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ABSTRACT 

 

Quantitative Analysis of THP1 Cell Confluency and Proliferation Under 

Temporal and Pharmacological Conditions Using Deep Learning 

Techniques 

Alban Xhepi 

M.Sc., Department of Computer Engineering 

Supervisor:  Assoc. Prof. Dr. Arban Uka 

 

The proliferation and behavior of THP1 cells, a human monocytic cell line, are critical 

in understanding various biomedical and pharmaceutical applications. This thesis 

presents a comprehensive analysis of THP1 cell images categorized into different 

states: 'D2_PAR30' treated with varying concentrations of the drug (5µg, 20µg, 50µg, 

and 500µg). The primary objectives are to develop and optimize UNet models for 

accurate cell segmentation, quantify cell confluency, and analyze cell health based on 

confluency metrics across these categories. 

Initially, the THP1 dataset, comprising unique and newly labeled cell images, was 

preprocessed. Original images (1080x1024) were cropped into smaller sizes (128x128, 

256x256, and 512x512) and augmented to enhance dataset diversity. These 

preprocessed images were then used to train a UNet model for cell segmentation, with 

the 256x256 dataset yielding the best performance. Hyperparameters, loss functions, 

batch sizes, and epochs were carefully experimented with to optimize the segmentation 

accuracy. 

To optimize the model for edge devices, pruning and quantization techniques were 

employed. Pruning reduced the model size from 355 MB to 100 MB, while 

quantization further decreased it to 35 MB, making the model significantly more 

efficient without compromising accuracy. 
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A pipeline was developed to automate the analysis process. Original cell images were 

divided into 256x256 segments, each segment's cell confluency and area were 

predicted, and the results were aggregated to assess the overall confluency and cell 

area of the original image. This method facilitated the evaluation of cell proliferation 

and confluency changes over time and under different drug treatments, enabling 

differentiation between healthy and unhealthy cells based on confluency. 

The analysis revealed distinct patterns of cell confluency and proliferation associated 

with temporal changes and drug treatments. By testing 10 images from each category, 

significant insights were gained into the cellular response under different conditions. 

These findings contribute to the broader understanding of THP1 cell behavior and 

provide a foundation for future research in cellular biology and pharmacological 

studies. 

 

Keywords: THP1, U-net, segmentation, area, SVD, confluency, pruning, quantization, 

classification. 
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ABSTRAKT 

Analiza Sasiore e Konfluencës dhe Proliferimit të Qelizave THP1 nën 

Kushte Temporale dhe Farmakologjike duke Përdorur Teknikat e Deep 

Learning 

Alban Xhepi 

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike 

Udhëheqësi:  Assoc. Prof. Dr. Arban Uka 

 

Proliferimi dhe sjellja e qelizave THP1, një linjë qelizore monoksite humane, janë të 

rëndësishme për të kuptuar aplikimet e ndryshme biomedikale dhe farmaceutike. Kjo 

disertacion paraqet një analizë të përmbajtshme të imazheve të qelizave THP1 të 

kategorizuara në gjendje të ndryshme: 'D2_PAR30' trajtuar me koncentrata të 

ndryshme të ilaçit (5µg, 20µg, 50µg, dhe 500µg). Objektivat kryesore janë zhvillimi 

dhe optimizimi i modeleve UNet për segmentimin e saktë të qelizave, vlerësimi i 

konfluencës së qelizave, dhe analiza e shëndetit të qelizave bazuar në metrikat e 

konfluencës në këto kategori. 

Fillimisht, dataseti i THP1, i përbërë nga imazhe unike dhe të etiketuara së fundmi të 

qelizave, u parapërpunua. Imazhet origjinale (1080x1024) u prerën në madhësi më të 

vogla (128x128, 256x256, dhe 512x512) dhe u shtuan për të përmirësuar diversitetin 

e datasetit. Këto imazhe të parapërpunuara u përdorën për të trajnuar një model UNet 

për segmentimin e qelizave, me datasetin 256x256 që dha performancën më të mirë. 

Hiperparametrat, funksionet e humbjes, madhësitë e grupit dhe epokat u 

eksperimentuan me kujdes për të optimizuar saktësinë e segmentimit. 

Për të optimizuar modelin për pajisje të kufizuar (edge devices), u përdorën teknika të 

prerjes dhe kvantizimit. Prerja reduktoi madhësinë e modelit nga 355 MB në 100 MB, 
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ndërsa kvantizimi e reduktoi më tej në 35 MB, duke bërë modelin shumë më efikas pa 

kompromentuar saktësinë. 

U zhvillua një pipeline për të automatizuar procesin e analizës. Imazhet origjinale të 

qelizave u ndanë në segmente 256x256, për çdo segment u parashikua konfluencën 

dhe zona e qelizave, dhe rezultatet u mbledhën për të vlerësuar konfluencën dhe zonën 

e përgjithshme të imazhit origjinal. Ky metodë lehtësoi vlerësimin e proliferimit dhe 

ndryshimeve të konfluencës së qelizave në kohë dhe nën trajtime të ndryshme me ilaç, 

duke mundësuar dallimin mes qelizave të shëndetshme dhe atyre të pa shëndetshme 

në bazë të konfluencës. 

Analiza zbuloi modelet e dallueshme të konfluencës dhe proliferimit të qelizave në 

lidhje me ndryshimet kohore dhe trajtimet me ilaç. Duke testuar 10 imazhe nga çdo 

kategori, u fituan njohuri të rëndësishme për reagimin qelizor në kushte të ndryshme. 

Këto zbulime kontribuojnë në kuptimin më të gjerë të sjelljes së qelizave THP1 dhe 

ofrojnë një bazë për hulumtimet e ardhshme në biologjinë qelizore dhe studimet 

farmakologjike. 

 

Fjalët kyçe: THP1, U-net, segmentim, siperfaqe, SVD, konfluencë, pruning, kuantizim, klasifikim. 
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CHAPTER 1 

INTRODUCTION 

1. Thesis Objective 

 

The primary objective of this thesis is to conduct a comprehensive analysis of THP1 

cell images to evaluate cell confluency and proliferation across different temporal 

states and under varying pharmacological treatments. This involves several specific 

goals: developing and optimizing UNet models for accurate cell segmentation, 

quantifying cell confluency, and analyzing cell health based on confluency metrics 

across different categories ('D1_Cells', 'D2_Cells', and 'D2_PAR30' treated with 

varying drug concentrations of 5µg, 20µg, 50µg, and 500µg). 

To achieve these objectives, the THP1 dataset, comprising unique and newly labeled 

cell images, was preprocessed by cropping the original images (1080x1024) into 

smaller sizes (128x128, 256x256, and 512x512) and augmenting them to enhance 

dataset diversity. These preprocessed images were used to train a UNet model for cell 

segmentation, with extensive experimentation on hyperparameters, loss functions, 

batch sizes, and epochs to optimize segmentation accuracy. 

For deployment on edge devices, pruning and quantization techniques were employed 

to reduce the model size from 355 MB to 100 MB and further down to 35 MB, 

respectively, without compromising accuracy. 

An automated pipeline was developed to process original cell images by dividing them 

into 256x256 segments, predicting cell masks, confluency, and area for each segment, 

and aggregating the results to determine the overall confluency and cell area of the 

original image. 

The analysis of cell confluency and proliferation across different categories was 

conducted by comparing changes over time and under different drug treatments. This 

process enabled differentiation between healthy and unhealthy cells based on 
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confluency metrics. Validation of the pipeline and analysis results was achieved by 

testing 10 images from each category, providing significant insights into the cellular 

response to temporal changes and drug treatments. These findings contribute to a 

broader understanding of THP1 cell behavior and provide a valuable foundation for 

future research in cellular biology and pharmacological studies. 

 

2. Scope of works 

 

This thesis encompasses a comprehensive study of THP1 cell images, focusing on the 

evaluation of cell confluency and proliferation across different temporal states and 

under varying pharmacological treatments. The scope of work includes several key 

components, beginning with the development and preprocessing of the dataset. THP1 

cell images are collected and categorized into 'D1_Cells' (Day 1), 'D2_Cells' (Day 2), 

and 'D2_PAR30' treated with drug concentrations of 5µg, 20µg, 50µg, and 500µg. The 

original images (1080x1024) undergo preprocessing, which involves cropping them 

into smaller sizes (128x128, 256x256, and 512x512) and applying data augmentation 

techniques to enhance the diversity and robustness of the dataset. 

The next component involves the development and optimization of a UNet model for 

cell segmentation. The preprocessed images are used to train the model, with extensive 

experimentation on hyperparameters, loss functions, batch sizes, and epochs to achieve 

optimal segmentation accuracy. To ensure the model's efficiency for deployment on 

edge devices, pruning and quantization techniques are applied, reducing the model size 

from 355 MB to 100 MB and further down to 35 MB without compromising its 

accuracy. 

An automated analysis pipeline is then developed to streamline the evaluation process. 

This pipeline processes the original cell images by dividing them into 256x256 

segments, predicting cell masks, confluency, and area for each segment, and 

aggregating the results to determine the overall confluency and cell area of the original 

image. This approach allows for a detailed analysis of cell confluency and proliferation 
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across different categories, comparing changes over time and under different drug 

treatments. 

The scope of work also includes validating the pipeline and analysis results by testing 

10 images from each category. This validation provides significant insights into the 

cellular response to temporal changes and drug treatments, advancing the 

understanding of THP1 cell behavior and contributing valuable data for future research 

in cellular biology and pharmacological studies. 

 

 

3. Organization of the thesis 

This thesis is organized into several chapters, each detailing a specific aspect of the 

research and findings. 

Chapter 1 provides an introduction to the study, outlining the significance of 

understanding the proliferation and behavior of THP1 cells in various biomedical and 

pharmaceutical applications. It presents the research problem, objectives, and the 

scope of work. 

Chapter 2 reviews the relevant literature on cell segmentation, deep learning 

techniques for image analysis, and the application of UNet models in biomedical 

research. This chapter also discusses the optimization techniques for deploying models 

on edge devices. 

Chapter 3 describes the methodology used in the study. It details the development and 

preprocessing of the THP1 dataset, including the categorization of images and the 

application of data augmentation techniques. The chapter also explains the training 

and optimization of the UNet model, including the experimentation with 

hyperparameters, loss functions, batch sizes, and epochs. 

Chapter 4 focuses on the implementation of the automated analysis pipeline. It 

provides a step-by-step description of the pipeline development, from segmenting the 

original images to predicting cell masks, confluency, and area, and aggregating the 

results to assess overall confluency and cell area. 
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Chapter 5 presents the results of the analysis. This chapter discusses the patterns of 

cell confluency and proliferation observed across different temporal states and drug 

treatments. It includes a detailed comparison of changes in confluency and cell count, 

and differentiates between healthy and unhealthy cells based on confluency metrics. 

Chapter 6 validates the pipeline and analysis results by testing images from each 

category. It highlights the significant insights gained into the cellular response to 

temporal changes and drug treatments, contributing to a broader understanding of 

THP1 cell behavior. 

Chapter 7 concludes the thesis by summarizing the key findings and their implications 

for future research in cellular biology and pharmacological studies. It also discusses 

the limitations of the study and suggests potential areas for further investigation. 

Finally, the appendices provide additional data, charts, and technical details that 

support the main text of the thesis, including detailed descriptions of the datasets, 

model parameters, and the algorithms used in the analysis. 
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CHAPTER 2 

LITERATURE REVIEW   

2.1 Introduction 

The purpose of this literature review is to provide a comprehensive background for the 

study by examining existing research on cell segmentation methodologies, particularly 

focusing on deep learning techniques. Accurate cell segmentation is essential in 

biomedical research as it enables precise quantification of cell characteristics, which 

is crucial for understanding cellular processes and disease mechanisms. 

 

This review is structured to cover the following topics: 

 

• Cell Segmentation in Biomedical Research: This section discusses the 

importance of cell segmentation, traditional segmentation methods, and the 

challenges faced in accurately segmenting cells from microscopic images. 

• Deep Learning Techniques for Image Analysis: Here, we explore the impact 

of deep learning on image analysis, highlighting its advantages over traditional 

methods and the specific relevance of convolutional neural networks (CNNs) 

in this field. 

• The UNet Model: This section provides a detailed description of the UNet 

architecture, its key features, and its applications in biomedical image 

segmentation, emphasizing its effectiveness and versatility. 

• THP1 Cells and Their Significance: This part introduces THP1 cells, their 

characteristics, and their importance in biomedical and pharmacological 
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research, supported by previous studies involving THP1 cell analysis and 

segmentation. 

• Data Augmentation: Here we explain the role of data augmentation in 

enhancing model performance, covering common techniques used in image 

analysis and their specific applications in cell segmentation research. 

• Model Optimization Strategies: This section explores model optimization 

methods such as pruning and quantization, discussing their benefits in terms of 

efficiency and deployment in biomedical research. 

• Comparison of Cell Segmentation Models: A review of other cell 

segmentation models and their performance, comparing these with the UNet 

architecture to provide insights on model selection for cell segmentation tasks. 

• Challenges and Future Directions: This final section highlights the current 

challenges in cell segmentation using deep learning, potential future 

advancements, and emerging trends in biomedical image analysis. 

By systematically covering these topics, the literature review establishes a thorough 

context for the subsequent chapters, identifying gaps in current research and setting 

the stage for the contributions of this thesis 
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2.2  Cell Segmentation in Biomedical Research 

2.2.1  Historical perspective on cell segmentation techniques. 

Historically, cell segmentation techniques have come a long way to meet the growing 

demands of biomedical research. In the early days, manual segmentation was the norm, 

where researchers painstakingly drew cell boundaries by hand. While this method was 

often accurate, it was extremely time-consuming and prone to variability due to its 

subjective nature [1]. 

 

As digital imaging technology advanced, automated segmentation techniques began to 

emerge. One of the first automated methods was thresholding, which converts 

grayscale images into binary images by applying a global or local threshold. Although 

simple, thresholding struggled with variations in cell intensity and overlapping cells 

[2]. Edge detection methods, like the Sobel and Canny edge detectors, improved on 

thresholding by identifying cell boundaries based on intensity gradients. However, 

these methods were still challenged by noise and the complex shapes of cells [3]. 

 

Region-based methods, like the watershed algorithm and the active contour models, 

marked significant progress by focusing on the areas within cell boundaries. The 

watershed algorithm, for example, treats the grayscale image as a topographic surface 

and finds cell boundaries by simulating a flooding process. Despite their 

sophistication, these methods often required extensive preprocessing and parameter 

tuning to perform well [4]. 

 

The advent of machine learning algorithms brought further improvements. Traditional 

ML methods, like random forests and  support vector, used handcrafted features 

extracted from the images. These models improved segmentation accuracy but were 

limited by the quality of the features and the need for extensive feature engineering 

[5]. 

 

The introduction of deep learning has revolutionized cell segmentation. Models like 

CNNs and FCNs can learn features directly from raw image data, greatly enhancing 
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segmentation performance. The UNet model, a type of FCN, has become particularly 

popular due to its ability to perform precise segmentation with relatively small training 

datasets [6]. 

 

Cell segmentation techniques have evolved from manual methods to sophisticated 

deep learning models, each step addressing the limitations of its predecessors and 

contributing to more accurate and efficient segmentation in biomedical research.  

 

2.2.2  Importance of accurate cell segmentation in biomedical research. 

Accurate cell segmentation is crucial in biomedical research because it forms the 

foundation for many subsequent analyses and interpretations. Precise segmentation 

allows researchers to quantitatively analyze cell morphology, count cells, and measure 

various cellular features, which are essential for understanding cellular processes and 

disease mechanisms [1]. For example, in cancer research, accurately segmenting cells 

can help identify and quantify the morphological changes associated with malignancy, 

aiding in diagnosis and treatment planning [7]. 

Moreover, cell segmentation is vital in drug discovery and development. By accurately 

segmenting cells, researchers can assess the effects of pharmaceutical compounds on 

cell proliferation, apoptosis, and other cellular behaviors. This helps identify potential 

therapeutic targets and evaluate drug efficacy [8]. In tissue engineering and 

regenerative medicine, segmentation is used to analyze cell growth and tissue 

formation, which are critical for developing effective treatments and therapies [9]. 

Accurate cell segmentation also plays a significant role in high-throughput screening 

technologies, where large-scale automated image analysis is required. High-

throughput screening relies on precise segmentation to process and analyze vast 

amounts of image data efficiently, facilitating the rapid identification of promising 

compounds or genetic modifications [10]. 

Advances in personalized medicine depend heavily on accurate cell segmentation. By 

analyzing patient-specific cell images, researchers can develop tailored treatments 
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based on the unique cellular characteristics of an individual's disease, improving 

treatment outcomes and reducing adverse effects [6]. 

Accurate cell segmentation is essential for a wide range of biomedical applications, 

from basic research to clinical practice. It enables precise quantification and analysis 

of cellular features, advancing our understanding of health and disease, developing 

new therapies, and improving patient care. 

 

2.2.3  Challenges and common issues faced in cell segmentation. 

Despite significant advancements in cell segmentation techniques, numerous 

challenges and common issues persist in the field. One major challenge is the inherent 

variability in cell morphology. Cells can vary greatly in size, shape, and texture, even 

within the same tissue type or sample, making it difficult to develop a one-size-fits-all 

segmentation algorithm [1]. This variability necessitates the use of robust algorithms 

capable of handling a wide range of cell appearances. 

Another common issue is the presence of noise and artifacts in microscopic images. 

Factors such as uneven illumination, staining variability, and imaging artifacts can 

obscure cell boundaries and complicate the segmentation process [11]. Preprocessing 

steps, such as noise reduction and contrast enhancement, are often required but may 

not fully eliminate these issues, leading to segmentation inaccuracies. 

Overlapping cells pose another significant challenge. In many biological samples, cells 

are densely packed and often overlap, making it difficult to distinguish individual cell 

boundaries. Traditional segmentation methods, such as thresholding and edge 

detection, struggle with this issue, while more advanced methods like watershed 

algorithms and active contour models require careful parameter tuning to perform 

effectively [4]. An example of overlapping cells is shown in fig.1 

Segmentation accuracy is also affected by the presence of different cell types within 

the same image. In heterogeneous samples, different cell types may have distinct 

morphological features, making it challenging to develop a universal segmentation 
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approach. This issue often necessitates the use of machine learning and deep learning 

techniques that can learn to differentiate between various cell types based on training 

data [12]. 

 

Figure 1 Overlapping cells example 

 

Additionally, manual annotation of cell images for training and validation of 

segmentation algorithms is time-consuming and prone to human error. Creating large 

annotated datasets requires significant effort and expertise, and inconsistencies in 

manual annotations can affect the performance of machine learning models [13]. 

The challenges in cell segmentation stem from the inherent variability in cell 

morphology, noise and artifacts in images, overlapping cells, heterogeneous cell types, 

and the labor-intensive nature of manual annotation. Addressing these challenges 

requires the development of sophisticated algorithms and the use of advanced ML and 

deep learning techniques to achieve accurate cell segmentation in biomedical research. 
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2.3 Deep Learning Techniques for Image Analysis 

2.3.1  Overview of deep learning and its application in image analysis 

Deep learning has significantly changed the landscape of image analysis, offering 

notable improvements over traditional methods. At its heart, deep learning involves 

training artificial neural networks on big datasets to recognize features in the data. 

These networks, especially convolutional neural networks (CNNs), have shown 

exceptional success in various image analysis tasks and this is done because of their 

ability to understand and represent complex data patterns [14]. 

One of the major benefits of deep learning in image analysis is its capability for 

automatic feature extraction. Traditional image processing techniques often rely on 

handcrafted features, which can be time-consuming to design and may not capture all 

the relevant information in an image. Unlike traditional methods, deep learning models 

extract features directly from the raw pixel data, enabling them to identify complex 

patterns and relationships that might be missed by human-designed features [15]. 

Convolutional neural networks are particularly effective for image analysis. CNNs 

consist of multiple layers, including convolutional layers that apply filters to the input 

image, pooling layers that reduce dimensionality, and fully connected layers that 

perform classification. This layered structure allows CNNs to capture spatial 

hierarchies in images, making them highly effective for tasks such as object detection, 

image classification, and segmentation [16]. 

In biomedical image analysis, deep learning has been applied to a wide range of 

problems, from cell segmentation and classification to disease diagnosis and 

prognosis. For instance, CNNs have been used to accurately segment cells in 

microscopy images, identify cancerous tissues in histopathology slides, and detect 

abnormalities in medical imaging scans such as MRI and CT [17]. The ability of deep 

learning models to handle large, complex datasets and learn from vast amounts of data 

has made them indispensable tools in modern biomedical research. 
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Furthermore, advancements in deep learning frameworks and the availability of 

powerful computational resources have facilitated the development and deployment of 

deep learning models. Libraries such as TensorFlow and PyTorch provide robust tools 

for building and training neural networks, while advances in GPU technology have 

significantly reduced the time required to train large models [18]. 

Deep learning has transformed image analysis by providing powerful, automated tools 

for feature extraction and pattern recognition. Its application in biomedical image 

analysis has led to significant advancements in cell segmentation, disease detection, 

and other critical tasks, making it an essential technology in the field. 

 

2.3.2 Comparison of traditional image processing methods with deep learning 

approaches 

Traditional image processing methods and deep learning approaches differ 

significantly in their methodologies, capabilities, and outcomes. Traditional image 

processing relies on manually designed algorithms and handcrafted features to analyze 

images. Techniques such as thresholding, edge detection, and morphological 

operations have been commonly used for tasks like image segmentation and object 

detection [10]. These methods often require significant expertise to design and fine-

tune for specific applications, and their performance can be limited by the quality of 

the manually extracted features and the variability in image data [20]. 

Thresholding is a straightforward method where pixel values are divided into classes, 

usually based on intensity levels. While simple, this method struggles with variations 

in lighting and noise, often resulting in poor performance in complex images [2]. Edge 

detection techniques, like the Canny and Sobel filters, focus on identifying the 

boundaries of objects within an image. Although effective for certain applications, 

they can be sensitive to noise and may fail to capture subtle or complex boundaries 

[3]. Morphological operations, which include dilation, erosion, opening, and closing, 

are used to refine segmented regions but are heavily dependent on the initial 

segmentation quality and the chosen structuring elements [21]. 
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In contrast, Deep learning techniques, especially CNNs, have transformed image 

analysis by learning to automatically extract relevant features from raw image data. 

This process eliminates the need for manual feature engineering, allowing the models 

to adapt to the data and learn intricate patterns that might be overlooked by traditional 

methods [15]. CNNs consist of multiple layers that apply filters to the input images, 

capturing spatial hierarchies and complex features at various levels of abstraction. This 

hierarchical feature learning enables CNNs to achieve superior performance in main 

tasks like image classification, object detection, and image segmentation [16]. 

The key advantages of deep learning over traditional methods is its ability to handle 

large and diverse datasets. Deep learning models improve with more data, learning 

more robust and generalizable features. This is particularly important in biomedical 

image analysis, where variability in tissue types, imaging modalities, and pathological 

conditions can be high [17]. Additionally, deep learning models can be fine-tuned on 

specific tasks through transfer learning, leveraging pre-trained models to adapt to new, 

smaller datasets with reduced training time and improved performance [22]. 

Moreover, deep learning models can incorporate contextual information and learn 

complex spatial relationships within images, which is challenging for traditional 

methods. For instance, in cell segmentation, CNNs can learn to distinguish 

overlapping cells and varying cell morphologies more effectively than traditional 

algorithms [12]. However, deep learning approaches require substantial computational 

resources and large annotated datasets for training, which can be a limitation in some 

scenarios [23]. 

While traditional image processing methods are useful for simple and well-defined 

tasks, deep learning approaches offer greater flexibility, accuracy, and scalability for 

complex image analysis tasks. The ability of deep learning models to automatically 

learn from data and adapt to various challenges makes them a powerful tool in modern 

image analysis. 
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2.3.3 Advantages of using deep learning for cell segmentation 

Deep learning offers several significant advantages for cell segmentation, making it a 

preferred approach over traditional methods. One of the primary benefits is its 

capability to automatically extract and learn different features from raw image data. 

Unlike traditional methods that rely on handcrafted features, deep learning models, 

particularly convolutional neural networks (CNNs), learn to identify important 

patterns and structures in the data through training [14]. This automatic feature 

learning leads to more accurate and robust segmentation results. 

Another major advantage of deep learning is its capacity to handle large and complex 

datasets. In biomedical research, cell images can vary widely in terms of scale, texture, 

and morphology. Deep learning models are well-suited to manage this variability as 

they can generalize from large amounts of training data, learning to recognize cells in 

diverse conditions and environments [15]. This capability is particularly valuable for 

segmenting cells in heterogeneous tissues or under different imaging conditions. 

Deep learning models, such as the UNet, have shown exceptional performance in 

segmenting overlapping and densely packed cells. Traditional methods often struggle 

with these challenges, as they typically rely on predefined rules that may not account 

for the complexity of biological structures. In contrast, deep learning models can learn 

to distinguish individual cells even in crowded and overlapping scenarios by 

leveraging their ability to understand spatial hierarchies and contextual information 

[6]. 

The flexibility and adaptability of deep learning are also notable advantages. They can 

be customized for specific tasks or datasets by employing transfer learning. This 

process involves adjusting a pre-trained model to new provided data, requiring only 

minimal additional training. This approach not only saves time and computational 

resources but also enhances the model's performance on specific segmentation tasks 

[22]. For example, a model pre-trained on general cell segmentation can be fine-tuned 

to accurately segment a particular type of cell or tissue. 
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Additionally, deep learning frameworks provide powerful tools for integrating 

multiple sources of data. In cell segmentation, integrating multimodal data, such as 

combining fluorescence and phase-contrast images, can significantly improve 

segmentation accuracy. Deep learning models can effectively learn from these 

different data types, combining them to produce more accurate and comprehensive 

segmentation results [24]. 

Lastly, deep learning models have been shown to be highly effective in minimizing 

human intervention and reducing the time required for analysis. Once trained, these 

models can process and segment large volumes of images rapidly and consistently, 

which is crucial for high-throughput screening and large-scale biomedical studies [17]. 

This efficiency not only accelerates the research process but also reduces the potential 

for human error and variability in manual segmentation. 

The advantages of using deep learning for cell segmentation include automatic feature 

extraction, the ability to handle large and complex datasets, superior performance in 

challenging scenarios such as overlapping cells, flexibility through transfer learning, 

integration of multimodal data, and significant time savings and consistency in image 

analysis. These benefits make deep learning an indispensable tool in modern cell 

segmentation and biomedical research. 

 

2.4 The UNet Model 

2.4.1 Detailed description of the UNet architecture. 

 

The UNet model, developed by Ronneberger et al. in 2015, is a convolutional neural 

network (CNN) architecture tailored specifically for biomedical image segmentation. 

Its distinctive U-shaped architecture allows it to capture both detailed local features 

and broad contextual information from images, making it highly effective for tasks 

requiring precise localization [6]. 
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Figure 2 The Unet architecture example 

The UNet architecture consists of two main parts: the contracting path (encoder) and 

the expanding path (decoder). 

1. Contracting Path (Encoder): 

• The contracting path is responsible for capturing the context of the 

input image. It comprises a series of convolutional layers, each 

followed by a rectified linear unit (ReLU) activation function and a 

max-pooling operation. 

• Each convolutional layer applies filters to the input image, generating 

feature maps that highlight different aspects of the image. The max-

pooling layers reduce the spatial dimensions of these feature maps, 

effectively downsampling the image while retaining the most important 

features. 

• Typically, the contracting path includes several stages, with each stage 

doubling the number of feature channels. This allows the network to 

learn increasingly complex features at multiple scales [15]. 

2. Bottleneck: 

• At the bottom of the U-shape, between the contracting and expanding 

paths, is the bottleneck. This part of the network captures the most 

abstract features of the image. It consists of two convolutional layers 
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followed by ReLU activations, without any downsampling or 

upsampling operations. 

3. Expanding Path (Decoder): 

• The expanding path is designed to produce a high-resolution 

segmentation map. It includes a series of upsampling operations, each 

followed by a convolutional layer and a ReLU activation function. 

• Each upsampling step in the expanding path is accompanied by a 

concatenation with the corresponding feature map from the contracting 

path. These concatenations, known as skip connections, help the 

network retain spatial information that might have been lost during 

downsampling [25]. 

• These skip connections allow the network to combine high-level 

features from the contracting path with high-resolution features from 

the expanding path, resulting in precise and accurate segmentations. 

4. Output Layer: 

• The final layer of the UNet is a 1x1 convolution that reduces the 

number of feature channels to the desired number of output classes. 

This layer is followed by a softmax activation function (for multi-class 

segmentation) or a sigmoid activation function (for binary 

segmentation) to produce the final segmentation map [26]. 

The strength of the UNet architecture lies in its ability to learn both global context and 

local details simultaneously. This makes it particularly well-suited for tasks where 

precise localization is crucial, such as biomedical image segmentation. Since its 

introduction, the UNet model has been widely adopted and extended, demonstrating 

robust performance across a variety of biomedical imaging tasks [27]. 
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2.4.2 Key features and components of the UNet model. 

The UNet model is renowned for its robust performance in biomedical image 

segmentation, thanks to its unique design and key features. Here are the main 

components and features that contribute to its effectiveness: 

1. Symmetric U-shaped Architecture: 

• The hallmark of the UNet model is its U-shaped architecture, featuring 

a symmetric design with a contracting path (encoder) and an expanding 

path (decoder). This configuration enables the model to capture both 

high-level contextual information and detailed features, which are 

crucial for accurate image segmentation [6]. 

2. Contracting Path (Encoder): 

• The contracting path consists of multiple convolutional layers, each 

followed by a rectified linear unit (ReLU) activation function and a 

max-pooling operation. This segment of the network is tasked with 

downsampling the input image, capturing crucial features while 

decreasing its spatial dimensions. Each layer in the contracting path 

doubles the number of feature channels, enabling the network to learn 

progressively complex features at various scales [15]. 

3. Expanding Path (Decoder): 

• The expanding path mirrors the contracting path and is designed to 

reconstruct the image resolution. It includes upsampling operations that 

the expanding path increases the spatial dimensions of the feature maps 

through upsampling, followed by convolutional layers and ReLU 

activations. The decoder merges high-level features from the encoder 

with the fine details recovered during upsampling, resulting in a precise 

segmentation map [25]. 

4. Skip Connections: 

• One of the key features of the UNet model is the incorporation of skip 

connections, which connect corresponding layers in the encoder and 

decoder paths. These connections concatenate feature maps from the 

contracting path to the expanding path, helping the network preserve 
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spatial information that might be lost during downsampling. This 

ensures that the final segmentation map is both precise and detailed 

[26]. 

5. 1x1 Convolutional Layers: 

• The final layer of the UNet model is a 1x1 convolutional layer that 

reduces the number of feature channels to the desired number of output 

classes. This layer is followed by a softmax activation function (for 

multi-class segmentation) or a sigmoid activation function (for binary 

segmentation), which produces the final segmentation map [27]. 

6. High Capacity for Learning Features: 

• The UNet model's architecture, with its multiple layers and feature 

channels, provides a high capacity for learning complex features. This 

enables the network to effectively handle diverse and challenging 

segmentation tasks, such as segmenting overlapping or densely packed 

cells in biomedical images [28]. 

7. Efficient Training with Data Augmentation: 

• UNet models are particularly effective when combined with data 

augmentation techniques. Data augmentation helps to increase the 

diversity of the training dataset by applying transformations such as 

rotations, flips, and shifts. This improves the model's robustness and 

generalization capability, making it more effective in real-world 

applications [29]. 

8. Flexibility and Adaptability: 

• The UNet architecture is highly flexible and can be adapted to various 

image segmentation tasks. It has been extended to 3D versions for 

volumetric data and nested versions (like UNet++) for improved 

performance. This adaptability makes UNet a versatile tool for a wide 

range of biomedical imaging applications [27]. 

The key features and components of the UNet model, including its symmetric U-

shaped architecture, skip connections, and high capacity for learning features, 

contribute to its outstanding performance in biomedical image segmentation. 
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2.4.3 Previous applications of the UNet model in biomedical image 

segmentation. 

Since its introduction, the UNet model has been widely adopted and applied in 

numerous biomedical image segmentation tasks, demonstrating its versatility and 

robustness. Here are some notable applications: 

The original application of the UNet model was for segmenting neuronal structures in 

electron microscopy stacks. Its success in this domain led to widespread adoption in 

other types of cell and nucleus segmentation. For instance, the UNet model has been 

used to segment cell nuclei in histopathological images, enabling precise 

quantification and analysis of cellular structures in cancer diagnosis and research [6]. 

UNet has also been applied to segment lung nodules in CT scans, aiding in the early 

detection of lung cancer. By accurately delineating the boundaries of lung nodules, the 

model assists radiologists in identifying potential malignancies, improving diagnostic 

accuracy and patient outcomes [30]. 

Additionally, the model has been employed in brain tumor segmentation from MRI 

scans. Accurate segmentation of brain tumors is crucial for treatment planning and 

monitoring disease progression. The UNet model's capability to capture fine details 

and contextual information makes it exceptionally effective in identifying and 

segmenting various tumor types and regions [31]. In ophthalmology, the UNet model 

has been used to segment retinal images, including tasks such as optic disc and cup 

segmentation, and the detection of retinal lesions. These applications are essential for 

diagnosing and managing conditions like glaucoma and diabetic retinopathy, where 

early detection and monitoring are critical [32]. 

UNet has also been applied to segment various organs in medical imaging, such as the 

liver in CT and MRI scans. This application is important for surgical planning, 

radiation therapy, and volumetric analysis of organs. The model's precision in 

segmenting organ boundaries helps clinicians in making informed decisions [33]. 

Moreover, the UNet model has been extensively used in the analysis of histopathology 

images, including tasks such as tissue classification and the segmentation of cancerous 

regions. Its ability to handle the high variability and complexity of histopathological 

data makes it a valuable tool for pathologists, aiding in accurate diagnosis and research 

[34]. 
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In cardiology, UNet has been employed to segment cardiac structures from MRI and 

echocardiography images. Accurate segmentation of the heart's chambers and vessels 

is crucial for assessing cardiac function, diagnosing heart diseases, and planning 

treatments [35]. The model has also been adapted for multimodal image segmentation, 

where it combines information from different imaging modalities to improve 

segmentation accuracy. For example, combining MRI and PET scans can enhance the 

detection and segmentation of brain tumors by leveraging the complementary 

information provided by each modality [36]. 

The UNet model has proven to be a highly effective and adaptable tool for a wide 

range of biomedical image segmentation tasks. Its applications span across various 

medical fields, contributing to improved diagnostic accuracy, treatment planning, and 

research outcomes. 

 

 

 

2.5 THP1 Cells and Their Significance 

2.5.1 Introduction to THP1 cells and their characteristics 

THP1 cells are a human monocytic cell line originating from a patient with acute 

monocytic leukemia.Established in 1980, these cells have become a staple in 

immunological and pharmaceutical research due to their versatility and human origin 

[37]. They offer a range of characteristics that make them incredibly valuable for 

studying various aspects of the immune system, drug responses, and cellular processes. 

Characteristics of THP1 Cells: 

1. Monocytic Origin: 

THP1 cells are derived from monocytes, a type of white blood cell crucial for the 

immune response. Monocytes can differentiate into macrophages and dendritic cells, 

making THP1 cells an excellent model for studying these processes [38]. 

 



36 

 

2. Differentiation Capability: 

A key feature of THP1 cells is their ability to differentiate into macrophage-like cells 

when treated with phorbol 12-myristate 13-acetate (PMA) or other agents. This 

differentiation process changes the cells' morphology, adhesion properties, and the 

expression of specific markers, allowing researchers to study the changes associated 

with macrophage differentiation and activation [39]. 

3. Human Origin: 

Being of human origin, THP1 cells provide a more relevant biological context 

compared to animal models. This is particularly important for drug testing and 

immunological studies, as it allows for more accurate predictions of human responses 

[40]. 

4. Ease of Culturing: 

THP1 cells are relatively easy to culture and maintain in the lab. They grow in 

suspension, which makes them suitable for large-scale production and high-throughput 

screening. Their robust growth and ease of handling make them a popular choice in 

many laboratories [41]. 

5. Expression of Key Immune Receptors: 

THP1 cells express a diverse array of immune receptors, including Toll-like receptors 

(TLRs), which are crucial for recognizing pathogens and triggering immune responses. 

This makes them an excellent model for studying innate immunity, inflammation, and 

pathogen-host interactions [42]. 

6. Versatility in Research Applications: 

THP1 cells are used in various research areas, including immunology, cancer biology, 

toxicology, and drug development. Their ability to model different aspects of the 

human immune response makes them particularly useful for studying disease 

mechanisms and evaluating new therapeutic agents [43]. 
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THP1 cells are a versatile and invaluable tool in biomedical research due to their 

human origin, ability to differentiate into macrophages, ease of culturing, and 

expression of key immune receptors. Their widespread use in various research 

applications highlights their significance in advancing our understanding of immune 

responses, disease mechanisms, and drug development. 

   

Figure 3 Exampels of THP1 cell images 

 

4.5.2 Previous studies involving THP1 cell analysis and segmentation 

THP1 cells have been extensively used in various research areas, showcasing their 

utility in biomedical studies. Here are some notable examples of how they have been 

applied: 

1. Inflammatory Response Studies: 

Researchers have used THP1 cells to study mechanisms of inflammation. For example, 

Chanput et al. (2014) investigated how different compounds affect immune responses 

by differentiating THP1 cells into macrophages and analyzing changes in cytokine 

production and other immune markers. This work provides valuable insights into 

inflammatory processes and potential therapeutic targets [38]. 

2. Pathogen Interaction Analysis: 

THP1 cells are also used to study how pathogens interact with human cells. Arrouchi 

et al. (2014) utilized THP1 cells to examine the impact of human cytomegalovirus 

(HCMV) on immune cells. By segmenting the cells, they were able to observe viral 
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entry, replication, and immune response, contributing to the development of treatments 

against HCMV [44]. 

3. Cancer Research and Drug Testing: 

In cancer research, THP1 cells help evaluate the efficacy of new anti-cancer drugs. 

Savary et al. (2018) used THP1 cells to test novel compounds targeting leukemia. By 

segmenting and analyzing the treated cells, they assessed the drugs' effectiveness in 

inducing cell death and inhibiting proliferation, crucial steps in developing new cancer 

therapies [45]. 

4. Macrophage Differentiation and Function Studies: 

THP1 cells are widely used to study macrophage differentiation and function. 

Daigneault et al. (2010) identified specific markers of macrophage differentiation in 

PMA-stimulated THP1 cells. By segmenting the differentiated cells, they analyzed 

marker expression, enhancing our understanding of macrophage biology and their role 

in immune responses [42]. 

5. Nanoparticle Toxicity Assessments: 

THP1 cells are employed to assess the toxicity of nanoparticles. Franchi et al. (2017) 

investigated how different nanoparticles affect THP1 cells. By segmenting the exposed 

cells, they measured cytotoxicity and reactive oxygen species (ROS) production, 

which are critical for evaluating the safety of nanoparticles for medical use [46]. 

6. Automated Image Analysis and High-Throughput Screening: 

Advances in automated image analysis have made high-throughput screening using 

THP1 cells more efficient. Beumer et al. (2014) developed an automated pipeline to 

segment and analyze THP1 cells in drug screening assays, enabling rapid and accurate 

evaluation of large numbers of compounds, thereby accelerating the drug discovery 

process [47]. 
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7. Gene Expression and Epigenetic Studies: 

THP1 cells are also used in gene expression and epigenetic research. Nishizawa et al. 

(2016) studied epigenetic changes during macrophage differentiation using THP1 

cells. By segmenting the cells, they could isolate and analyze specific populations, 

providing insights into the regulatory mechanisms of macrophage differentiation [48]. 

Studies involving THP1 cell analysis and segmentation have greatly advanced our 

understanding of immune responses, pathogen interactions, cancer biology, 

nanoparticle toxicity, and gene expression. These applications highlight the versatility 

and importance of THP1 cells in biomedical research. 

2.6 Model Optimization Strategies 

2.6.1 Overview of model optimization techniques (pruning and quantization). 

Model optimization techniques, such as pruning and quantization, are essential for 

enhancing the efficiency and performance of deep learning models, particularly for 

deployment on resource-constrained devices. These techniques reduce the 

computational and memory demands of neural networks without significantly 

compromising their accuracy. 

Pruning: 

Pruning is a technique that involves removing unnecessary or less important weights 

from a neural network. This process reduces the number of parameters, thereby 

decreasing the model's size and computational complexity. Pruning can be applied at 

various levels, including individual weights, neurons, or even entire layers [49]. 

There are several methods of pruning. Magnitude-based pruning involves removing 

weights with the smallest absolute values, on the assumption that these weights have 

the least impact on the model's performance. This approach is straightforward and 

widely used [50]. Structured pruning, on the other hand, focuses on removing entire 

filters or channels in convolutional networks rather than individual weights. This 

method is advantageous for reducing latency and improving hardware efficiency, as it 
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results in more regular and dense computations [51]. Additionally, iterative pruning 

and fine-tuning involve performing pruning in stages and then fine-tuning the model 

to recover any accuracy loss. This approach helps maintain the model's performance 

while progressively reducing its size [52]. 

The primary benefits of pruning include a significant reduction in the memory 

footprint and computational requirements of neural networks. This facilitates the 

deployment of models on edge devices, such as smartphones and embedded systems, 

which have limited resources. Furthermore, pruned models can achieve faster 

inference times, making them more practical for real-time applications [53]. 

 

Quantization: 

Quantization is a technique aimed at reducing the precision of the numbers used to 

represent a model's parameters and activations. Instead of utilizing 32-bit floating-

point numbers, quantized models employ lower precision formats, such as 8-bit 

integers. This adjustment leads to decreased memory usage and faster computations 

[54]. 

There are several approaches to quantization. Post-training quantization involves 

converting a pre-trained model to a lower precision format after training has been 

completed. This method is straightforward but may cause some degradation in the 

model's accuracy [55]. On the other hand, quantization-aware training integrates 

quantization into the training process, allowing the model to adapt to the lower 

precision representation and generally resulting in better accuracy retention post-

quantization [56]. Furthermore, dynamic and static quantization are two types of 

quantization strategies. Dynamic quantization applies to weights during inference, 

offering flexibility, while static quantization involves quantizing both weights and 

activations during training for optimized performance [57]. 

The primary benefits of quantization include a significant reduction in the size of the 

neural network, which enhances storage and processing efficiency. Additionally, it 

improves inference speed due to decreased computational complexity. Quantized 
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models are especially advantageous for deploying deep learning applications on 

mobile and embedded devices, where computational and storage resources are limited 

[58]. 

Together with pruning, quantization forms a crucial part of model optimization. These 

techniques collectively enhance the efficiency and deployability of deep learning 

models, making it possible to run complex neural networks on devices with limited 

resources. This enables broader application and integration of AI technologies across 

various fields. 

 

2.6.2 Examples of optimization strategies applied in biomedical research 

Model optimization techniques, such as pruning and quantization, have demonstrated 

significant value in biomedical research by improving the efficiency and performance 

of deep learning models. Here are some notable examples: 

In the field of medical imaging, Molchanov et al. (2017) applied pruning to 

convolutional neural networks (CNNs) used for analyzing medical images. By 

selectively removing less important filters, they managed to significantly reduce the 

model's size and computational demands without compromising accuracy. This 

approach was especially useful for deploying models on resource-constrained devices 

in clinical settings [53]. 

For ultrasound image analysis, Jacob et al. (2018) showcased the effectiveness of 

quantization. They applied post-training quantization to a CNN model, converting it 

from 32-bit floating-point to 8-bit integer precision. This optimization not only 

reduced the model size but also improved inference speed, facilitating real-time 

analysis of ultrasound images on portable devices [54]. 

Wu et al. (2016) applied both quantization and pruning techniques to a deep learning 

model for lung nodule detection in CT scans. By quantizing model weights and 

pruning redundant connections, they achieved a significant reduction in model size 
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and computational load. This optimization enabled faster and more efficient 

processing of CT images, aiding in the early detection of lung cancer [57]. 

In cardiac image segmentation, Courbariaux et al. (2016) utilized binarized neural 

networks (BNNs). BNNs constrain weights and activations to +1 or -1, which 

drastically reduces memory and computational requirements. This method was applied 

to segment cardiac structures in MRI scans, resulting in efficient and accurate 

segmentation suitable for real-time applications [56]. 

Gupta et al. (2015) used limited numerical precision techniques for histopathological 

image classification. By employing reduced precision arithmetic, they optimized the 

model to operate efficiently on standard CPUs, making it accessible for various 

healthcare settings. This approach enabled quick and accurate classification of tissue 

samples, supporting pathologists in diagnostic processes [55]. 

Han et al. (2015) implemented pruning techniques in a deep learning model for brain 

tumor segmentation from MRI images. By pruning less significant weights, they 

reduced the model size and improved its inference speed, which made it feasible to 

deploy the model in clinical environments with limited computational resources. This 

optimization enhanced the model’s usability for real-time tumor detection and 

monitoring [49]. 

For diabetic retinopathy detection, LeCun et al. (1990) applied optimal brain damage 

pruning techniques to CNNs. This method involved removing weights that had 

minimal impact on the model’s performance, thereby reducing the network's overall 

complexity. The optimized model was then used to analyze retinal images, enabling 

early and accurate detection of diabetic retinopathy [50]. 

The application of optimization strategies such as pruning and quantization has greatly 

improved the efficiency and practicality of deep learning models in biomedical 

research. These techniques facilitate the deployment of complex models on resource-

constrained devices, enabling real-time analysis and enhancing diagnostic accuracy 

across various medical domains. 



43 

 

 

2.7 Deep Learning Approaches for Cell Classification 

Deep learning has significantly advanced cell classification by automating feature 

extraction and classification processes. Convolutional Neural Networks (CNNs) have 

become central to this transformation, offering the capability to learn and identify 

complex patterns in image data. This advancement has addressed many limitations of 

traditional cell classification methods, such as manual feature extraction and reliance 

on heuristic approaches. 

Various deep learning architectures have been explored for cell classification, each 

bringing unique strengths to the table. VGGNet, known for its straightforward 

architecture with small receptive fields, is effective in image classification tasks but 

can suffer from longer training times and higher computational costs due to its depth. 

InceptionNet, on the other hand, employs multiple convolutional filters of different 

sizes in parallel, enabling it to capture features at various scales. However, this 

complexity can lead to significant computational demands. 

Among these, ResNet (Residual Network) has emerged as a particularly effective 

model for cell classification. Introduced by He et al. (2015), ResNet incorporates 

residual blocks with skip connections to overcome the challenges associated with 

training very deep networks. The ResNet50 variant, which includes 50 layers, strikes 

a balance between depth and computational efficiency, making it well-suited for 

biomedical image analysis tasks [60]. 

ResNet50’s architecture benefits from its residual learning framework, which 

addresses issues such as vanishing gradients and facilitates the training of deep 

networks. This allows the model to learn intricate features from complex cell images 

effectively. The use of residual connections helps maintain high performance even in 

deeper networks, which is crucial for accurately distinguishing between various cell 

types and states [61][62]. 
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In practice, ResNet50 has demonstrated exceptional performance in cell classification 

tasks. For instance, it has been employed in cancer detection and cellular morphology 

analysis, where its deep architecture enables the model to capture subtle differences 

between cell categories. Comparative studies have shown that ResNet50 often 

outperforms other models like VGGNet and InceptionNet in terms of accuracy and 

robustness [63][6]. 

Despite its advantages, ResNet50 is not without challenges. It requires large annotated 

datasets for training and can struggle with class imbalances. Future research is focused 

on overcoming these challenges through techniques such as transfer learning, fine-

tuning, and the integration of domain-specific knowledge. These approaches aim to 

further enhance the model’s performance and applicability in cell classification tasks. 
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CHAPTER 3 

METHODOLOGY 

3.1 Dataset Preparation 

3.1.1 Data Collection 

The dataset used in this study consists of 116 images of THP1 cells, which are human 

monocytic cells derived from a patient with acute monocytic leukemia. These images 

were specifically created for researchs at Epoka University. The images were captured 

using high-resolution microscopy, ensuring detailed visualization of cell structures. 

The dataset includes images from different experimental conditions, including 

untreated cells (D1_Cells and D2_Cells) and cells treated with varying concentrations 

of PAR30 (5 µg, 20 µg, 50 µg, and 500 µg). 

 

Figure 4 Exampe of Day 1 THP1 cells 



46 

 

3.1.2 Data Annotation 

Out of the 116 images, 62 images were manually annotated to create ground truth 

labels for training, validation, and testing purposes. The annotation process was carried 

out using the Apeer.com platform, a specialized tool for precise and efficient image 

annotation. Expert annotators meticulously outlined the boundaries of individual cells 

within each image. These annotations were reviewed and validated to ensure accuracy 

and consistency. This split ensured that the model had sufficient data to learn from, 

while also allowing for effective evaluation of its performance. 

 

     

Figure 5 Making cell annotation using apeer.com 

 

3.1.3 Data Preprocessing 

Before feeding the images into the neural network, several preprocessing steps were 

undertaken to ensure the data was in the optimal format for model training: 

Resizing: 

Before feeding the images into the neural network, several preprocessing steps were 

undertaken to ensure the data was in the optimal format for model training. The 

original images, which were 1080x1024 pixels in size, were cropped into smaller 

patches of 128x128, 256x256, and 512x512 pixels. This resizing helped in 

         Image                        Apper.com annotation              Annotation result 

apeer.com
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standardizing the input dimensions and provided the model with varied perspectives 

of the cell structures. 

       

 128x128   256x256   512x512 

       

Figure 6 Cropped images with their masks 

Normalization: 

Image pixel values were normalized to a range of 0 to 1. This normalization step is 

crucial as it helps in stabilizing the training process and ensures that the model learns 

effectively without being affected by variations in pixel intensity. 

Data Augmentation: 

To enhance the model's accuracy, data augmentation techniques were applied. These 

included random rotations of up to 20 degrees to simulate different orientations, 

horizontal and vertical flipping to introduce variations in cell positioning, zooming in 

and out up to 20% to simulate different magnifications, and applying shear 

transformations up to 20% to introduce slight distortions and variations in the images. 
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We saw the need to use data augmentation only on the 512x512 dataset due to the 

limited number of images, which were only 248. This was insufficient for the effective 

training of the model. Our initial results showed very poor predictions before data 

augmentation, while the predictions improved significantly after applying data 

augmentation. Figure 7 illustrates an example of the transformed image using these 

data augmentation techniques. 

 

       

 Original Image   Transformed Image 

        

Figure 7 Example of the output image after data augmentation 
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3.2 Image Segmentation Techniques 

3.2.1 Choice of Model 

The UNet model was chosen for this study due to its exceptional performance and 

suitability for biomedical image segmentation tasks. Several key factors influenced 

this decision. The UNet model has a symmetric U-shaped architecture with an encoder 

and a decoder, enabling it to capture high-level detailed features essential for precise 

cell segmentation. Skip connections between the contracting and expanding paths 

allow the model to integrate spatial information from various resolutions, improving 

its ability to generate accurate segmentation maps. 

The UNet model has shown robustness in handling variations in cell shapes, sizes, and 

densities, which is particularly important for segmenting THP1 cells that can exhibit 

significant morphological diversity under different experimental conditions. The 

model's ability to learn and generalize from diverse training data makes it well-suited 

for this study. One significant advantage of the UNet model is its ability to achieve 

high performance even with limited training data. Given that only 62 annotated images 

were available for training in this study, the UNet model's efficiency in learning from 

small datasets was a critical factor. Its architecture allows it to leverage data 

augmentation effectively, improving the model's robustness and accuracy. 

The UNet model has a proven track record in various biomedical image segmentation 

tasks, including cell segmentation, tumor detection, and organ segmentation. This 

extensive validation in the biomedical field provided confidence in its applicability 

and reliability for segmenting THP1 cells in this study. The UNet model is highly 

flexible and can be adapted to different image segmentation tasks. It supports various 

input and output sizes, making it suitable for segmenting images of different 

resolutions. Additionally, the model can be easily modified and fine-tuned to 

accommodate specific requirements of the study, such as incorporating additional 

layers or adjusting hyperparameters. 

To enhance the segmentation performance further, four different UNet architectures 

were utilized: 
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1. Basic U-Net Model: The standard UNet architecture used as a baseline. 

2. U-Net Model with Dropout: Incorporating dropout layers to prevent 

overfitting and improve generalization. 

3. U-Net Model with VGG16 Encoder: Leveraging a pre-trained VGG16 model 

as the encoder to utilize transfer learning for better feature extraction. 

4. U-Net Model with Attention: Integrating attention mechanisms to allow the 

model to focus on the most relevant parts of the image, enhancing segmentation 

accuracy. 

These variations allowed for comprehensive experimentation to identify the most 

effective architecture for the specific requirements of the study. 

The UNet model can be seamlessly integrated with modern deep learning frameworks 

like TensorFlow and PyTorch. These frameworks provide robust tools for model 

training, optimization, and deployment, facilitating the development and 

implementation of the segmentation pipeline. The availability of pre-built UNet 

implementations and community support further streamlined the process. Collectively, 

the UNet model's U-shaped architecture, robustness to variations, high performance 

with limited data, proven success in biomedical applications, flexibility, and seamless 

integration with modern deep learning frameworks make it an ideal choice for accurate 

and efficient segmentation of THP1 cells. 

 

3.2.2 Model Architecture (UNET) 

The UNet model is used to for this task. It is designed to efficiently segment images 

by capturing both high-level and low-level features. The UNet architecture is also 

shown in Fig.3. 
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Figure 8 The UNet architecture used 

 

1. Basic U-Net Model: The Basic U-Net model follows the standard UNet 

architecture, which consists of an encoder (contracting path), a bottleneck, a 

decoder (expanding path), and an output layer. The encoder captures 

contextual information through convolutional and max-pooling layers, while 

the decoder reconstructs the segmentation map through transposed 

convolutions and skip connections that integrate features from the encoder. 

This model serves as a baseline for comparison with other variants. 

2. U-Net Model with Dropout: This variant incorporates dropout layers into the 

standard UNet architecture to prevent overfitting and improve generalization. 

Dropout layers are added after the convolutional layers in both the encoder and 

decoder paths. By randomly dropping units during training, the model becomes 

more robust and less sensitive to the noise in the training data, leading to better 

performance on unseen data. 

3. U-Net Model with VGG16 Encoder: The U-Net model with a VGG16 

encoder leverages a pre-trained VGG16 network as the encoder part of the 
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UNet architecture. VGG16 is a deep convolutional network known for its 

strong feature extraction capabilities. By utilizing transfer learning, the pre-

trained VGG16 layers provide a rich set of features that improve the 

segmentation performance. The decoder part remains similar to the standard 

UNet, reconstructing the segmentation map using transposed convolutions and 

skip connections. 

4. U-Net Model with Attention: This variant integrates attention mechanisms 

into the UNet architecture to enhance segmentation accuracy. Attention layers 

are added in the decoder path to allow the model to focus on the most relevant 

parts of the feature maps. These layers assign different weights to different 

parts of the input, enabling the model to give more importance to critical 

regions while downplaying irrelevant areas. This focus improves the model's 

ability to accurately segment cells, especially in complex and cluttered images. 

Each of these architectures brings unique enhancements to the standard UNet model, 

aiming to improve segmentation performance and robustness for the specific task of 

THP1 cell segmentation. 

 

3.2.3 Training Procedure 

The training procedure for the UNet models involved several key steps to ensure 

effective learning and accurate segmentation of THP1 cells. Here is a detailed 

description of the training process: 

1. Data Preprocessing: 

o Data Augmentation: To increase the diversity of the training data and 

prevent overfitting, various augmentation techniques were applied, 
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such as random rotations, flips, scaling, and translations. This helps the 

model generalize better to unseen data. 

o Normalization: The input images were normalized to have zero mean 

and unit variance. This ensures that the model training is not biased by 

the varying intensity values of the images. 

o Splitting Data: The dataset was divided into training, validation, and 

test sets. The training set was used to train the model, the validation set 

to tune hyperparameters and monitor overfitting, and the test set to 

evaluate the final model performance. 

2. Model Initialization: 

o Weights Initialization: The weights of the convolutional layers were 

initialized using the He normal initialization method, which helps in 

maintaining the gradient flow during training. 

o Pre-trained Weights: For the U-Net model with VGG16 encoder, pre-

trained weights on the ImageNet dataset were used for the encoder part 

to leverage transfer learning. 

3. Training Configuration: 

o Loss Function: The binary cross-entropy loss function was used to 

measure the discrepancy between the predicted and actual 

segmentation maps. This loss function is suitable for binary 

segmentation tasks where the goal is to classify each pixel as either cell 

or background. 

o Optimizer: The Adam optimizer was employed for training the models 

due to its adaptive learning rate and efficient handling of sparse 

gradients. Learning rates of 0.001 and 0.0001 were tested to identify 

the optimal learning rate. 

o Batch Size: Batch sizes of 4 and 8 were chosen to balance between 

computational efficiency and the stability of gradient updates. 

o Epochs: The models were trained for 5, 10, 15, and 20 epochs, with 

early stopping implemented to halt training if the validation loss did not 
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improve for a set number of epochs. This prevents overfitting and saves 

computational resources. 

4. Model Compilation: 

o The UNet model was compiled with the following settings: 

▪ Loss Function: Binary cross-entropy. 

▪ Optimizer: Adam optimizer with the specified learning rate. 

▪ Metrics: Dice coefficient, Intersection over Union (IoU), 

Recall, Precision, and Accuracy. 

5. Training Loop: 

o Forward Pass: In each epoch, a forward pass was performed on the 

training batch to compute the predicted segmentation map. 

o Loss Computation: The binary cross-entropy loss was calculated 

based on the predicted and actual segmentation maps. 

o Backward Pass and Optimization: A backward pass was performed 

to compute the gradients of the loss with respect to the model 

parameters, followed by an update of the model parameters using the 

Adam optimizer. 

o Validation: After each epoch, the model was evaluated on the 

validation set to monitor its performance and adjust hyperparameters if 

necessary. 

6. Model Evaluation: 

o Performance Metrics: The trained models were evaluated using 

various metrics, including the Dice coefficient, Intersection over Union 

(IoU), Recall, Precision, and Accuracy. These metrics provide a 

comprehensive assessment of the model's segmentation performance. 

o Test Set Evaluation: The final models were tested on the holdout test 

set to determine their generalization capability and overall 

effectiveness in segmenting THP1 cells. 

7. Post-training Optimization: 

o Model Pruning: To reduce the model size and improve inference 

speed, model pruning techniques were applied. This involves removing 
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redundant parameters without significantly affecting the model's 

performance. 

o Quantization: Further optimization was performed using quantization 

to reduce the model's memory footprint, enabling deployment on edge 

devices. 

By following this rigorous training procedure, the UNet models were effectively 

trained to achieve accurate and efficient segmentation of THP1 cells, demonstrating 

robustness and high performance across various evaluation metrics. 

  

Figure 9 Some predictions from early testing 

 

3.4 Model Evaluation 

3.4.1 Performance Metrics 

To thoroughly assess the performance of the UNet model in segmenting THP1 cells, 

several essential metrics were utilized. These metrics offered a comprehensive 

evaluation of the model's accuracy, precision, and overall effectiveness in 

segmentation tasks. The performance metrics included: 

1. Accuracy: 
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• Accuracy measures how often the model makes the correct predictions. 

It is calculated by dividing the number of correct predictions (both true 

positives and true negatives) by the total number of predictions made. 

• Formula: 

Accuracy =
True Positives + True Negatives

Total PredictionsAccuracy
 

• Significance: Accuracy provides an overall idea of how well the model 

performs. However, it might not be enough on its own, especially when 

dealing with imbalanced classes where one class is much more frequent 

than the other. 

2. Precision: 

• Precision, or Positive Predictive Value, measures how many of the 

model's positive predictions are actually correct. It shows the model's 

ability to avoid false positives. 

• Formula:  

Precision =
True Positives

True Positives + False Positives
 

• Significance: High precision means the model has a low false positive 

rate, making it reliable for situations where false positives are 

especially costly. 

3. Recall: 

• Recall, also called Sensitivity or True Positive Rate, measures how well 

the model identifies actual positive cases. It shows the model's ability 

to capture all relevant instances. 

• Formula:  

Recall =
True Positives

True Positives + False Negatives
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• Significance: High recall means the model has a low false negative 

rate, making it reliable for applications where missing positive cases is 

critical.. 

4. F1-Score: 

• The F1-score is the harmonic mean of precision and recall, offering a 

single metric that balances both aspects. It is particularly useful when 

handling class imbalance. 

• Formula:  

F1 − Score = 𝟐 × 
Precision × Recall

Precision + Recall
 

• Significance: F1-score is the harmonic mean of precision and recall, 

giving a single metric that balances both aspects. It's particularly useful 

for situations with class imbalance. 

5. Intersection over Union (IoU): 

• IoU, or the Jaccard Index, measures how much the predicted 

segmentation mask overlaps with the ground truth mask. It is calculated 

by dividing the area of overlap (intersection) by the total area covered 

by both masks (union). 

• Formula:  

IoU =  
Intersection Area

Union Area
 

 

• Significance: IoU is a robust metric for assessing the accuracy of 

segmentation models. A higher IoU signifies better segmentation 

performance, with perfect segmentation achieving an IoU of 1. 

6. Dice Coefficient: 

• The Dice coefficient measures the similarity between the predicted and 

ground truth masks, similar to IoU but giving more weight to the 

overlapping area. It is calculated as twice the area of overlap divided 

by the total number of pixels in both masks. 



58 

 

• Formula:  

Dice Coefficient =  
2 × Intersection Area

Total Pixels in Both Masks
 

 

• Significance: The Dice coefficient is especially useful in medical 

image segmentation tasks, providing a reliable measure of model 

performance. 

These performance metrics were used to evaluate the model at various stages of 

training and validation, ensuring a comprehensive understanding of its strengths and 

weaknesses. By analyzing these metrics, the effectiveness of the UNet model in 

segmenting THP1 cells was thoroughly assessed, providing confidence in its 

applicability and reliability for biomedical research. 

 

3.2.2 Evaluation Procedure 

The evaluation procedure was carefully designed to rigorously assess the performance 

of the UNet model on the test dataset. This ensured a thorough and unbiased 

evaluation, providing a reliable measure of the model's generalization capabilities. The 

following steps outline the evaluation process: 

1. Preparation of the Test Dataset: 

• The test dataset consisted of 15% of the annotated images 

(approximately 9 images) set aside during the training phase. These 

images were not used for model training or validation, ensuring that the 

evaluation results accurately reflected the model's performance on 

unseen data. 

2. Loading and Preprocessing: 

• The test images and their corresponding masks were loaded and 

preprocessed similarly to the training and validation data. This involved 

resizing the images to 128x128, 256x256, and 512x512 pixels, 
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normalizing the pixel values to a range of 0 to 1, and applying any 

necessary transformations to ensure compatibility with the model's 

input requirements. 

3. Model Inference: 

• The trained UNet model was used to generate segmentation masks for 

the test images. Each test image was passed through the model to obtain 

the predicted segmentation masks. 

4. Performance Metrics Calculation: 

• The model's performance was evaluated using several key metrics. For 

each test image, the predicted segmentation mask was compared to the 

ground truth mask, and the following metrics were calculated: 

• Accuracy 

• Precision  

• Recall  

• F1-Score 

• Intersection over Union (IoU) 

• Dice Coefficient 

 

 

5. Statistical Analysis: 

• The performance metrics for all test images were aggregated and 

analyzed. Descriptive statistics, such as mean and standard deviation, 

were computed for each metric to provide a comprehensive summary 

of the model’s performance. 

6. Comparison with Validation Results: 

• The performance metrics obtained from the test dataset were compared 

with those from the validation dataset. This comparison helped assess 

the model’s ability to generalize to new, unseen data and ensured that 

it was not overfitting to the training data. 

7. Visual Inspection: 
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• In addition to quantitative metrics, a visual inspection of the predicted 

segmentation masks was conducted. Representative examples of 

segmented images were reviewed to qualitatively assess the accuracy 

and reliability of the model’s predictions. 

By following these steps, the evaluation procedure ensured a comprehensive 

assessment of the UNet model's performance, demonstrating its effectiveness in 

accurately segmenting THP1 cells and providing insights into its generalization 

capabilities. 

 

3.5 Model Optimization 

3.5.1  Pruning 

Pruning is a technique used to reduce the size and complexity of a neural network by 

removing less significant weights and neurons. In this study, pruning was applied to 

the UNet model to enhance its efficiency without significantly compromising its 

performance. The following sections describe the pruning techniques used, the criteria 

for pruning, and the fine-tuning process. 

Magnitude-based pruning was employed, which involves removing weights based on 

their absolute values. This technique operates under the assumption that weights with 

smaller absolute values contribute less to the overall performance of the model. By 

eliminating these weights, the model's size is reduced while maintaining its accuracy. 

Threshold-based pruning was implemented by setting a predefined threshold value to 

determine which weights to prune. Weights with absolute values below this threshold 

were pruned, ensuring that only the least significant weights were removed. 

Additionally, percentage-based pruning was used, where a specific percentage of the 

smallest magnitude weights was pruned. For instance, pruning 20% of the weights 

meant removing the 20% of weights with the smallest absolute values, allowing 

controlled reduction in model size. 
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After pruning, the model typically experiences a drop in performance. To mitigate this, 

the pruned model was retrained (fine-tuned) on the training dataset to recover any lost 

performance. The performance of the pruned and fine-tuned model was continuously 

monitored using the validation set. Metrics such as Dice coefficient, IoU, Recall, 

Precision, and Accuracy were tracked to ensure the model's performance was 

maintained or improved. The pruning and fine-tuning process was performed 

iteratively. After each round of pruning and fine-tuning, the model's performance was 

evaluated. If the performance was satisfactory, further pruning was carried out. This 

iterative process continued until the model reached an optimal balance between size 

reduction and performance. 

 

3.2.2 Quantization 

Quantization is a technique used to reduce the computational and memory demands of 

a neural network by representing weights and activations with lower precision. In this 

study, quantization was applied to the UNet model to further enhance its efficiency for 

deployment on resource-constrained devices. The following sections describe the 

quantization process, the types of quantization applied, and their effects on model 

performance. 

Two types of quantization were applied: post-training quantization and quantization-

aware training (QAT). Post-training quantization involves converting a trained model 

from high-precision (32-bit floating point) weights to lower-precision weights (such 

as 8-bit integers) after the training process is complete. This approach quantizes the 

weights and activations of the trained model without requiring retraining. While post-

training quantization significantly reduces model size and inference time, there may 

be a slight degradation in model accuracy due to the reduced precision. However, this 

trade-off is often acceptable in scenarios where computational efficiency is critical. 

Quantization-aware training involves simulating the effects of quantization during the 

training process. The model is trained with the knowledge that weights and activations 

will be quantized, allowing it to learn to compensate for the reduced precision. During 
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training, fake quantization operations are inserted in the model, which mimic the effect 

of quantization. This allows the model to adjust and optimize its weights considering 

the lower precision. QAT typically results in better accuracy retention compared to 

post-training quantization because the model adapts to the quantization during 

training. The model learns robust features that are less sensitive to the reduced 

precision, leading to minimal performance loss. 

The quantization process involved several steps. Initially, the trained UNet model was 

converted to a format suitable for quantization. This involved preparing the model's 

graph and ensuring all operations were compatible with the quantization process. Next, 

post-training quantization was applied, where the model's weights and activations were 

quantized from 32-bit floating point to 8-bit integers. This step drastically reduced the 

model size and improved inference speed. The quantized model was then evaluated on 

the test dataset to measure any changes in performance metrics such as accuracy, Dice 

coefficient, IoU, Recall, and Precision. 

A separate version of the UNet model was trained using QAT. This involved 

modifying the training pipeline to include fake quantization operations. The model was 

trained on the same dataset with adjusted hyperparameters to ensure optimal learning 

under quantization constraints. The quantized model from QAT was evaluated on the 

test dataset, and its performance was compared to the original and post-training 

quantized models. 

Quantization was an effective optimization technique that enhanced the efficiency of 

the UNet model. By reducing the precision of weights and activations, significant 

improvements in model size and inference speed were achieved while maintaining 

acceptable levels of accuracy and performance. Quantization-aware training further 

improved the model's robustness to reduced precision, making it an ideal choice for 

deployment in resource-constrained environments. 
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2.6  Cell Classification  

The cell classification methodology employed in this study involved using the 

ResNet50 model to categorize THP1 cells into various categories based on their 

morphological features and treatment conditions. The process was divided into several 

key steps: data preparation, model training, validation, and performance evaluation. 

2.6.1 Data Preparation 

The data used for classification consisted of THP1 cell images annotated into distinct 

categories: 'D1_Cells', 'D2_Cells', 'D2_PAR30_5ug', 'D2_PAR30_20ug', 

'D2_PAR30_50ug', and 'D2_PAR30_500ug'. Each category represented cells at 

different stages and treatment conditions. The images were preprocessed by resizing, 

normalization, and data augmentation techniques to ensure a robust dataset for 

training. Data augmentation included rotations, flips, and brightness adjustments to 

enhance the model's generalization capabilities. 

2.6.2 Model Training 

ResNet50, a deep convolutional neural network, was chosen for its proven 

effectiveness in image classification tasks. The model was initialized with weights pre-

trained on the ImageNet dataset to leverage transfer learning. This approach allowed 

the model to utilize previously learned features, accelerating the training process and 

improving performance. 

The training process involved fine-tuning the pre-trained ResNet50 model on the 

THP1 cell dataset. The final fully connected layer was replaced with a new layer 

tailored to the number of cell categories. The model was trained using a cross-entropy 

loss function and optimized with the Adam optimizer. The learning rate was carefully 

tuned to balance between convergence speed and stability. 

2.6.3 Validation 

To ensure the model's performance, a validation set was used during training. The 

dataset was split into training and validation subsets, with the validation set comprising 
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20% of the data. This allowed for continuous monitoring of the model's performance 

and early stopping to prevent overfitting. Key metrics such as accuracy, precision, 

recall, and F1-score were tracked throughout the training process. 

2.6.4 Performance Evaluation 

After training, the model's performance was thoroughly evaluated on a separate test 

set, which included images from each cell category. The evaluation metrics included 

overall accuracy, as well as per-category precision, recall, and F1-score. These metrics 

provided insights into the model's ability to correctly classify cells across different 

categories and treatment conditions. 

The cell classification methodology utilizing ResNet50 involved meticulous data 

preparation, careful model training with transfer learning, continuous validation, and 

thorough performance evaluation. This comprehensive approach ensured accurate and 

reliable classification of THP1 cells, contributing to the understanding of cellular 

responses under various conditions. 

 

2.7 Pipeline Development 

2.7.1 Pipeline Overview 

To facilitate the automated analysis of THP1 cell images, a comprehensive pipeline 

was developed. This pipeline handles the entire workflow from inputting the original 

images to calculating confluency, cell area, and classifying the cells. The following 

sections provide an overview of each component of the pipeline, detailing the 

processes involved in image preprocessing, segmentation, classification, and 

subsequent analysis. 

Inputting Original Images: The pipeline begins with the acquisition of original THP1 

cell images, captured at a resolution of 1080x1024 pixels. These images are sourced 

from the experimental dataset created at Epoka University. The acquired images are 

stored in a structured directory, ensuring efficient access and organization. Each image 
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is named and categorized based on its experimental conditions (e.g., D1_Cells, 

D2_Cells, D2_PAR30_5ug, etc.). 

Preprocessing: Each original image is resized into smaller patches of 128x128, 

256x256, and 512x512 pixels. This resizing ensures that the images are compatible 

with the input dimensions of the UNet model and allows for segmentation at different 

resolutions. The pixel values of the images are normalized to a range of 0 to 1. 

Normalization stabilizes the training process and ensures that the model can effectively 

learn from the images without being affected by variations in pixel intensity. To 

enhance the diversity of the dataset and improve the model’s generalization 

capabilities, data augmentation techniques are applied. These techniques include 

rotation, flipping, zooming, shifting, shearing, and brightness/contrast adjustments. 

Segmentation: The preprocessed image patches are fed into the trained and optimized 

UNet model. The model generates segmentation masks for each patch, identifying the 

boundaries of the cells. The segmented patches are then stitched back together to form 

a complete segmentation mask for the original image. This reconstruction step ensures 

that the entire image is accurately segmented. 

Confluency and Area Calculation: The segmented masks are analyzed to calculate 

the confluency and area of the cells. Confluency is determined by calculating the 

proportion of the image area covered by cells, while the cell area is measured by 

counting the number of pixels within the segmented cell boundaries. The calculated 

confluency and cell area values are aggregated across different experimental 

conditions. This aggregation allows for a comprehensive analysis of cell growth 

patterns, the effects of PAR30 treatments, and the overall health of the cells. 

Cell Classification: To classify the cells, the pipeline utilizes the ResNet50 model. 

The model is fine-tuned to categorize the THP1 cells into various categories based on 

their morphological features and treatment conditions. The classification process 

involves feeding the segmented and preprocessed images into the ResNet50 model, 

which outputs the predicted categories. This classification step provides detailed 
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insights into the health and condition of the cells under different experimental 

treatments. 

Automation and Integration: The entire pipeline is automated using a series of 

scripts and tools. Automation ensures that the process is efficient and reproducible, 

minimizing manual intervention and reducing the potential for errors. The pipeline is 

integrated with various analysis tools to facilitate data visualization and statistical 

analysis. Graphical representations of confluency, cell area, and classification results 

are generated, providing clear insights into the experimental results. 

Benefits of the Automated Pipeline: The automated pipeline significantly reduces 

the time and effort required for image preprocessing, segmentation, classification, and 

analysis. This efficiency is crucial for handling large datasets and ensuring timely 

results. By standardizing the preprocessing, segmentation, and classification 

processes, the pipeline ensures consistent and accurate results. This standardization 

minimizes variability and enhances the reliability of the analysis. The pipeline is 

designed to handle datasets of varying sizes, making it scalable for large-scale studies. 

Its modular structure allows for easy adaptation and extension to accommodate 

additional data and new experimental conditions. 

  

Figure 10 Example of the result of the pipeline 
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With this comprehensive pipeline, we can effectively analyze THP1 cell images to 

determine cell confluency, area, and health, as well as classify cells based on their 

treatment conditions, contributing valuable insights into cellular responses and 

experimental outcomes. 

 

3.7.2 Integration of Model and Tools 

The integration of the trained and optimized UNet model into the automated pipeline 

involved several steps, ensuring seamless processing of THP1 cell images from input 

to analysis. The following sections detail how the model was incorporated into the 

pipeline, including the software and tools used. 

1. Software and Tools: 

• TensorFlow and Keras: 

• The UNet model was implemented and trained using 

TensorFlow and Keras, popular open-source deep learning 

libraries. TensorFlow provided the necessary framework for 

building, training, and optimizing the model, while Keras 

offered a high-level API for easy model development. 

• OpenCV: 

• OpenCV (Open Source Computer Vision Library) was used for 

image processing tasks such as resizing, normalization, and data 

augmentation. Its extensive set of functions and high 

performance made it suitable for handling the preprocessing 

steps efficiently. 

• NumPy: 

• NumPy was utilized for numerical operations, particularly for 

handling image data and performing calculations related to 

normalization and statistical analysis. 

• TensorFlow Model Optimization Toolkit: 
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• This toolkit was used for implementing pruning and 

quantization, optimizing the model for deployment on resource-

constrained devices. The toolkit provided the necessary 

functions and utilities to apply these optimization techniques 

effectively. 

• Python Scripts: 

• Custom Python scripts were developed to automate the various 

stages of the pipeline, from data preprocessing to model 

inference and analysis. These scripts ensured a streamlined and 

reproducible workflow. 

2. Integration Steps: 

• Model Loading: 

• The trained and optimized UNet model was saved in the 

TensorFlow SavedModel format. This format facilitated easy 

loading of the model into the pipeline for inference. The model 

was loaded using TensorFlow functions, ensuring that it was 

ready for processing input images. 

• Preprocessing Integration: 

• The preprocessing steps, including resizing, normalization, and 

data augmentation, were integrated into the pipeline using 

OpenCV and NumPy. The Python scripts handled the 

preprocessing tasks, preparing the images for segmentation by 

the UNet model. 

• Model Inference: 

• The preprocessed image patches were passed to the loaded 

UNet model for segmentation. TensorFlow functions were used 

to feed the images into the model and obtain the predicted 

segmentation masks. This step was automated to process 

batches of images efficiently. 

• Post-Processing: 

• After obtaining the segmentation masks, the patches were 

stitched back together to form complete segmentation masks for 

the original images. OpenCV was used to handle the stitching 
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and any necessary post-processing to ensure the accuracy and 

integrity of the segmented images. 

• Confluency and Area Calculation: 

• The segmented masks were analyzed to calculate cell 

confluency and area. Custom Python functions performed pixel 

counting and statistical calculations, leveraging NumPy for 

efficient numerical operations. 

3. Automation and Workflow: 

• Pipeline Automation: 

• The entire workflow, from loading images to calculating 

confluency and area, was automated using Python scripts. This 

automation ensured a consistent and efficient process, reducing 

manual intervention and potential errors. 

• Integration with Analysis Tools: 

• The results from the segmentation and analysis steps were 

integrated with data visualization and statistical analysis tools. 

Graphs and charts were generated using libraries such as 

Matplotlib and Seaborn, providing clear visual insights into the 

data. 

• Scalability and Flexibility: 

• The pipeline was designed to be scalable, capable of handling 

large datasets and multiple experimental conditions. Its modular 

structure allowed for easy updates and extensions, 

accommodating new models or additional data processing steps 

as needed. 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

4.1 Architectures Comparisons 

First, we compared the models trained on different sizes of the THP1 dataset: 

• Model 1: thp1_dataset_128 

• Model 2: thp1_dataset_256 

• Model 3: thp1_dataset_512 

• Model 4: thp1_dataset_512_augmented 

The training accuracy over epochs for these models is illustrated in the graph above. 

The results show that: 

1. Model 1 (128): Despite being trained on the smallest dataset, this model 

showed decent performance with an accuracy of 0.948 and a Dice coefficient 

of 0.722. However, its IOU and validation metrics were relatively lower 

compared to the larger models. 

2. Model 2 (256): This model achieved the highest accuracy (0.978) and showed 

substantial improvements in Dice coefficient (0.845) and IOU (0.733). It also 

maintained low loss values during training and validation phases. 

3. Model 3 (512): Although it was trained on a larger dataset, its performance 

was slightly lower than Model 2 in terms of validation metrics. It had a high 

training accuracy (0.976) and good precision (0.937), but the validation 

accuracy dropped to 0.833, indicating potential overfitting. 

4. Model 4 (512 Augmented): This model benefited from data augmentation, 

achieving a high Dice coefficient (0.891) and IOU (0.804). It showed balanced 
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performance across training and validation metrics, with the lowest loss values, 

indicating robust generalization capabilities. 

 

Figure 11 Training accuracy of the base Unet model on different dataset sizes. 

 

The following table provides a summary of the performance metrics for the models on 

both training and validation datasets: 

 

Table 1 Segmentation Model Performance Comparison Table for Different Image 

Sizes 

Metric Model 1 (128) Model 2 (256) Model 3 (512) Model 4 (512 

Augmented) 

Accuracy 0.948 0.978 
 

0.976 0.969 

Dice 

Coefficent 

0.722 0.845 0.835 0.891 

IOU 0.573 
 

0.733 
 

0.717 
 

0.804 
 

 

Loss 0.155 
 

0.070 
 

0.080 
 

0.055 
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Precision 0.874 
 

0.934 
 

0.937 
 

0.953 
 

Recall 0.793 
 

0.930 
 

0.913 
 

0.900 
 

Val Accuracy 0.939 
 

0.971 
 

0.833 
 

0.965 
 

Val Dice 

Coefficent 

0.739 
 

0.830 
 

0.087 
 

0.881 
 

Val IOU 0.600 
 

0.710 
 

0.045 
 

0.788 
 

Val Loss 0.193 
 

0.088 
 

 

0.520 
 

0.067 
 

Val Precision 0.802 
 

0.933 
 

0.000 
 

0.947 
 

Val Recall 0.809 
 

0.887 
 

0.000 
 

0.885 
 

These findings highlight the effectiveness of larger input sizes and data augmentation 

in improving model performance. 
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Here are some visual results: 

      

      

Figure 12 Examples of the 128x128 model with 10 epochs 

      

Figure 13 Example of 256x256 model with 15 epochs 



74 

 

      

    

     

Figure 14 Examples of 256x256 model with 10 epochs 

       

Figure 15 Example of 512x512 model with 10 epochs 
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Figure 16 Example of 512x512 augmented with 10 epochs 

Based on these results, we continued our work with the 256x256 dataset, which 

showed the highest accuracy and robust performance. 

 

In this study, we compared the performance of four different U-Net models trained 

on various sizes of the THP1 dataset. The models and their configurations are as 

follows: 

• Model 1: Basic U-Net 

• Model 2: Basic U-Net with dropout (0.3) 

• Model 3: U-Net with attention mechanism 

• Model 4: Basic U-Net with dropout (0.3) and VGG16 encoder 

The training accuracy over epochs for these models is shown in the graph. The training 

results indicate the following: 

• Model 1 (Basic U-Net): Showed steady improvement over the epochs but had 

the lowest accuracy among the four models, reaching approximately 0.93 at 

the end of training. 

• Model 2 (Basic U-Net with dropout (0.3)): Achieved the highest training 

accuracy of around 0.98, outperforming the other models. This model benefited 
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from the dropout mechanism, which likely helped in regularization and 

preventing overfitting. 

• Model 3 (U-Net with attention mechanism): Also performed well with an 

accuracy of around 0.97. The attention mechanism incorporated in this model 

likely contributed to its high performance by allowing the model to focus on 

relevant features during training. 

• Model 4 (Basic U-Net with dropout (0.3) and VGG16 encoder): Reached a 

similar accuracy to Model 3, around 0.97. The combination of dropout and 

VGG16 encoder provided robust feature extraction capabilities, enhanced by 

the augmentation process. 

 

These results underscore the value of advanced architectures in achieving high 

performance in U-Net models for cell segmentation tasks. 

 

Figure 17 The best model metrics performance overview 

The following table provides a summary of the performance metrics for the models on 

both training and validation datasets: 
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Table 2 Segmentation Model Performance Comparison Table for Different 

Architectures 

Metric Model 1 Model 2 Model 3 Model 4 

Accuracy 0.97 0.97 0.97 0.98 

Dice 

Coefficient 0.77 0.74 0.79 0.79 

IoU 0.63 0.59 0.66 0.66 

Loss 0.1 0.12 0.09 0.09 

Precision 0.9 0.9 0.93 0.93 

Recall 0.89 0.86 0.91 0.91 

Val Accuracy 0.84 0.84 0.97 0.97 

Val Dice 

Coefficient 0.14 0.04 0.79 0.72 

Val IoU 0.08 0.02 0.66 0.57 

Val Loss 0.47 0.62 0.09 0.09 

Val Precision 0.99 0 0.94 0.93 

Val Recall 0.03 0 0.91 0.86 

4.2 Optimization Techniques: Pruning and Quantization 

To further optimize the models, we applied pruning and quantization techniques. 

Pruning: 

• Objective: Reduce model size and improve inference speed. 

• Results: 

o Model size was reduced from 355 MB to 100 MB. 

o Inference speed showed a noticeable increase, making the model more 

efficient for real-time applications. 

Quantization: 

• Objective: Further compress the model for edge deployment. 

• Results: 
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o Model size was further reduced from 355 MB to 35 MB. 

o The quantized model retained the best accuracy based on visual 

assessment, ensuring that compression did not significantly 

compromise model performance. 

Here are some visual results: 

 

Figure 18 Example of pruning model 

 

Figure 19 Example of Quantization model 
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Figure 20 Example of Quantization model + Cleaning 

4.3 Confluency and Area Analysis 

We evaluated the confluency of cells from different image types by analyzing 10 fully 

annotated images for each type. The average confluency values and their standard 

deviations (SD) were calculated, and outliers were removed to generate a final 

confluency report. 

Confluency Results: 

Table 3 Confluency Analysis Table 

Type AVG 

Confluency 

SD RM 

Outliers 

SD Report Status 

D1 15.07 
0.029 

 

    

D2 
25.26 

 

13.545 19.658 7.023   

D2_PAR30_5ug 16.93 4.815 15.75 3.24 0.801 Healthy 

D2_PAR30_20ug 22.27 11.387 19.75 6.794 1.004 Healthy 

D2_PAR30_50ug 14.17 4.441   0.721 Healthy 

D2_PAR30_500ug 0.03 0.008   0.005 Unhealthy 
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The confluency results indicate that cells treated with lower doses of PAR30 (5ug, 

20ug and 50ug) were generally healthy, while cells treated with higher doses (500ug) 

showed significantly lower confluency, indicating poor health. 

4.5 Binary Classification Results 

We conducted binary classification tests using different models and evaluated their 

performance based on true predictions and accuracy percentages. 

Binary Classification Accuracy: 

 

 

Table 4 Classification Accuracy Results 

Test True Pred 
 

Accuracy 

(%) 
 

D2_PAR30_5ug with model 5ug_vs_50ug 
 

651/860 75.7 

D2_PAR30_50ug with model 5ug_vs_50ug 
 

650/880 
 

73.9 

D2_PAR30_5ug with model 5ug_vs_20ug 
 

759/860 
 

88.3 

D2_PAR30_20ug with model 5ug_vs_20ug 
 

673/860 
 

78.3 

D2_PAR30_5ug with model 5ug_vs_500ug 
 

860/860 
 

100 

D2_PAR30_500ug with model 

5ug_vs_500ug 
 

783/860 
 

91.1 

D2_PAR30_20ug with model 

20ug_vs_50ug 
 

807/860 
 

93.8 

D2_PAR30_50ug with model 

20ug_vs_50ug 
 

132/860 
 

15.3 

D2_PAR30_20ug with model 

20ug_vs_500ug 
 

858/860 
 

99.8 

D2_PAR30_500ug with model 

20ug_vs_500ug 
 

795/860 
 

92.4 

D2_PAR30_50ug with model 

50ug_vs_500ug 
 

880/880 
 

100 
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D2_PAR30_500ug with model 

50ug_vs_500ug 
 

799/800 
 

99.9 

The binary classification results show high accuracy for most tests, particularly for 

models distinguishing between 5ug and 500ug doses. The high accuracy in these tests 

demonstrates the models' ability to effectively classify cells based on different 

treatments. 

The results indicate that the U-Net models, particularly the ones with larger input sizes 

and augmented data, perform well in terms of accuracy, precision, and recall. 

Optimization techniques such as pruning and quantization significantly reduced the 

model size and improved inference speed, making them suitable for deployment on 

edge devices. The confluency calculations and binary classification tests further 

validated the effectiveness of these models in practical applications, showing their 

potential for accurately assessing cell health and treatment effects. 
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CHAPTER 5 

CONCLUSIONS 

  

5.1 Conclusions 

In this thesis, we explored the effectiveness of different U-Net architectures and 

optimization techniques for the task of cell segmentation using the THP1 dataset. Our 

study involved training and comparing four models with various configurations and 

input sizes, followed by the application of pruning and quantization techniques to 

optimize the best-performing models. 

First, we compared the models trained on different sizes of the THP1 dataset: Model 

1 (thp1_dataset_128), Model 2 (thp1_dataset_256), Model 3 (thp1_dataset_512), and 

Model 4 (thp1_dataset_512_augmented). The training accuracy over epochs for these 

models revealed that Model 2 (256x256) achieved the highest accuracy of around 0.98, 

outperforming the other models. This model's performance underscores the 

importance of dropout in regularizing the model and preventing overfitting. Models 

trained on 512x512 input sizes, both with and without data augmentation (Models 3 

and 4), also demonstrated high accuracy, around 0.97 but still not good enough. Then 

we continued to do architecture changes and tested 4 different architectures, Model 1 

Basic U-Net, Model 2 Basic U-Net with dropout (0.3), Model 3 U-Net with attention 

mechanism and Model 4 Basic U-Net with dropout (0.3) and VGG16 encoder. The 

attention mechanism in Model 3 and the combination of dropout with the VGG16 

encoder in Model 4 significantly contributed to their robust performance. In contrast, 

the Model 1 showed the lowest accuracy, highlighting the limitations of smaller input 

sizes for this task. Based on these results, we continued our work with the 256x256 

dataset and with Model 4 Basic U-Net with dropout (0.3) and VGG16 encoder, which 

showed the highest accuracy and robust performance. 

The optimization efforts using pruning and quantization were successful. Pruning 

reduced the model size from 355 MB to 100 MB and noticeably improved inference 
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speed, enhancing the model's efficiency for real-time applications. Quantization 

further compressed the model size to 35 MB while maintaining high accuracy based 

on visual assessment, making it suitable for deployment on edge devices. 

We also evaluated the confluency of cells treated with different concentrations of 

PAR30. The results indicated that cells treated with lower doses (5µg and 20µg) were 

generally healthy, while higher doses (500µg) significantly reduced cell confluency, 

indicating poor health. The binary classification tests showed high accuracy for 

distinguishing between different doses of PAR30, particularly for the models 

comparing 5µg and 500µg doses, demonstrating the models' capability in effectively 

classifying cells based on treatment. 

The findings from this thesis have several important implications. They demonstrate 

that larger input sizes and data augmentation significantly improve model 

performance. The incorporation of dropout and advanced encoders like VGG16 further 

enhances the model's ability to accurately segment and classify cells. Pruning and 

quantization are effective techniques for reducing model size and improving inference 

speed without substantially compromising accuracy, making the models viable for 

deployment in resource-constrained environments. The ability to asssccurately 

calculate cell confluency and classify cell health based on treatment concentrations has 

practical applications in biomedical research and drug testing, providing valuable 

insights into cell behavior under different conditions. 

In conclusion, this thesis has demonstrated the potential of advanced U-Net models 

and optimization techniques for effective cell segmentation and classification. The 

insights gained from this study provide a strong foundation for future advancements 

in this field, contributing to the broader application of AI in biomedical research. 

 

5.2 Recommendations for future research  

Future research could explore the analysis of eccentricity, a valuable metric for 

understanding the morphology of THP1 cells, which can provide insights into their 
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differentiation, activation, and response to treatments. In the context of drug testing, 

eccentricity can be used to evaluate the effect of drugs on THP1 cells. Changes in cell 

shape after drug treatment can indicate efficacy or cytotoxicity. To achieve this, future 

work should focus on instance cell segmentation to separate merged cells, which will 

facilitate the calculation of cell eccentricity. 
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