                    'updates': ema.updates, 
                    'optimizer': optimizer.state_dict(), 
                    'opt': vars(opt), 
                    'git': GIT_INFO,  # {remote, branch, commit} if a git repo 
                    'date': datetime.now().isoformat()} 
 
                # Save last, best and delete 
                torch.save(ckpt, last) 
                if best_fitness == fi: 
                    torch.save(ckpt, best) 
                if opt.save_period > 0 and epoch % opt.save_period == 0: 
                    torch.save(ckpt, w / f'epoch{epoch}.pt') 
                del ckpt 
                callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi) 
 

 

YOLOv5 detect.py 

 

# Process predictions 
        for i, det in enumerate(pred):  # per image 
            seen += 1 
            if webcam:  # batch_size >= 1 
                p, im0, frame = path[i], im0s[i].copy(), dataset.count 
                s += f'{i}: ' 
            else: 
                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) 
 
            p = Path(p)  # to Path 
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            save_path = str(save_dir / p.name)  # im.jpg 
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt 
            s += '%gx%g ' % im.shape[2:]  # print string 
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh 
            imc = im0.copy() if save_crop else im0  # for save_crop 
            annotator = Annotator(im0, line_width=line_thickness, example=str(names)) 
            if len(det): 
                # Rescale boxes from img_size to im0 size 
                det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() 
 
                # Print results 
                for c in det[:, 5].unique(): 
                    n = (det[:, 5] == c).sum()  # detections per class 
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string 
 
                # Write results 
                for *xyxy, conf, cls in reversed(det): 
                    if save_txt:  # Write to file 
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh 
                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format 
                        with open(f'{txt_path}.txt', 'a') as f: 
                            f.write(('%g ' * len(line)).rstrip() % line + '\n') 
 
                    if save_img or save_crop or view_img:  # Add bbox to image 
                        c = int(cls)  # integer class 
                        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') 
                        annotator.box_label(xyxy, label, color=colors(c, True)) 
                    if save_crop: 
                        save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) 

 

 

 

 

YOLOv6 train.py (Main function of training) 

 

def main(args): 
    '''main function of training''' 
    # Setup 
    args.local_rank, args.rank, args.world_size = get_envs() 
    cfg, device, args = check_and_init(args) 
    # reload envs because args was chagned in check_and_init(args) 
    args.local_rank, args.rank, args.world_size = get_envs() 
    LOGGER.info(f'training args are: {args}\n') 
    if args.local_rank != -1: # if DDP mode 
        torch.cuda.set_device(args.local_rank) 
        device = torch.device('cuda', args.local_rank) 
        LOGGER.info('Initializing process group... ') 
        dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo", \ 
                init_method=args.dist_url, rank=args.local_rank, world_size=args.world_size) 
 
    # Start 
    trainer = Trainer(args, cfg, device) 
    # PTQ 
    if args.quant and args.calib: 
        trainer.calibrate(cfg) 
        return 
    trainer.train() 
 
    # End 
    if args.world_size > 1 and args.rank == 0: 
        LOGGER.info('Destroying process group... ') 
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        dist.destroy_process_group() 
 
 
if __name__ == '__main__': 
    args = get_args_parser().parse_args() 
    main(args) 
 
def check_and_init(args): 
    '''check config files and device.''' 
    # check files 
    master_process = args.rank == 0 if args.world_size > 1 else args.rank == -1 
    if args.resume: 
        # args.resume can be a checkpoint file path or a boolean value. 
        checkpoint_path = args.resume if isinstance(args.resume, str) else find_latest_checkpoint() 
        assert os.path.isfile(checkpoint_path), f'the checkpoint path is not exist: {checkpoint_path}' 
        LOGGER.info(f'Resume training from the checkpoint file :{checkpoint_path}') 
        resume_opt_file_path = Path(checkpoint_path).parent.parent / 'args.yaml' 
        if osp.exists(resume_opt_file_path): 
            with open(resume_opt_file_path) as f: 
                args = argparse.Namespace(**yaml.safe_load(f))  # load args value from args.yaml 
        else: 
            LOGGER.warning(f'We can not find the path of {Path(checkpoint_path).parent.parent / "args.yaml"},'\ 
                           f' we will save exp log to {Path(checkpoint_path).parent.parent}') 
            LOGGER.warning(f'In this case, make sure to provide configuration, such as data, batch size.') 
            args.save_dir = str(Path(checkpoint_path).parent.parent) 
        args.resume = checkpoint_path  # set the args.resume to checkpoint path. 
    else: 
        args.save_dir = str(increment_name(osp.join(args.output_dir, args.name))) 
        if master_process: 
            os.makedirs(args.save_dir) 
 
    cfg = Config.fromfile(args.conf_file) 
    if not hasattr(cfg, 'training_mode'): 
        setattr(cfg, 'training_mode', 'repvgg') 
    # check device 
    device = select_device(args.device) 
    # set random seed 
    set_random_seed(1+args.rank, deterministic=(args.rank == -1)) 
    # save args 
    if master_process: 
        save_yaml(vars(args), osp.join(args.save_dir, 'args.yaml')) 
 
    return cfg, device, args 

 

 


