
IMPLEMENTING A CRYPTOGRAPHY ALGORITHM USING
RUBIK'S CUBE FOR SECURITY ON IOT DEVICES

A THESIS SUBMITTED TO
THE FACULTY OF ARCHITECTURE AND ENGINEERING

OF

EPOKA UNIVERSITY

BY

TEA PAPA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OFMASTER OF SCIENCE
IN

COMPUTER ENGINEERING

MAY, 2024

i

Approval sheet of the Thesis

This is to certify that we have read this thesis entitled “Implementing A

Cryptography Algorithm Using Rubik's Cube For Security ON IOT Devices”

and that in our opinion it is fully adequate, in scope and quality, as a thesis for the

degree of Master of Science.

Assoc. Prof. Dr. Arban Uka
Head of Department
Date: July, 25, 2024

Examining Committee Members:

Prof. Dr. Bekir Karlik (Computer Engineering)

Assoc.Prof. Dr. Dimitrios Karras(Computer Engineering)

Dr. Shkëlqim Hajrulla (Computer Engineering)

ii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name Surname: Tea Papa

Signature:

iii

ABSTRACT

IMPLEMENTING A CRYPTOGRAPHY ALGORITHM USING
RUBIK'S CUBE FOR SECURITY ON IOT DEVICES

Papa, Tea

M.Sc., Department of Computer Engineering

Supervisor: Assoc.Prof.Dr. Dimitrios Karras

Because more companies and individuals were transferring data to the cloud

as a result of the COVID epidemic, the significance of online communication has

grown dramatically. We all depend on the net to transfer data whenever we need to

send it to a different individual or organisation. It's critical that sensitive information

cannot be easily captured or hijacked and used against undesired parties when sent

over the internet. Businesses and individuals can use encryption to send private

information over the web to ensure only the intended recipient can access it.

Mathematical equations are used to modify the data in order for any

cryptography technique to encrypt and decode sensitive material. The intricacy of

these equations determines how much more of the device's resources can be utilised.

Because so much computational power is required, data security in the Internet of

Things environment is challenging. Quantum computation is a further issue with the

cryptography protocols in use today. As a result, new algorithms must be developed

that take into account the limitations of IoT devices while maintaining the level of

security offered by robust algorithms like AES. An IoT device will be utilised for

testing an innovative cryptography algorithm that will be suggested to address this

issue, and its safety and utilisation of resources will be compared to the best

algorithms now in use.

Keywords: Cryptography, Security, Networks, IoT, AES, Rubik’s Cube

iv

ABSTRAKT

IMPLEMENTIMI I NJË ALGORITMI KRIPTOGRAFIK QË PËRDOR
KUBIN E RUBIKUT PËR SIGURINË NË PAJISJET IOT

Papa, Tea

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike

Udhëheqësi: Assoc.Prof.Dr. Dimitrios Karras

Për shkak të shtimit të kompanive dhe individëve që transferojnë të dhëna në

"cloud" si rezultat i epidemisë COVID, rëndësia e komunikimit online është rritur

dramatikisht. Ne të gjithë varemi nga rrjeti për të transferuar të dhënat kurdo që

nevojiten për t'i dërguar ato tek një individ ose organizatë tjetër. Është kritike që

informacioni i ndjeshëm të mos mund të kapet ose të rrëmbehet lehtësisht dhe të

përdoret kundër palëve të padëshiruara kur dërgohet në internet.

Ekuacionet matematikore përdoren për të modifikuar të dhënat në mënyrë që

çdo teknikë kriptografie të mund të enkriptojë dhe dekriptojë materialin e ndjeshëm.

Kompleksiteti i këtyre ekuacioneve përcakton se sa shumë nga burimet e pajisjes

mund të përdoren. Për shkak se kërkohet kaq shumë fuqi llogaritëse, siguria e të

dhënave në mjedisin e Internetit të Gjërave (IoT) është sfiduese. Si rezultat,

algoritme të reja duhet të zhvillohen që marrin parasysh kufizimet e pajisjeve IoT,

duke ruajtur nivelin e sigurisë që ofrohet nga algoritme të forta si AES. Një pajisje

IoT do të përdoret për të testuar një algoritëm inovativ të kriptografisë që do të

sugjerohet për të adresuar këtë çështje, dhe siguria dhe përdorimi i burimeve të tij do

të krahasohen me algoritmet më të mira që janë aktualisht në përdorim.

Fjalët kyçe: Kriptografi, Siguri, Rrjete, IoT, AES, Kubiku i Rubikut

v

Dedicated to my family and loved ones

vi

ACKNOWLEDGEMENTS

I am grateful to my mentor, Assoc.Prof.Dr. Dimitrios Karras, for providing me with

tremendous advice, assistance, and inspiration during this study. His skills and

understanding were critical in constructing this theory.

I also want to thank the members of my advisory board for all their helpful input and

ideas, which significantly increased the standard of this thesis.

I'd like to thank Epoka University for offering the tools and resources required to

perform this research. Many thanks to the Department of Computer Engineering for

all their administrative and technical support. My sincere gratitude goes to my

coworkers and partners for their help, collaboration, and insightful conversations that

enhanced this research. I am deeply thankful to my loved ones and friends for all

their constant encouragement and backing. Their compassion and understanding

were critical during the difficult parts of our trip.Finally, I'd want to thank everyone

who participated in this study. Their contributions were critical to the conclusion of

this study.

vii

TABLE OF CONTENTS

ABSTRACT... iii

ABSTRAKT... iv

ACKNOWLEDGEMENTS...vii

LIST OF TABLES... xi

LIST OF FIGURES...xii

CHAPTER 1..1

INTRODUCTION...1

1.1 The Study.. 1

1.2 Objective..2

1.3 Thesis Organization...3

CHAPTER 2..4

LITERATURE REVIEW..4

2.1 Introduction... 4

2.2. Cryptography..4

2.2.1. Different Cryptographic Techniques.. 5

2.2.2. Comparison of different Cryptographic Algorithms.....................................11

2.3. Rubik’s Cube Cipher.. 13

2.4. Cryptographic Attacks..15

2.4.1. Categories of Attacks..15

2.4.2. Objectives of an Attack... 16

2.4.3. Brute-Force Attacks..17

viii

2.4.4. Differential Attacks.. 18

2.4.4 Linear Attacks..19

2.4.5. Algebraic Attacks... 22

2.4.6. Rotational Attacks.. 24

2.5 Internet Of Things... 24

2.5.1 What is IOT?..24

2.5.2. IOT Devices..25

2.5.3. How does it work?.. 26

2.5.4. Security in IOT Systems...27

2.5.5. IOT Architecture Layers...29

CHAPTER 3..33

METHODOLOGY.. 33

3.1. Introduction.. 33

3.2. Advanced Encryption Standard Algorithm.. 33

3.3. Quantum Cryptography.. 35

3.4. Specification For Designing The Model.. 38

3.4.1. Modified AES...38

3.4.2.Rotation Key of Rubik's Cube... 40

3.5. Implementing..42

3.5.1. Encryption...42

3.5.2. Decryption.. 43

CHAPTER 4..45

RESULTS AND DISCUSSIONS... 45

ix

4.1. Evaluation...45

4.1.1. CPU Utilization and Time Analysis for Each Algorithm............................. 45

4.2. Discussion...46

CHAPTER 5..48

CONCLUSIONS... 48

5.1. Conclusions And Future Research... 48

APPENDIX... 52

x

LIST OFTABLES

Table 1 Algorithm Comparison Table... 12

Table 2 Demonstration of Viangere...14

Table 3 BB84 protocol... 39

Table 4 Table of Results.. 47

xi

LISTOF FIGURES

Figure 1 . Map of Characters...5

Figure 2 . Different Types of Cryptographic Algorithms..6

Figure 3 . Example of Block Cipher..8

Figure 4 . Example of a Stream Cipher... 9

Figure 5 . Hash Functions..10

Figure 7 . The First Step Of The Algorithm.. 14

Figure 8 . Example For The Key Used In Rotation...15

Figure 9 Categories of Attacks...16

Figure 10 Differential Cryptanalysis.. 19

Figure 11 Linear Attacks..22

Figure 12 IOT “ecosystem”..25

Figure 13 IOT device atributes...26

Figure 14 Example of how IOT works...27

Figure 15 IOT Security Challenges..29

Figure 16 IOT Architecture Layers.. 30

Figure 17 Network Layer Protocols... 31

Figure 18 Another IOT Architecture Example...32

xii

Figure 19 Advanced Encryption Standard Architecture...34

Figure 20 Binary Values For The Filters Set By Sender..36

Figure 21 The shift of AES.. 39

Figure 22 Our Shift...40

Figure 23 Keyfor Rotation Phase... 40

Figure 24 Full Rotation Key...41

Figure 25 Assigning the cypertext..42

Figure 26 Cypher Key.. 43

Figure 27 Position Calculated for Rotation Key.. 44

Figure 28 CPU Utilization and Time Analysis for Each Algorithm........................ 46

1

CHAPTER 1

INTRODUCTION

There are several methods for handling information in order to send it over the

World Wide Web.

It is crucial that the mechanism used to send this data is dependable enough to avoid

a data transfer loss and safe enough for preventing third parties form accessing the

information. Among these techniques is cryptography, which has increased in

significance in terms of offering security for many different kinds of

implementations, particularly in light of the COVID-19 epidemic. According to the

Central Statistics Office, "one in 10 established a web page to help with online

revenues" [1] and "almost a fifth (19%) companies observed a rise in revenues via

mobile apps or websites throughout the pandemic" [1].

According to the study's Internet of Things section, about 25% of these

businesses would utilise these gadgets to keep their properties secure. "Compared to

building companies (12%), a larger percentage of Manufacturers (26%) and

Commerce (24%) companies utilise IoT gadgets for safety" [2]. The increasing use

of IoT devices by various companies has increased the demand for robust

cryptography methods to be implemented.

2

1.1 The Study

There are quite a few major issues that must be resolved when attempting to

integrate a cryptography method into an Internet of Things device:

 The machine's memory and read-only memory can be extremely constrained.

In comparison to normal PCs, there are greater restrictions on the computational

capability.

 The term "real-time refers to the speed at which the gadget can react to an

instruction.

IoT devices come in a vast array of varieties, but they are all rather little, making it

difficult to make do with the little resources available. Certain resources, like

memory, are necessary to execute a programme and hold information in memory; but,

because of the insufficient processing power, processing the data may not be possible.

Given the constraints of low resources, it may not be appropriate to attempt to

apply typical encryption principles to such gadgets, as quick and precise responses

are required while meeting security requirements. The COVID epidemic has led to

an increase in the use of IoT devices, thus it's critical that techniques for lightweight

encryption be compatible with these gadgets.

One advantage of lightweight encryption is the fact that it may be applied to

various kinds of devices, such personal computers, server systems, and cell phones,

that lack limitations on resources that apply only to Internet of Things devices.

Even if a lot of novel methods have been developed for both conventional

and Internet of Things gadgets, quantum technology may have an impact on

traditional encryption. Quantum devices pose a danger to the safety of any encrypted

interaction because they are capable of calculations that conventional computers are

unable to. Furthermore, given quantum machines are capable of going through all

potential hidden keys more quickly than every conventional computer, they're

capable to crack the encryption keys that have been produced. This could make it

possible for a perpetrator or eavesdropper to listen in on a conversation among two

people. Quantum machines are capable of implementing Shor's and Grovers methods

to crack AES and RSA. Innovative algorithms are going to be developed in response

3

to such danger to conventional encryption in order to keep quantum technology from

jeopardising the subject's future.

1.2 Objective

Even though there have been a number of suggested encryption methods,

most of these are intended for powerful computers rather than Internet of Things

devices. Thus, the study's topic is: Whether an efficient algorithm be developed

especially for Internet of Things devices, given the computational resources needed?

1.3 Thesis Organization

In the second part, this thesis will examine related studies. The overview of

the literature will concentrate on several encryption algorithm forms, a Rubik's cube

method which has some resemblance with the suggested method we will discuss, as

well as safety issues connected to the Internet of Things. The AES method's

encryption of information process and the operation of quantum encryption will be

covered in depth within Chapter 3. The Draft Requirement of the suggested method

is shown in Section 4, along with a few minor adjustments applied in the AES

version to better match the Rubik's cube application. The execution of the suggested

technique for decoding and encoding will be shown in Chapter 5. The stage of

assessment that is presented in Chapter 6, includes a case study on the suggested

method and different approaches on an internet of things device.

4

CHAPTER 2

LITERATUREREVIEW

2.1 Introduction

Historically, basic mathematical equations were used to protect messages

meant for a small group of individuals, mainly for army secrecy. Although deemed

safe at the time, such primitive procedures were easily analysed and broken when

compared to present norms. As internet-based and digital interactions grow more

prevalent, it's crucial for there to be safe procedures in place to prevent unwanted

exposure of enormous amounts of information exchanged over the network.

Cryptographic methods have advanced, leading to advanced study and breakdown of

methods [3]. Individuals need to have faith in computer and network security in order

to continue using these types of devices.

The Narrative review shall include latest research on encryption methods and

security problems for Internet of Things devices. Subdivision 2.2 provides an

overview of several encryption methods and their distinction. A encryption technique

built on a 3x3 Rubik's cube is covered in subdivision 2.3. Given that the suggested

method relies on a four-by-four Rubik's cube, it's critical to emphasise the three

similarities as well as the differences. In subdivision 2.4 we are going to talk about

the different types of attacks against cryptographic algorithms. The safety concerns

associated with Internet of Things devices shall be covered in subdivision 2.4.

2.2. Cryptography

The Merriam-Webster dictionary defines cryptography[5] as "secret writing."

Traditionally, cryptography was mostly used for secret communications. Many

ancient and current encryption techniques resemble puzzles. Building and cracking

the strategy depends on your ability to alter the enigma. The Substitution cypher

5

substitutes every character of the data to generate the encrypted text. In English,

every character corresponds to a letters. One easy idea is to replace every character

by a different distinctive letter, as seen from Figure 1.

Figure 1. Map of Characters

2.2.1. Different Cryptographic Techniques

Encryption basic functions are categorized in 3 distinct groups: unkeyed,

symmetric, and asymmetric techniques. Figure 2 summarises one of the popular

encryption basic functions. Unkeyed methods employ no hidden data, making them

distinct from other classifications. Symmetric techniques employ a common hidden

key for encrypted processes like information encryption and decryption.

Asymmetrical methods need everyone involved to have both a private key and a

public one.

6

2 2

Figure 2. Different Types of Cryptographic Algorithms

A participant's dual keys serve distinct purposes: the visible key enables encoding

and validation of digital signatures, and the secret key for deciphering as well as

creating digital signatures.

Typically, protocols for cryptography are created by combining many basic functions

rather than using them individually.

 Block Ciphers

Block cyphers play a crucial role in symmetrical encryption, ensuring

information secrecy. These are widely employed to create additional cryptographic

basics including stream cyphers, hash functions, and message verification codes.

This section will provide an overview of block cyphers and popular building methods.

Let k, c > 1. Block cyphers are sets of tuples Π = (E, D) where the encrypting

equation

E : Fk2 × F c → Fc , (K, M)→ B (Equation 1)

is a transformation of the collection of plain text M ∈ Fc2 for a constant hidden key

K ∈ Fk2 . The amount represented by c also additionally known as the dimensions of

the block. D represents the inverse value of the encrypting equation E−1, commonly

known to be the decrypt equation. The formula DK(EK(M)) = M applies to all plain

text M ∈ Fc2 and a constant hidden key K ∈ Fk2. We identify EK(·) = E(K, ·) as well

as DK(·) = D(K, ·), accordingly.

Conventional numbers of k tend to be 26, 27, 28 bits as well as 80, 96, 192 whereas b

can frequently be 26, 27, 28 bits. Block cyphers define families of permutations.

These types of cyphers are able to encrypt one fixed-size information unit at a

time. To handle data of any size, a block cypher must be employed using the correct

7

method of operation. NIST originally suggested and defined block cypher modes for

DES in FIPS 81 as well as for AES [4]. The primary modes are: Electronic

Codebook (ECB), Block Cypher Chaining (CBC), Ciphertext-Feedback (CFB),

Output-Feedback (OFB), and Counter (CTR).[4]

Figure 3. Example of Block Cipher
 Stream Ciphers

Stream cyphers are the second most common type of symmetric key

primitives, behind block cyphers. How does it work? First to be done is the

generation (almost randomly) of a flow of bits that has the exact size as the message.

Secondly we use XOR on this flow of bits on the plain text to get the cypher. Stream

cyphers are versatile since they do not need data padding nor specific modes of

operation, allowing for immediate processing of arbitrarily length data. A block

cypher may simply be converted to a stream cypher. The stream cypher S is stated as

follows:

S: F k
2 × Fn2 × F*2→ F*2 → F*2, (K, N, M) → S⊕M (Equation 2)

8

in which K represents a hidden key, N is a vector of initialization, M is

the data, and S is a constructed key flow of size |M|. The encrypted text C represents

the result of S ⊕ M of S. XOR, as an involution, may also be utilised during

decryption by swapping C and M positions. To obtain the original text, just compute

S(K, N, C) = S ⊕ C = M. RC4, created by Rivest in 1987, remains a renowned

stream cypher that continues to be widely utilised despite vulnerabilities and may be

exploited for realistic assaults.

Figure 4. Example of a Stream Cipher

 Hash Functions

Cryptographic hashing algorithms maintain the confidentiality of the

information being processed. These serve as building blocks

for stream cyphers, data authentication codes, and encrypted authentication

systems.

9

Figure 5. Hash Functions

Despite not addressed in full throughout the thesis, we lightly explore them

here to ensure clarity. In contrast to previous symmetric primitives, hash algorithms

condense an input with a length that is fixed to an output without using a secret key.

The above mentioned functions are classified as one-way operations, making

inversion nearly difficult. Hash functions are known for their variety and utility.

Their range of applications include checks of integrity for the information, password

authentication, random number creation, and message authentication. A function that

generates a hash is defined in the following way:

We take n ≥ 1. A function that generates a hash compresses information (M) of

indeterminate length into a digest (H) of fixed length n.

Cryptographic hash algorithms ought to resemble randomised functions.

H : F∗ 2 → Fn2, M → H (Equation 3)

10

2.2.2. Comparison of different Cryptographic Algorithms

We compared the safety of regular and lightweight techniques. Performance

is a crucial aspect of cryptography algorithms. The technique known as AES

outperformed DES and RSA in terms protection due to its ability to employ different

key sizes. Several attempts had been proposed in order to break the AES, including

square, key, and differential attacks, however nothing was successful [6]. DES

lacked sufficient security due to its keys with size of 56 bit. "Brute force attack

becomes possible with a massively parallel machine of more than 2000 nodes with

each node, capable of a key search rate of 50 million keys/sec" [6]. DES's small

lengths of keys as well as weak S-boxes make it vulnerable to attacks. The RSA

technique's integrity depends upon the difficulty of factoring huge integers. The

public key comprises of two integers, one of which is the product of a pair of prime

numbers. If such number gets factored, the secret key will be revealed. Although

tedious, RSA has shown to be a robust technique. Rating each algorithm by safety,

AES is the safest and DES the least secure.

Lightweight cryptographic algorithms like PRESENT and SIMON are well-

suited for internet of things devices, providing both decryption and encryption

capabilities.

PRESENT may work using a 64-bit block, while the key length may vary

between 80 to 128. Research has proved that using biclique cryptography on the

version with 80 "uses 527 Sboxes in a full-round encoding, thus the computational

cost corresponds to the following equation:" [7]

272(84504 + 633 + 137
527

+ 0.0625) = 279.34 (Equation 4)

11

SIMON came out in June 2013 and has been adjusted for hardware efficiency.

The Simon block cypher uses a block with size 2n-bit as well as a mn-bit key, in

which n is 16, 24, 32, 48, or 64 bit and m is 2, 3, or 4 bit. Simon32/64 is a variant of

Simon that uses a 64-bit key and works with 32-bit text chunks [6]. Comparing such

algorithms, it was found that they performed well in regard to technology, power, as

well as space utilisation. Although these methods are appropriate for the Internet of

Things data encryption and decryption, threats remain conceivable, as seen in Figure

5. While AES is an extremely safe and efficient technique, PRESENT and

SIMON additionally offer sufficient safety for the Internet of Things due to their

minimal computing resource requirements.

Table 1. Algorithm Comparison Table

Ref. Algorithm Key Size (Bits)
Block Size
(Bits)
Rounds

Structure Performance Merits Attacks/
AnalysisTech.

(µM)
Power
(µW)

Area
(GE)

Throughput
At 100Khz
(Kbps)

[17] AES 128 128 10 SPN 0.13 2.48 2 4 0 0 56.64 Supports
larger key
sizes, faster
in both

hardware and
software

Related
key attack,
Boomeran,
Biclique

cryptanalys
is

[19] PRESENT 80 64 32 SPN 0.18 1.54 1 0 3 0 12.4 Ultra
Lightweight
cipher,
Energy
efficient.

Integral,
Bottleneck
attacks,
truncated
differential
cryptanalys
is, Side-
channel
attacks

128 0.18 2.00 1 3 3 9 12.12

[20] RECTANG
LE

128 64 26 SPN 0.13 1.78 1 7 8 7 246 Fast
implementati
ons using bit

slice
techniques

Slide
attack,

related-key
cryptanalys

is,
statistical
Saturation
Attack

[22] HIGHT 128 64 32 FN 0.25 5.48 3 0 4 8 188.20 Ultra-
lightweight,
provides high
security,

Impossible
differential
attack on
26th round,

12

good for
RFID tagging

Biclique
cryptanalys

is
[23] CLEFIA 128 128 18 FN 0.13 2.48 2 4 8 8 39 Has fast

encryption
and

decryption,
lesser rounds,
efficient
energy

Key
Recovery
Attack on
10th round,
Saturation
Cryptanaly

sis
[26] CAMELLI

A
128 128 18.24 SPN - 1.54 6 5 1 1 290.1 Resistance to

brute force
attack on

keys, security
levels

comparable
to AES

Cache
timing
attacks,

Impossible
differential
attack

[28] TWINE 80.12
8

64 36 FN 0.09 1.30 1 8 6 6 178 Good for
small

hardware,
efficient
software

performance

Meet-in-
the-middle
attacks,
Saturation
Attack

[29] SIMON 128 128 64 SPN 0.13 1.32 1 3 1 7 22.9 Supports
several key

sizes,
performs well
in Hardware

Differential
fault

attacks,
Attacks on
reduced
versions

[29] SPECK 128 128 32 SPN 0.13 1.40 1 3 9 6 12.1 Performs
better in
software

Key
Recovery,
Boomerang

attack

2.3. Rubik’s Cube Cipher

On the ninth of May 2010, a study proposed an encryption method using a

three-by-three Rubik's cube. The novel approach addresses flaws within the Vigenère

& Mitchell methods, preventing assaults via anagramming as well as analysis of

frequencies.

Vigenère Cypher operates as a polyalphabetic shifting cypher, meaning that

each text character may redirect to various encrypted text characters determined by a

keyword or shifting. Assuming the text in question is MASTERTHESIS and the

key will be STUDY, it will expand to match the text's size. According to Table 2, our

text should look as follows.

13

Table 2. Demonstration Of Viangère

M A S T E R T H E S I S

S T U D Y S T U D Y S T

E T M W C J L B G Q A L

To generate a cypher turn the text as well as keywords onto matrices with

integers assigned to the letters of the alphabet. Consider the term STUDY as an array

of values 0-25 translated into the alphabetical order in an identical sequence (A = 0,

B = 1, etc.). The keyword will be translated into the subsequent array (18, 19, 20, 3,

24). Applying the identical procedure to the primary five characters within the

unencrypted text results in the array (12, 0, 18, 19, 4). Table 2 shows that employing

unencrypted text M as well as key S results in encrypted text E, whereas utilising

transformed matrix variables 18 and 12 yields ciphertext vector value 5.

A regular 3x3 Rubik's cube has 54 fragments, all of which have six sides plus

9 cubies. Mitchell's approach includes modifying the unencrypted text prior

to rearranging it. The initial procedure involves writing "1" onto the uppermost left

quadrant of a cube side. The value "2" may be placed in an arbitrary cube on any

other side, and this continues till every one of the faces possess a unique

identification [8]. To completely fill the cube's surface, begin with the

side containing the value 1 and populate all blank cubies with unencrypted text letter.

Repeat for the side containing the value 2 till every cubie is filled. Figure 6 illustrates

how it is done using the following unencrypted text value:

LEARNING CRYPTOGRAPHY INNCI HAS BEEN A GREAT EXPERIENCE

14

Figure 6. The First Step Of The Algorithm

The next step in the procedure was to produce a rotating key. Such key allows

the cube to return to its original configuration from the initial stage. The upper

leftmost corner of any selected side has to start with a value of 1. The rotating key

allows for about 7.25 billion encryptions based on how the unencrypted text has been

initialised. Insufficient unencrypted text repetition prevents attacks from succeeding.

Numerous anagramming attacks are problematic as they rely on using the identical

inversion ordering again [8].

Mitchell proposed a scheme for allocating cube sides using a six-letter

addition, such as "ACEDBF". This particular rule instructs the party that received it

on how to allocate the encrypted text to the cube. To shuffle the cube, use R = Row,

C = Column, and L = Level. The digits 1, 2, and 3 denote the clockwise movement in

multiples of angles of ninety degrees, whereas 4, 5, and 6 denote spin of the cube's

outer two layers in multiples of angles of ninety degrees. Figure 7 illustrates a

scenario of a rotating key based on the above specifications.

15

Figure 7. Example For The Key Used In Rotation

Using a Rubik's cube for encryption might lead to repetition of letters

throughout the cypher text, reducing the key value. "Research has demonstrated that

God's Number is number 20" [9]. God's quantity to solve a three by three Rubik's

Cube refers to the greatest quantity of movements required for solving any variation

of the "43 quintillions" combinations of the cube [9].

2.4. Cryptographic Attacks

In order to check the safety of a cryptographic algorithm the need to use

various attacks arose. In this part, we will discuss some of the different types of them.

2.4.1. Categories of Attacks

To determine how efficient a attack is we use three parameters: how time

consuming the attack is, how much memory it uses and the data. An attack's success

is often judged by its time, memory, and data requirements. The result produced by

an adversary's assault is determined by two elements: the objectives that they aim to

attain as well as the adversarial model that limits their actions. A generic approach on

encryption structures is one which operates not relying on specific data about the

class members. A generic assault involves extensively examining all key possibilities

for a symmetric-key primitive. Non-generic attacks are those that need certain

encryption building elements. In the analysis of the attacks, usually we think that the

attacker has complete knowledge about the targeted encryption primitive,

16

excluding the user-supplied hidden key. Kerckhoffs' Principle, established by

Auguste Kerckhoffs in 1883 [10], defines the prerequisites to establish a viable field

cypher.

Figure 8. Categories of Attacks

2.4.2. Objectives of an Attack

In this section we are going to give a simplified categorisation of the

objectives of the attacks.

1. Key Recovery. The intruder may retrieve the hidden key K. This can be

probably the most effective outcome of an assault.

2. Global deduction. An intruder can determine encrypting (EK) or decrypt (DK)

while not obtaining the hidden key (K).

3. Local deduction. An intruder may carry out encrypting (EK(M)) or

decrypting (DK(C)) despite obtaining the key (K) for particular transmissions or

17

encrypted texts.

4. Differentiating. An intruder may differentiate between EK(·) and randomly

generated permutations. The simplest attack against an encryption primitive is

attempting to identify encrypted information from data that is random.

It is to be noted that the ranking described above is specific for block cypher

primitives.

2.4.3. Brute-Force Attacks

A basic approach to most symmetrical cryptographic primitive involves

searching exhaustively to locate the shared hidden K. This technique has no

connection to of cypher architecture. In block cyphers, the attacker evaluates every

possible key options versus an identified message-ciphertext combination to find the

proper key. This type of cryptanalytic approach is additionally referred to as brute-

force assaults. Encryption primitive architects want to make brute-force the most

effective attack accessible to adversaries, knowing that there is no mechanism to

avoid such extensive searches. Sophisticated cryptanalytic assaults frequently include

extensive methods of search.

An intruder having knowledge of a ciphertext combination with the message (M,

EK(M)) as well as the encrypting method, may discover the hidden key K having a

chance by trying 2k keys, where the key equals |K|. Overall, if n ≤ 2k tests of keys are

made, he is successful having a chance of n/2k. Assuming he checks m < n/2k

simultaneously, the likelihood is mn/2k.

18

2.4.4. Differential Attacks

Biham and Shamir established differential cryptanalysis during the beginning

of the 1990s [11] by investigating threats on block cyphers as well as hash

algorithms.

Researchers found that DES is highly resistant to many assaults, but with simple

adjustments, it may become less secure.

Coppersmith, one of the initial DES creators, presented a study in 1994 which

revealed the IBM design group was conscious of differential cryptanalysis as far

back as 1974 [12]. Differential cryptanalysis is a helpful instrument for cryptanalysts.

Originally developed for block encryption [14], it has now been applied to various

symmetric primitives [13].

Differential attacks employ connections among both input and output

variations within an encryption primitive. They use non-ideal transmission of

variations between unencrypted and encrypted text pairings. Variations are often

calculated using bit-wise XOR, however they are also an option in other

circumstances, such as modular numeric addition. Differential cryptanalysis falls

within the domain of unencrypted and encrypted text assaults, as previously

mentioned.

A basic encryption system, comparable to an only once pad, encodes a text M

using a key K and generates encrypted text C via calculating C = M ⊕ K. If K is

utilised again for encryption of a different message M0 (C0 = M0 ⊕K), an intruder

that captures simultaneously C along with C0 may easily determine the plain texts

via calculating its XOR-difference between the unencrypted texts.

19

C⊕C’ = (M⊕K)⊕(M’⊕K) = M⊕M’ (Equation 5)

This short sample effectively demonstrates the fundamentals of differential

cryptography analysis. To analyse actual cyphers, a broader method to differential

cryptography is necessary due to their complexity.

Figure 9. Differential Cryptanalysis

2.4.4. Linear Attacks

Matsui proposed linear cryptanalysis around 1992 for targeting a block

cypher (FEAL) [18] and then expanded it to DES [18]. The latter is one of the

earliest widely publicised cryptanalysis findings for DES. Following differential

cryptanalysis, linear cryptanalysis is the next significant approach for analysing

encryption primitives. As previously stated, it comes with the benefit of just needing

known unencrypted text rather than selected plaintexts compared to differential

attacks.

20

2

Linear cryptography uses formulas to describe key bits such as text and

encrypted text bits, with not linear cypher elements represented by linear estimates.

The intruder aims to create a linear approximate value over the very first r − 1 phases

of the block cypher (fr−2 ◦ · · · ◦ f0) that ensures b0 · y0 ⊕ br−1 · yr−1 = 0, in which b0

as well as br−1 tend to be linear masks regarding the inputs and results after r − 1

rounds. The dot product of F2 will be indicated by ·. For two components, y = (y0,...,

yn−1) with x = (x0,..., xn−1) ∈ Fn , it can be expressed with x · y = ⊕n−1 i=0 yixi.

The chance of an approximate linearity is described with p = 1/2 + ε, in

which ε indicates bias. Assuming fr−2 ◦· · · ◦f0 represents a perfect block cypher,

therefore ε = 0, implying that the formula before applies with likelihood 1/2. The

linear approximate can differentiate fr−2 ◦ · · · ◦ f0 compared to a perfect cypher when

its bias ε varies substantially compared to 0 as well as p diverges substantially from

1/2. This involves encryption of plaintexts x0 at arbitrarily to results xr−1 and

analysing the frequency that represents the linear connection among them. The

intruder benefits from a bigger |ε| value, which may be either positive or negative

(often 0 < |ε| ≤ 1).

When a distinguisher is discovered, it may be used to perform a key

recuperation assault upon the full block cypher fr−1 ◦ · · · ◦ f0. This involves assuming

the bits xr−1 in the encrypted text xr using the result mask αr−1. With sufficient

unencrypted and encrypted text combinations, the key option with the largest biases

is probable to be the right one.

Linear likelihood, features, and hulls are defined similarly to differential

chances, characteristics, as well as differentials [12]. The piling-up lemma [12] is a

useful tool for calculating the linear likelihood of a linear hull based upon its linear

traits. It suggests the likelihood p of the total of m (unrelated) Boolean equations

with likelihoods pi for i ∈ {0,..., m − 1} could be calculated using the equation

below.

21

(Equation 6)

In linear cryptography, matrices of correlation are commonly employed to

express Boolean equations [15].

In [16], the achievement likelihood of differential attacks against a thorough

examination is analysed, as well as that of linear assaults. Assume ps is the rate of

successfully attacking, the number of accessible unencrypted and encrypted

text combinations is denoted with N, while the outsider seeks an edge worth m bits

above exhaustive searching. Then we will get the following:

(Equation 7)

Assuming the likelihood of an approximate linear model is distinct for every

key option and equivalent to 1/2 for incorrect predictions, as well as m and N are

suitably big. This technique may be modified to estimate the data demand N based

on a particular successful probabilities (ps).

(Equation 8)

In simple terms, complexity of information correlates to 1/ε2. Experiments

show that linear attacks calculations tend to be more exact than differential variants,

indicating reasonable hypotheses. Bogdanov and Tischhauser improved their

successful probability calculation, reducing the complexity of data for linear assaults

[17].

While linear attack lacks the versatility of differential attack, it may be

extended in multiple directions. Using many linear estimates simultaneously can

22

r

minimise data requirements [18]. Knudsen demonstrated that using chosen

unencrypted text can lessen the difficulty of linear attacks against DES [19].

Knudsen's non-linear estimate approach to linear attacks can yield further details [19].

Bogdanov and Rijmen introduced zero-correlation methods in 2011 as an alternative

to inconceivable differentials in linear cryptanalysis. These attacks use linear

estimates with probability of precisely 1/2.

Figure 10. Linear Attacks

2.4.5. Algebraic Attacks

Breaking a cypher employing this type of attack often involves two phases:

To simulate the cypher procedures algebraically, use a set of non-linear

multidimensional polynomial f1,..., fs P. In this instance, P = K[x1,..., xn] represents a

polynomial circle in which n determines x1,..., xn on a domain K. In symmetric

encryption, K is often the limited F2 in feature 2 (r 1). Calculate this set of function S

with

23

f1(x1,..., xn) = 0

.
(Equation 9)

.

fs(x1,..., xn) = 0.

the essential variables, which breaks the cypher. Computing multi-modal equations

that are not linear on limited fields is NP-hard, despite its seemingly straightforward

idea. Nevertheless, there are still occasions when answers may be quickly retrieved,

despite the overall complexities. For instance, algebraic attacks were used to

effectively crack the cypher Crypto-1 [20]. Algebraic approaches are very effective

when combined with side-channel assaults, and are commonly utilised in this

scenario.

Constructing a cypher using polynomials f1,..., fs may be performed in

several ways, with differing representation potentially affecting the solution time of

the system's. Polynomial systems may often be stated solely in terms of key

indeterminate elements. Yet, the resultant polynomials frequently include a high

degree and many monomials, making them unsuitable for the system solution. Often,

more indeterminates as well as formulas are thrown in. This ends up with an over

defined structure, with more formulas than parameters.

To ensure whether all answers obtained using the algorithm are within the

mathematical closure F2 r, the domain formulas x 2 i r - xi = 0 for i 1,..., n are often

added to S. There are two techniques for analysing a system of formulas:

 Gröbner Bases

 SAT-Solvers

We are not going to cover these solvers on our thesis.

24

2.4.6. Rotational Attacks

Khovratovich and Nikolić [21] presented rotational attacks to analyse ARX-

based encryption primitives. ARX, which stands for modular number addition, bit-

wise rotation, as well as XOR, is a typical technique for designing algorithms for

encryption. Instances of these primitives are BLAKE(2), ChaCha, Salsa20, Skein, or

Speck. Rotational encryption involves tracking the spread of rotational connections

via cryptographic transformations. Detecting rotation-invariant conduct allows for

the creation of distinguishers and key retrieval assaults, comparable to differential

tactics. Rotational attack has been effectively used to lower variants of cryptographic

fundamentals, such as Skein along with Keccak.

2.5 Internet Of Things

In this section of the thesis we are going to talk about Internet of Things

(IOT). We are going to discuss what IOT is, what type of devices are included in IOT,

a simple design of a IOT as well as some protocols.

2.5.1 What is IOT?

Procter & Gamble's Kevin Ashton coined the expression "Internet of Things"

in the year 1999. The IoT refers to a collection of networked contents that use

software, electronics, and various types of technology to exchange information

among other gadgets and systems via the worldwide web. Such items might range

from modest domestic gadgets via sophisticated commercial and industrial apparatus.

Figure 12 depicts the interaction between humans, objects/devices, and the internet

that creates the IoT ecosystem.

25

Figure 11. IOT “ecosystem”

Stojkoska and Trivodaliev (2017) state that smart objects capable of

communication and computation surround us, including simple sensors, home

appliances, advanced smartphones, and industrial devices. The notion of IoT

encompasses these different networks of items and gadgets. According to

Vermesan/Friess (2013), the Internet of Things is an infrastructure that allows

diverse items to join at any time and from any location over the World Wide Web.

2.5.2. IOT Devices

According to Radoglou Grammatikis, Sarigiannidis, and Moscholios (2019), the

IOT is made up of multiple systems that allow objects to connect with one another

over the World Wide Web. Figure 12 illustrates these gadgets, sometimes known as

'things'. Each 'object' has a completely distinctive collection of characteristics.

1. Identification: The fundamental need for internet of things gadgets is that they

must be individually identified within the internet of things. Network entities are

assigned distinctive addresses using one of two techniques: Internet Protocol

version 4 or Internet Protocol version 6.

2. Sensing: It entails gathering data gathered from the world around us. Different

sensing devices, including smart sensors.

26

3. Communication: This process entails the transmission and reception of data,

messages, files, and other types of information through connected devices.

Bluetooth connectivity, internet connections, Radio Frequency Identification,

among other technologies help items communicate with one another.

4. Computation: Computation serves to handle the data acquired from IoT devices.

This procedure also serves to remove redundant or surplus data.

5. Services: Services denote the functionalities of devices provided for customers

according to the data they get.

6. Semantics: This is the ultimate feature of internet of things gadgets. It refers to

their capacity to collect precise data in the real world and offer the information

as an asset at the right moment or when needed.

Figure 12. IOT device atributes

2.5.3. How does it work?

The internet has revolutionized the world, transforming how we work and

communicate with each other. This evolution will persist after the emergence of new

innovations like fifth-generation novel protocols for the internet like LiFi.

IoT changed communication by allowing several objects to connect to the internet at

the same time. This development not just improves relationships between individuals

and machinery, it additionally also promotes communication among machines

themselves (Stojkoska and Trivodaliev, 2017). Such capability has unlocked

boundless opportunities for exploration and utilization, both on personal and business

fronts.

27

Devices share data through an IoT gateway, functioning as a central hub for

all connected technology. Additionally, an edge device can be integrated into the

system to analyze data locally, reducing bandwidth by transmitting only the filtered

information. However, the relationship isn't always strictly device-to-gateway. Smart

gadgets on the same network (Wi-Fi, Bluetooth) can interact and act on the data

independently. Some even leverage AI and machine learning for optimal efficiency.

Figure 13. Example of how IOT works

2.5.4. Security in IOT Systems

Security is paramount for establishing Confidential and secure interaction

among persons, applications, and various other things. This involves a triad of

processes:

1) Availability: To facilitate data exchange between two different individuals or

parties, it is essential to identify and authenticate both sides. The challenge in the

28

IoT realm is that, besides its users, other services might interact with the device

in use. To ensure secure authentication between different devices or parties, a

pre-defined procedure must be in place before any interaction occurs. These

systems can be configured to activate when the primary system is disrupted or

fails.[22]

2) Integrity: Ensure the information transferred among persons or organisations

remains untampered is crucial. The accuracy of the transmitted data must be

perfect; any deviation compromises its integrity. The accuracy of data

exchanged between IoT devices can be impacted due to their low computing

power. Although IoT must adhere to conventional safety techniques, these are

often not followed because of limited resources.

3) Confidentiality: Even if data integrity is maintained and there are standard

procedures between parties, the data is considered public rather than private if it

can be accessed by an unauthorized user. To ensure private information remains

secure, an authorization system must be in place to control who has access to

necessary privileges. Since IoT users include both humans and various services,

it is crucial to protect data throughout its life cycle to maintain confidentiality.

While the CIA triad is crucial for security, the IoT requires two additional

processes: Efficiency in energy use and variability. Because every IOT gadget runs

on power from the battery as well as self-harvested power, there is a need to

minimise the use of energy so that every gadget operates efficiently.[23] Failure to

reduce energy usage can shorten a device's lifecycle, impacting the IoT network.

Given that IoT devices can integrate heterogeneous devices, a diverse array of

devices can be connected to a connection. Measures regarding the safety must be

used to manage this variety of heterogeneous gadgets effectively.

In the area of encryption, it is essential to have algorithms that use energy

efficiently. In 2013, the NSA received numerous proposals for compact block

cyphers. The pair of primary algorithms proposed were SIMON and SPECK,

however both were criticised by numerous security specialists

and declined by International Organization for Standardization in 2015.

29

Figure 14. IOT Security Challenges

2.5.5. IOT Architecture Layers

Figure 15 depicts three separate levels of the Internet of Things.Unfortunately, every

one of these levels includes weaknesses in security that might compromise encrypted

data.

30

Figure 15. IOT Architecture Layers

 Perception Layer

This level may include intelligent devices such as monitors or

microcontrollers. These gadgets' strong computational capacity allows them to be

linked to the the internet, and this in turn connects to the programme operating.

Because this level collects information, its essential to ensure the information is

authenticated by the gadget prior to being delivered over the network level. This type

of layer has a couple safety problems: node manipulation and harmful code insertion.

Interfering with the network nodes may give a hacker access to sensitive information,

including the encryption keys for an encryption method. If equipment remains

outdated, an intruder may be able to insert code and obtain entry to the connection.

31

 Network Layer

Data within the perception level is transported throughout the internet, which

includes the layer of network. This section appears more vulnerable than the layer of

perception since data may be transferred from a wide range of gadgets. This level is

vulnerable to a variety of assaults, such as routing, distributed denial of service and

man-in-the-middle. Attacks on routing change the course of information transfer,

possibly jeopardising its confidentiality. Considering the heterogeneity of today's

technologies, each rogue machine may launch a DDoS assault and damage the

connection. Man-in-the-middle attacks are possible if gadgets that transmit and

receive information aren't properly protected.

Figure 16. Network Layer Protocols

 Application Layer

It gets information via the network side and utilises it to carry out the

operations for the Internet of Things system. This layer constraints involve handling

access to data rights and identification verification., particularly given the diversity

32

of applications and users involved. Threats at this level include data leakage and

device misconfiguration. Data leakage poses a security risk if attackers exploit

application vulnerabilities, potentially leading to data manipulation stored on the

cloud. Moreover, incorrect security configuration of IoT devices, such as operating

systems or databases, can render the device vulnerable to attacks, potentially

compromising the entire IoT network.

Figure 17. Another IOT Architecture Example

33

CHAPTER 3

METHODOLOGY

3.1. Introduction

According to a recent study, which identified weaknesses in security

throughout all levels of IoT, novel encryption techniques are required to resist the

danger of quantum technology. It is difficult to provide efficient safety on IoT

gadgets due to their minimal computational capacity. The suggested approach

intends to improve Rubik's Cube rotating generated keys by using the algorithm

developed by AES to build a strong cypher. The following paragraphs will cover the

algorithm known as AES as well as offer a summary of Quantum Cryptography,

highlighting its effectiveness and rapidity in comparison to conventional encryption

techniques.

3.2. Advanced Encryption Standard Algorithm

As discussed previously the AES algorithm, or the Advanced Cryptography

Standard is part of a block cypher encryption submitted to the NIST during the 2000.

This had been developed to substitute the algorithm known as DES due to discovered

safety problems. AES is currently regarded as the most secure algorithm available.

Secure and interpret data after the encryption, AES divides the information into 16

bytes as well as operates using on a matrix. AES supports sizes of keys of 128, 192,

or 256 bits, with the algorithm performing actions in given the key measurements,

the rounds might be 10, 12, or 14. Figure 19 illustrates the steps taken in each round.

34

Figure 18. Advanced Encryption Standard Architecture

 ShiftRows:As the name suggests, this step involves shifting each row a certain

number of times:

• The initial line remains unchanged.

• The next line shifts left one time.

• The next line shifts left two times.

• The last line shifts left thrice.

35

a0 a1 a2 a3 a0 a1 a2 a3
a4 a5 a6 a7 a5 a6 a7 a4
a8 a9 a10 a11 a10 a11 a8 a9
a12 a13 a14 a15 a15 a12 a13 a14

 MixColumns: In this stage, we multipy the matrixand use it to change the

location of every bit inside a column of data.This phase is omitted during the last

phase.

b0 2 3 1 1 c0
b1

1 2 3 1

×
c1

b2 1 1 2 3 c2
b3 3 1 1 2 c3

 Add Round Keys: In this phase, the preceding stage's result is XOR'd with the

matching round code. The sixteen bytes are interpreted like 27 bits of

information instead of a rectangular structure. After all of the phases, the

outcome is 27 bits of information encrypted. This process is continued till

everything has been encoded.

3.3. Quantum Cryptography

Quantum encryption was the initial recorded quantum transmission technique,

created by Charles H. Bennett as well as Gilles Brassard around 1984 as an element

of an IBM laboratory effort merging mechanics and data.[23] Particle polarisation

plus the uncertainty principle of Heisenberg are two of the fundamental concepts of

quantum transmission that underpin quantum encryption. The photon is a type of

light component that is described as a single package of electrical energy. Photons

are continually in movement, and in a state of totally void area, photons move at

exactly the same velocity as light to all viewers.[24] Light may be polarised, so its

orientation may be altered from any angle. According to Heisenberg's Uncertainty

Principle, there's an elementary limitation to the accuracy that can be achieved when

confident pairings of a particle's physical characteristics (complementary variables)

36

may be evaluated at once. This idea is critical in quantum encryption since the

condition of a polarised photon is known only at its point of observation.[26] Using

this in encryption can keep hackers from stealing information. Furthermore, photons

may be polarised in specified paths, preventing hackers from reproducing any

publicly available information, for instance a qubit. This topic was initially presented

in 1982 by W. K. Wootters and W. H. Zurek in their work "A single quantum cannot

be cloned."[27]

Quantum encryption allows two people to reach an understanding on an

arrangement of information despite ever coming together personally.

Notwithstanding their lack of physical interaction, the method assures that the private

key is only communicated among individuals. The essential premise of this

technique is to encode every bit of the hidden key within the polarisation status of

just one photon. It is important to note that, owing to this condition, a particle can't

be captured sans getting destroyed, prohibiting an intruder from determining its

status. A photon's state may be portrayed using one of 4 representations, each with a

binary number of 0 or 1, as shown in the image 20 beneath.

Figure 19. Binary Values For The Filters Set By Sender

37

Light passing through the filters marked with "-" and "|" is allowed, while

light passing through filters marked with "/" and "\" may withstand the "X" filtering.

Given such settings, the method has a transmitter C with a recipient

J. The protocol goes this way:

1. C gives a secret key as a bit string (e.g., 10010110) to J:

a) C polarizes the light using filters "-", "|", "/", and "\" while J filters and

measures the light using filters "+" and "X".

b) C uses the filtering shown in image 20, and J selects between the "+" and

"X" filters randomly to find the light angle.

2. J receives the bit string based on his and C's filters.

3. C and J compare their filters, and any bits where the filters do not match are

deleted from bit phrase. The final byte form the last encryption key.

The last key is determined by the number of bits delivered, given that there

has to be a fifty percent limit depending on the potential filter combinations. This

protocol enhances security significantly because it is hard for an hacker to intercept

the information. If an eavesdropper uses the incorrect key for a part, that part will be

deleted. As depicted in the table below, if C and J employ the identical filtering,

however the hacker selects the incorrect one, that bit will be lost, preventing the

hacker from obtaining all the final bits. If the eavesdropper consistently uses

incorrect filters beyond a certain threshold, C and J will detect the presence of an

attacker and can restart the entire process.

38

Table 3. BB84 protocol

Bit String 1 0 0 1 0 1 1 0

C’s Filters X + X + X + X X

J’ Filters + + X + X X X +

Eavesdropper Filter X + + + X X + X

Eavesdropper Filter 0 0 1 0 1

Final Key with

Eavesdropper Filter

applied

0 1 0

3.4. Specification For Designing The Model

This work presents a unique encryption technique for safely exchanging a

secret key that uses combination of AES as well as a four-by-four Rubik's cube as

the basis for encrypted and decoding. Although AES has been slightly modified for

this method, the remaining phases stay same. The suggested strategy consists of two

stages: the Automatic Evaluation System (AES) stage as well as the four by four

Rubik's rotational keys stage.

3.4.1. Modified AES

Although much of the AES algorithm remains unchanged, modifications have been

made to the shift rows step to accommodate the use of a four by four Rubik’s Cube.

Typically, during the shifting of the lines step, the rows of the four by four

collections are moved 0 to 3, based on the line, as illustrated in image 21.

39

Figure 20. The shift of AES

During the changed AES model, the changed lines operation is adjusted based

on the lengths of the provided plain-text and key. If both the plain-text and key

lengths are 24 or 32 bytes, the collection is transformed into a six by six or eight by

four collection. Each of the rows moved on the left have been modified to be between

two and five with twenty-four bytes or between four and seven with thirty-two bytes,

as shown in Diagram 21. This layout change was designed to allow a four-by-four

Rubik's , as it includes 6 four by four arrays . This change improves safety by

preventing a hacker from determining the total amount of the delivered encrypted

text while the shifting of lines method is dependent upon the initial unencrypted

text as well as key sizes. Once translated to a hex the encrypted text size increases to

192 digits. The Rotational Cypher Key is formed by combining the encrypted text

with the previously generated rotational key utilising a XOR algorithm.

40

Figure 21. Our Shift

3.4.2. Rotation Key of Rubik's Cube

Upon creating the encrypted text with the revised AES technique, a rotating key may

be generated. The corresponding rotation rule uses conventional Rubik puzzle notes

and combinations. The image below shows a representation of a rotating key.

Figure 22. Keyfor Rotation Phase

The fragment shown represents the cube's rate of motion as well as the initial

number of the the ciphertext The "DA2" section is read as follows:

 D: This denotes the bottom layer of the Rubik’s cube and indicates its movement

direction, either clockwise or counterclockwise.

 A: Represents the direction of the movement, with "A" for anticlockwise and

"C" for clockwise.

41

 2: Indicates the number of rotations required, with possible values of 1 or 2,

specifying the set number of rotations to be performed.

The integer "69" indicates what cube side that the initial encrypted text letter

is given to. The rotary key comprises 96 motions, each chosen among a set of 72

potential cubic motions. To get the overall amount of feasible motion options, we

compute 7296, producing roughly 2.01335175 x 10178. The chance of a hacker

creating the same rotational key is around a one in 20 octoquinquagintillion. The

following illustration shows a comprehensive instance of a rotating key.

Figure 23. Full Rotation Key

The rotary key is independent from the Rubik's puzzle colours, as soon as its

locations have been established. A total of 96! potential choices for structuring the

encrypted text depending on the method's cube motions. Furthermore, the changing

key produced is completely randomised with every run of it. Lacking a rotated key,

an intruder is unable to read the initial key or the reverse.

42

3.5. Implementing
Python has been chosen for the language of programming behind this method,

which executes employing VSCode on a Raspberry Pi 4B running the operating

system known as Raspberry Pi. The goal of this method is to provide greater safety

than prior Rubik's puzzle methods and regular encryption methods.

3.5.1. Encryption

This step starts with the use of AES encryption, when it's completed, the

encrypted text is allocated to each of the cube's sides. The figure illustrates the way

the encryption text is set on a square before it is scrambled.

Figure 24. Assigning the cypertext

Once the rectangle is rotated, the encrypted text is modified to show the

rotation, while a rotating key is generated to record the operation. The key in

question could be similar to that seen in the illustration 24. The Rotating Key as well

as the initial key can subsequently be XORed to form the Rotating Cypher Key,

shown in the illustration 25.

43

Figure 25. Cypher Key

3.5.2. Decryption

To decode the Rotating Cypher Key to return to plain text, you'll require the

Rotary Cypher Key, the initial key, along with the jumbled encrypted text. Initially

the primary key is translated to hex before being XORed onto the Rotational Cypher

Key. The outcome is then translated again into hex to get the Rotational Key.

Utilising this Rotational Key, every one of the encrypted text point is accurately

allocated to the corresponding cube side depending on the number of them. The

algorithm has to identify the right side, columns, and rows to ensure proper text

placement.

For instance, if the encrypted text's location was forty-three, its index is

determined by splitting forty-three by sixteen, yielding 2.68, that is converted to Two

via the technique math.floor. To determine the columns, deduct sixteen Times two)

off the encrypted text location integer forty-three, which equals eleven. Applying this

number, the modulus of the method determines the value of the column, which yields

Three (11 percent 4 equals 3). The row's amount is calculated by reducing Eleven

with Four and then using the math.floor function once more, yielding a result of two.

The image below shows the last side, columns, and rows structure: 2, 3, 2.

44

Figure 26. Position Calculated for Rotation Key

Utilising the above rotation key as well as appropriately placed encrypted text

standards, the rectangular shape is unscrambled by undoing the motions shown in the

rotary key, exposing the initial encrypted text without additional algorithmic

alterations. For example, if the cube's initial motion is denoted as DA2, the inverse

motion is AC2, where "A" meaning a one hundred and eighty in the opposite

direction spin with "C" representing a one hundred and eighty clockwise motion.

Decoding the encrypted text with the stages as well as keys described in the

encryption key schedule will expose the initial unencrypted text.

45

CHAPTER 4

RESULTSANDDISCUSSIONS

4.1. Evaluation

In this section, three algorithms underwent testing on the Raspberry Pi 4,

employing psutil to monitor CPU usage during the execution of encryption and

decryption functions. Additionally, the time required for these operations was

recorded.

4.1.1. CPU Utilization and Time Analysis for Each Algorithm

The evaluation included 3 methods: the suggested method, the encryption

algorithm AES a hundred and twenty eight, as well as Ascon 128. "AES" [28] and

"Ascon" [29] were developed entirely in Python, mimicking the technique of the

suggested algorithm, to assure precision in calculating both encoding and decryption

times. Each method went through ten runs to find the mean CPU utilisation and

duration. The outcomes from these cycles are shown throughout Figure 27. Although

AES and Ascon are limited to one hundred and eighty bits, the suggested method's

assessment covers 192 along with 256-bit variations to demonstrate the distinctions

between the different forms.

46

Figure 27. CPU Utilization and Time Analysis for Each Algorithm

For the output the text ThisIsASampleTextForEncryptionTesting In the

following table we show the results of some test runs. The table shows the key

length used time for encryption and decryption for both AES and our proposed

algorithm. It shows the mean results for multiple runs for each key size for both

algorithms.

Table 4. Table of Results

Key Size A l g o r i t h m M o d e C P U Time for Encryption Time for Decryption

128 bit AES CBC 15.3% 0.00713 s 0.00812 s

128 bit
Proposed

Algorithm
- 48.9% 0.0682 s 0.0565 s

192 bit AES CTR 20.3% 0.0106 s 0.00982 s

192 bit
Proposed

Algorithm
- 55.7% 0.0825 s 0.06135 s

256 bit AES GCM 21.1% 0.0302 s 0.0209 s

256

bit

Proposed

Algorithm
- 59% 0.1035 s 0.9403 s

47

4.2. Discussion

The primary objective of this study was to introduce a novel cryptography algorithm

capable of delivering security while operating efficiently on IoT devices without

significantly taxing their resources. Through the evaluation of these algorithms, it is

evident that Ascon 128 outperforms AES 128, encrypting and decrypting data

approximately 6.5 times quicker, while AES 128 is approximately 8.5 times quicker

then the suggested technique. Evidently, the suggested technique has the poorest

efficiency when it comes to of encrypting, decryption, and CPU utilization per

execution. Based on the provided results, if speed and efficiency were the primary

focus of this investigation, methods other than the proposed one, particularly Ascon,

would be preferable. However, given that the research aims to prioritize both security

and speed, It's worth noting that the proposed method ensures protection against

brute force attacks, safeguarding the original plaintext and key. To establish the

superior security of this algorithm compared to AES, further extensive testing

would be necessary to assess its resilience. Given the considerable length of the final

ciphertext compared to other algorithms, coupled with the unknown key to potential

attackers, brute-forcing it would be a time-consuming endeavor.

48

CHAPTER 5

CONCLUSIONS

5.1. Conclusions And Future Research

The basic goal of this inquiry was to propose a cryptography algorithm that could

offer security levels comparable to AES while operating efficiently on small IoT

devices with limited resources.

This research initiative was driven by the considerations outlined in section 1

of the paper. By incorporating AES, a widely acknowledged industry-standard

algorithm endorsed by NIST, into the proposed algorithm with slight modifications,

the aim was to achieve this goal.

The proposed algorithm generates cipher-text using the modified AES

algorithm, which is then encoded onto a four by four Rubik's puzzle, jumbled to

generate an additional key. This approach was envisaged to enhance security levels

beyond those of standard AES implementations, albeit with the trade-off of slightly

longer encryption and decryption times, approximately 8% longer.

Given the study's results, this suggested method has an opportunity to

improve safety for internet of things gadgets. However, significant efforts are

required to enhance its performance while preserving its current level of security.

Future endeavours in this research domain would entail a comprehensive

redesign of the algorithm to ensure adherence to best coding practices, as the current

version is not yet optimized.

Subsequently, after enhancing the algorithm's performance, further

benchmarking against other algorithms would be necessary to ascertain comparable

resource usage on the test device. The suggested approach was tested on the

Raspberry Pi four. It is imperative to assess its compatibility and effectiveness on

various other IoT devices before contemplating real-world implementation.

49

REFERENCES

[1] Cso.ie. 2022. Information Society Statistics Enterprises 2021 - CSO - Central

Statistics Office. [online] Available at: [Accessed 21 April 2024].

[2] Cso.ie. 2022. Internet of Things - CSO - Central Statistics Office. [online]

Available at: [Accessed 21 April 2024].

[3] S. Adamović, I. Branović, D. Živković, V. Tomašević and M. Milosavljević,

“Teaching interactive cryptography: the case for CrypTool,” in IEEE

Conference ICEST, 2011.

[4] Jovanovic, Philipp. (2015). Analysis and Design of Symmetric Cryptographic

Algorithms.

[5] cryptography. Merriam-Webster.com. [Accessed 21 April 2024]

[6] Taylor, O. and Emmah, V., 2018. [ebook] Comparative Analysis of

Cryptographic Algorithms in Securing Data: ResearchGate, p.122. Available at:

[Accessed 30 April 2024].

[7] 2015. Biclique cryptanalysis of MIBS-80 and PRESENT-80block ciphers.

[ebook] Wiley Online Library, pp.32, 33. Available at: [Accessed 30 April

2024].

[8] Van der Vieren, D., 2010. The Rubik's Crypto-Cube: a Trans-Composite Cipher.

[ebook] Regis University, pp.16, 17. Available at: [Accessed 3 May 2024].

[9] Cubelelo. 2022. God's Number Explained: How Only 20 Moves Proved Enough

to Solve Any Rubik's Cube Position. [online] Available at: [Accessed 3 May

2024].

[10] A. Kerckhoffs. La Cryptographie Militaire. Journal des Sciences Militaires, IX,

1883.

[11] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems.

50

Advances in Cryptology — CRYPTO 1990. Volume 537, Lecture Notes in

Computer

Science. Springer, 1991

[12] D. Coppersmith. The Data Encryption Standard (DES) and its Strength Against

Attacks. IBM Journal of Research and Development, 38(3), 1994.

[13] J. Guo, P. Karpman, I. Nikolić, L. Wang, and S. Wu. Analysis of BLAKE2.

Topics in Cryptology — CT-RSA 2014. Volume 8366, Lecture Notes in

Computer Science. Springer, 2014.

[14] L. R. Knudsen and M. J. B. Robshaw. The Block Cipher Companion. Springer,

2011.

[15] J. Daemen, R. Govaerts, and J. Vandewalle. Correlation Matrices. Fast Software

Encryption — FSE 1994. Volume 1008, Lecture Notes in Computer Science.

Springer, 1995.

[16] A. A. Selçuk. On Probability of Success in Linear and Differential

Cryptanalysis. Journal of Cryptology, 21(1), 2008.

[17] A. Bogdanov and E. Tischhauser. On the Wrong Key Randomisation and Key

Equivalence Hypotheses in Matsui’s Algorithm 2. Fast Software Encryption —

FSE 2013. Volume 8424, Lecture Notes in Computer Science. Springer,

2014.

[18] J. Kaliski B. S. and M. Robshaw. Linear Cryptanalysis Using Multiple

Approximations. Advances in Cryptology — CRYPTO 1994. Volume 839,

Lecture Notes in Computer Science. Springer, 1994.

[19] L. R. Knudsen and J. E. Mathiassen. A Chosen-Plaintext Linear Attack on DES.

Fast Software Encryption — FSE 2001. Volume 1978, Lecture Notes in

Computer Science. Springer, 2001.

[20] N. T. Courtois, K. Nohl, and S. O’Neil. Algebraic Attacks on the Crypto-1

Stream Cipher in MiFare Classic and Oyster Cards. Cryptology ePrint Archive,

Report 2008/166. 2008. ttp://eprint.iacr.org/2008/166.

51

[21] D. Khovratovich and I. Nikolić. Rotational Cryptanalysis of ARX. Fast

Software Encryption — FSE 2010. Volume 6147, Lecture Notes in Computer

Science. Springer, 2010.

[22] Fortinet. 2022. What is the CIA Triad and Why is it important? | Fortinet.

[online] Available at: [Accessed 12 May 2024].

[23] Shin, H., Kyoung Lee, H., Cha, H., Weon Heo, S. and Kim, H., 2019. IoT

Security Issues and Light Weight Block Cipher. [ebook] Seoul: Hongik

University, pp.382, 383. Available at: [Accessed 13 May 2024].

[24] 2022. Quantum Cryptography: An Emerging Technology in Network Security.

[ebook] California State University, Northridge: Loyola Marymount University,

p.15. Available at: [Accessed 14 April 2024].

[25] Jones, A., 2018. What Exactly Is a Photon?. [online] ThoughtCo. Available at:

[Accessed 25 May 2024].

[26] 2015. Origin of Heisenberg's Uncertainty Principle. [ebook] Jaipur, India: NIMS

University, p.203. Available at: [Accessed 20 May 2024].

[27] Wootters, W. and Zurek, W., 1982. A single quantum cannot be cloned. [ebook]

Williamstown, Massachusetts: Department of Physics and Astronomy, Williams

College. Available at: [Accessed 22 May 2024].

[28] bozhu, 2012. AES-Python | Github [online] Available at: [Accessed 5 April

2024].

[29] meichlseder, 2014. Python implementation of Ascon | Github [online] Available

at: [Accessed 5 April 2024].

52

APPENDIX

Some code for this thesis will me given in this section.

This is the organization for the code where the main file runs the code.

CPU_RAM_Check contains the necessary libraries for checking the recourse

utilization by the program for encrypting and decrypting.

The function file contains the functions for encrypting and decrypting. The matrices

for encryption and decryption are given on the mix_columns_tables file. The

movements file performs all the possible cube movements, it also has the movements

array that stores a string value based on the function that was ran. The

required_tables hold the indexes for each length of key.

	Approval sheet of the Thesis
	I hereby declare that all information in this docu
	ABSTRACT
	ABSTRAKT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1.1The Study
	1.2Objective
	1.3Thesis Organization

	CHAPTER 2 LITERATURE REVIEW
	2.1Introduction
	2.2.Cryptography
	2.2.1.Different Cryptographic Techniques
	Block Ciphers
	Stream Ciphers
	Hash Functions

	2.2.2.Comparison of different Cryptographic Algorithms

	2.3.Rubik’s Cube Cipher
	2.4.Cryptographic Attacks
	2.4.1.Categories of Attacks
	2.4.2.Objectives ofan Attack
	2.4.3.Brute-Force Attacks
	2.4.4.Differential Attacks
	2.4.4.Linear Attacks
	2.4.5.Algebraic Attacks
	Gröbner Bases
	2.4.6.Rotational Attacks

	2.5Internet Of Things
	2.5.1What is IOT?
	2.5.2.IOT Devices
	2.5.3.How does it work?
	2.5.4.Security in IOT Systems
	2.5.5.IOT Architecture Layers
	Perception Layer
	Network Layer
	Application Layer

	CHAPTER 3 METHODOLOGY
	3.1.Introduction
	3.2.Advanced Encryption Standard Algorithm
	3.3.Quantum Cryptography
	3.4.Specification For Designing The Model
	3.4.1.Modified AES
	3.4.2.Rotation Key of Rubik's Cube

	3.5.Implementing
	3.5.1.Encryption
	3.5.2.Decryption

	CHAPTER 4 RESULTS AND DISCUSSIONS
	4.1.Evaluation
	4.1.1.CPU Utilization and Time Analysis for Each Algorit

	4.2.Discussion

	CHAPTER 5 CONCLUSIONS
	5.1.Conclusions And Future Research

	REFERENCES
	APPENDIX

