
DEVELOPING AND IMPLEMENTING INTO PRACTICE AN

ENVIRONMENTAL MONITORING STATION WITH AN ARDUINO PRO MINI

A THESIS SUBMITTED TO

THE FACULTY OF ARCHITECTURE AND ENGINEERING

OF

EPOKA UNIVERSITY

BY

NASHO THEMELI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

JUNE, 2024

i

Approval sheet of the Thesis

This is to certify that we have read this thesis entitled “Developing and Implementing

into Practice an Environmental Monitoring Station with an Arduino Pro Mini”

and that in our opinion it is fully adequate, in scope and quality, as a thesis for the

degree of Master of Science.

 Assoc. Prof. Dr. Arban Uka

Head of Department

 Date: June, 28, 2024

Examining Committee Members:

Prof. Dr. Gezim Karapici (Computer Engineering) ________________

Prof. Dr. Betim Çiço (Computer Engineering) ________________

Assoc. Prof. Dr. Dimitrios Karras (Computer Engineering) ________________

ii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

 Name Surname: Nasho Themeli

Signature: ______________

iii

ABSTRACT

DEVELOPING AND IMPLEMENTING INTO PRACTICE AN

ENVIRONMENTAL MONITORING STATION WITH AN ARDUINO

PRO MINI

Themeli, Nasho

M.Sc., Department of Computer Engineering

Supervisor: Prof. Dr. Betim Çiço

This study focuses on the development and practical implementation of an

environmental monitoring station utilizing the Arduino Pro Mini microcontroller. The

station is designed to measure and record various air quality parameters such as PM2.5,

CO2, VOCs, ozone, temperature, humidity, light intensity, and UV radiation. The

system integrates multiple sensors, including the PMS5003 for particulate matter, MH-

Z19 for CO2, MP503 and MQ-131 for VOCs and ozone, and DHT22 for temperature

and humidity. The Arduino Pro Mini serves as the central microcontroller, processing

data from these sensors and transmitting it to a Nextion touchscreen display for real-

time monitoring and analysis. The study reviews 17 related research papers to identify

current trends, resolved and unresolved issues, and future directions in the field of

microcontroller-based environmental monitoring systems. The results highlight the

system's capability to provide accurate and real-time air quality data, demonstrating its

potential for broader ecological monitoring and public health applications. Future

work aims to enhance sensor integration, system scalability, and IoT connectivity for

remote monitoring.

Keywords: Microcontrollers, Sensors, Arduino Pro Mini, Environmental Monitoring,

Air Quality Measurement.

iv

ABSTRAKT

DIZENJIMI DHE IMPLEMENTIMI NË PRAKTIKË I NJË STACIONI

MONITORIMI MJEDISOR ME NJË ARDUINO PRO MINI

Themeli, Nasho

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike

Udhëheqësi: Prof. Dr. Betim Çiço

Ky studim fokusohet në zhvillimin dhe zbatimin praktik të një stacioni

monitorimi mjedisor duke përdorur mikrokontrollerin Arduino Pro Mini. Stacioni

është dizajnuar për të matur dhe regjistruar parametra të ndryshëm të cilësisë së ajrit,

si PM2.5, CO2, VOC, ozon, temperaturë, lagështi, intensitet drite dhe rrezatim UV.

Sistemi integron sensorë të shumtë, përfshirë PMS5003 për materien e grimcave, MH-

Z19 për CO2, MP503 dhe MQ-131 për VOC dhe ozon, dhe DHT22 për temperaturë

dhe lagështi. Arduino Pro Mini shërben si mikrokontrolleri qendror, duke përpunuar

të dhënat nga këta sensorë dhe duke i transmetuar ato në një ekran me prekje Nextion

për monitorim dhe analizë në kohë reale. Studimi rishikon 17 artikuj kërkimorë të

lidhur për të identifikuar tendencat aktuale, problemet e zgjidhura dhe të pazgjidhura,

dhe drejtimet e ardhshme në fushën e sistemeve të monitorimit mjedisor bazuar në

mikrokontrollerë. Rezultatet theksojnë aftësinë e sistemit për të siguruar të dhëna të

sakta dhe në kohë reale për cilësinë e ajrit, duke demonstruar potencialin e tij për

aplikime më të gjera në monitorimin mjedisor dhe shëndetin publik. Puna e ardhshme

synon të përmirësojë integrimin e sensorëve, shkallëzueshmërinë e sistemit dhe lidhjen

IoT për monitorim të largët.

Fjalët kyçe: Mikrokontrollorë, Sensorë, Arduino Pro Mini, Monitorim Mjedisor,

Matja e Cilësisë së Ajrit.

v

I dedicate this thesis to my beloved family for their unconditional support and

continuous encouragement throughout this academic journey. Special thanks to my

parents, who have always inspired me to follow my dreams and work with dedication

and passion. I also want to express my deep gratitude to my professors and mentors,

especially Prof. Dr. Betim Çiço, for his invaluable guidance and unwavering

support. Without your help and support, this work would not have been possible.

This achievement is also a reminder of the importance of hard work, perseverance,

and self-belief.

vi

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to everyone who has supported

and guided me throughout the development and completion of this thesis. First and

foremost, I thank my advisor, Prof. Dr. Betim Çiço, for his invaluable guidance,

constructive feedback, and continuous encouragement. His expertise and insights have

been instrumental in shaping this research. I extend my heartfelt thanks to my

collaborator, Dorjan Dafku, whose dedication, hard work, and insightful contributions

have been pivotal in the successful completion of this project. Your partnership and

shared commitment have greatly enriched this research. I am extremely grateful to the

faculty and staff of Epoka University for providing the resources and support necessary

for my research, with special thanks to my professors and colleagues for their

invaluable advice and encouragement throughout my academic journey. I would also

like to extend my heartfelt thanks to my family for their unwavering support, patience,

and love. Your belief in me has been a constant source of motivation and strength.

Finally, I acknowledge the authors of the research papers and resources that have been

integral to this study. Your work has been a source of inspiration and knowledge,

greatly contributing to my research. Thank you all for your support and contributions.

This thesis would not have been possible without you.

vii

TABLE OF CONTENTS

ABSTRACT .. iii

ABSTRAKT .. iv

ACKNOWLEDGEMENTS .. vi

LIST OF TABLES ... x

LIST OF FIGURES .. xi

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 Problem Statement .. 1

1.2 Motivation ... 2

1.3 Objectives .. 4

1.4 Organization of the Thesis .. 6

CHAPTER 2 .. 7

LITERATURE REVIEW... 7

2.1 Introduction ... 7

2.2 Summary of Literature Review (Resolved Problems)................................... 7

2.3 Summary of Literature Review (Future Work) ... 8

2.4 Summary of Literature Review (Unsolved Problems) 9

2.5 Research Gaps ... 10

2.6 Hypotheses and Research Questions ... 11

2.7 Research Aim .. 12

viii

CHAPTER 3 .. 13

METHODOLOGY ... 13

3.1 Introduction ... 13

3.2 Quantitative Research .. 13

3.3 Qualitative Research .. 14

SYSTEM DESIGN .. 15

4.1 Introduction ... 15

4.2 Design Specification .. 15

4.3 Design Schematics and Flowchart .. 16

4.4 Design Block-diagram ... 18

4.5 The PM2.5 Sensor – PMS5003 ... 19

4.6 The CO2 Sensor – MH-Z19 .. 23

4.7 The VOC and Ozone Sensors – MP503 and MQ-131 25

4.1 DHT22 – Temperature and Humidity Sensor ... 31

4.2 DS3231 RTC- Real Time Clock ... 34

4.3 NX3224T028 – Nextion Display .. 36

4.4 Arduino Pro Mini – Microcontroller ... 38

4.5 LDR4589 ... 40

4.6 UV detection sensor .. 41

CHAPTER 5 .. 43

SOFTWARE IMPLEMENTATION ... 43

ix

5.1 Introduction ... 43

5.2 Arduino Ide Code Implementation .. 43

CHAPTER 6 .. 57

TESTING PERFORMANCE .. 57

6.1 Introduction ... 57

6.2 Testing and Results for a cycle of 24 hours .. 57

CHAPTER 7 .. 61

CONCLUSIONS .. 61

7.1 Conclusions ... 61

7.2 Recommendations for future research ... 63

APPENDIX .. 67

x

LIST OF TABLES

Table 1. Design Components of The System ... 16

Table 2. The PM2.5 Sensor Parameters ... 20

Table 3. PM2.5 Sensor Pin Definition ... 22

Table 4. The CO2 Sensor ... 24

Table 5. The VOC sensor ... 27

Table 6. The Ozone sensor ... 29

Table 7. The Temperature and Humidity Sensor ... 32

Table 8. RTC- Real Time Clock .. 34

Table 9. The Nextion Display .. 36

Table 10. Arduino Pro Mini ... 38

Table 11. LDR .. 40

Table 12. UV Sensor .. 42

Table 13. Ozone Calibration .. 46

Table 14. PM Sensor Test .. 49

Table 15. Power Consumption and Current Needed .. 61

Table 16. Total Price .. 62

Table 17. Frequency and Data Acquisition Rate ... 62

Table 18. Calibration .. 63

xi

LIST OF FIGURES

Figure 1. The Schematics design of the system using KiCad 17

Figure 2. The Circuit Flowchart of the System between Input / Output 17

Figure 3. Real-Time Circuit Implementation of the System 18

Figure 4. The functional Block Diagram of the system in 3D using KiCad 19

Figure 5. The Flowchart of the PM2.5 Functional Sensor Mechanism 21

Figure 6. PM2.5 Sensor .. 22

Figure 7. Real-Time Implementation in Board .. 22

Figure 8. PM2.5 Schematics .. 23

Figure 9 MH-Z19 ... 24

Figure 10. Real Time Implemtation in Board .. 25

Figure 11. MH-Z19 Schematics ... 25

Figure 12. MQ-131 .. 29

Figure 13. MQ-131 Schematics ... 29

Figure 14. MP503 .. 30

Figure 15. MP503 Schematics ... 30

Figure 16. MP503 in Real Time Circuit Implementation .. 31

Figure 17. MQ131 in Real Time Circuit Implementation.. 31

Figure 18. Real Time Implementation in Board .. 33

file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748369
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748370
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748371
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748372
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748373
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748374
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748375
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748376
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748377
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748378
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748379
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748380
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748381
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748382
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748383
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748384
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748385
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748386

xii

Figure 19. DHT22 Schematics ... 33

Figure 20. DS3231 RTC .. 35

Figure 21. DS3231 RTC Schematics ... 35

Figure 22.Nextion Display ... 37

Figure 23. Real Time Graph Display ... 37

Figure 24. Real Time Implementation in Board .. 37

Figure 25. Arduino Real Time Implementation in Board .. 39

Figure 26. Arduino Schematics .. 39

Figure 27. Real Time LDR Impelemtation .. 41

Figure 28. UV Sensor ... 42

Figure 29. Real Time Implementation ... 42

Figure 30. Ozone Concentration Graph Plot .. 46

Figure 31. Testing of PM2.5 – Graph Plotting .. 49

Figure 32. DHT22 Test .. 54

Figure 33. PM2.5 Graph Representation of 24 Hours Measurement 58

Figure 34. CO2 Graph Representation of 24 Hours Measurement 58

Figure 35. TVOC Graph Representation of 24 Hours Measurement......................... 59

Figure 36. Temperature and Humidity 24 Hours Measurement 59

Figure 37. Display Color Range and Parameters Testing .. 60

file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748387
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748388
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748389
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748390
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748391
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748392
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748393
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748394
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748395
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748396
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748397
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748401
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748402
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748403
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748404
file:///C:/Users/CTS/Desktop/MASTER_NASHO.docx%23_Toc173748405

1

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Due to the innumerable inventions and technical advances made possible by

microcontrollers and sensors, the electronics industry has seen a profound evolution in

recent years. The range of electronic measurements derived in all the many areas of

integration has been redefined by these and numerous other components. As a result,

the goal of this academic investigation is to highlight and illustrate how

microcontrollers, sensors, and other integrating devices interact to form the core of the

revolution mentioned above, thereby improving the efficiency, accuracy, and

flexibility of the measurements we want to take in this case, environmental air quality.

Because of their ability to carry out specific tasks and produce impressive

outputs, integrated circuits, microcontrollers with power processing units, and

programmability have undoubtedly served as the foundation of today's modern

electronic systems. Successful measurements have also been conducted with these

components. On the one hand, our microcontrollers can integrate several sensors and

produce real-time data that has already been processed and gathered by coordinating

with a designated centralized control unit. Conversely, sensors are unquestionably

crucial because they serve as the sensory component or organs of electronic systems,

transforming the current physical phenomena within a predetermined range region into

electrical impulses.

The variety of sensors available is genuinely astounding as they measure

conditions such as humidity, temperature, particulate matter, carbon dioxide, Volatile

organic compounds, and more. In this specific instance, however, we focus purely

on the air quality sensors and their vital role in measuring, capturing, and recording

changes in environmental parameters for a variety of applications that range from

automation and industrial usage to daily living, healthcare examinations, and even just

functioning as informative units.

2

The study demonstrates the basic implementations of several air quality sensor

technologies, such as PM2.5, CO2, humidity, temperature, and more, in our

surroundings through the use of an Arduino Pro Mini microcontroller that we have

properly designed. After conducting a thorough analysis of over 17 case studies and

academic research papers and observing their practical applicability in related areas,

our goal is to present here the ways we can work with each other to address the issues

that we encounter daily, including a better understanding of our air pollution while

also mentioning recent developments or advancements like Internet of Things

protocols that allow for sophisticated remote controlling and monitoring of our

systems by third parties.

To continue on our educational journey, our ultimate goal is to give others who

are interested a better understanding of the world of electronics. We will do this by

explaining the connections among Arduino and additional electronic devices,

emphasizing their impact on monitoring different processes using the reading

measurements like accuracy, reliability, and scalability, and demonstrating the

challenges and implementing risks on the circuit board to help us access our goals. We

will additionally try to organize these metrics according to a touch-screen display for

24 hours, as well as by offering an up-close view of our air quality and how each air

parameter affects humans.

1.2 Motivation

The constantly evolving energies incorporated within the microprocessors as

well as detectors incorporated in these devices stand apart as an essential component

to solving the continually evolving and expanding field of electronics complexities.

Entering this quickly demanding field from our pressing demands reveals the

revolutionary capabilities of these essential elements that drive creativity and

flexibility in measuring at a time when the technical nature of this field keeps growing.

Accuracy or precision represents one of the most important indicators in

electronics, and since conventional ones don't live up to the standards or the demands

necessary, an in-depth examination of the above elements becomes necessary

3

to improve our measurements' accuracy. Microcontrollers, with their potent

computational powers, can be used to execute or obtain delicate information from the

sensors. However, the near future of manufacturing sectors such as automated

processes, medical care, environmental, and more., will greatly benefit from

utilizing this feature.

The accuracy of current time information and the drive for achieving its

optimization serve as additional key metrics supporting this research. To help speed

up the measurement procedure, microcontrollers acting like intelligent

organizers examine the real-time execution or operation of multiple sensors. This

facilitates the information acquired throughout their respective positions' detecting

process and minimizes inaccuracies correlated to noise disruptions with assistance

from individuals. To fully realize the possibilities of this cooperation is implied by the

need to discover every opportunity or potential for this performance, which essentially

speeds operations and reliability in various measuring situations.

Furthermore, as the Internet of Things grows, there will be a growing need for

electronic equipment that can readily interact with related systems. This makes the

flexibility provided by Arduino and detectors essential to meeting the expectations of

advances in technology. The computational center components and microcontrollers

enable flexible control, quick data transmission, and remote monitoring. This

stimulates further research in the combination of sensors and microcontrollers to

maximize the Internet of Things' potential, resulting in a new era of networked

electronic devices.

To sum up, we are driven to investigate Arduino microcontrollers and sensors

via technology-related measurements not just by current trends but additionally by the

urgent need to understand and resolve the intricacies of modern systems through the

analysis, combination, testing, and programming of these components to discover

perspectives of the mentioned frameworks and to explore through unknown areas of

innovation and potential future projects. Consequently, our goal is to create a low-cost,

high-precision, handy, as well as properly scale-efficient monitoring device that can

measure and record the concentration of our primary gases and other air contaminants,

4

as well as present and connect the data generated everywhere it is needed for analysis

and subsequent procedures.

1.3 Objectives

Recognizing a microcontroller's building design that we are using:

Giving a thorough overview of our microprocessor architecture, outlining its

essential parts (storage space, input and output links, power processing unit, etc.) and

how it interacts with other parts. Highlight the essential function that our

microcontroller performs in accomplishing our primary monitoring operation and in

controlling real-time processes captured through a planned measuring system using a

real-time clock (RTC module).

A detailed analysis of our sensor technologies:

Analyzing the broad range of sensors, we use, such as particle matter,

temperature and humidity, and Volatile Organic Compounds (VOC) sensors, among

others, to gain a greater awareness of the fundamental ideas behind their functioning

and how they communicate inside our monitoring station. Examining developments in

the field of sensors and how they impact electronics measuring devices' capability to

assess more accurate readings efficiently.

The programming methods implemented in the Arduino board and our Nextion

Display:

Exploring inside technological advances appropriate for microcontroller-based

systems languages of programming like the Arduino IDE, with the main goal being

optimization and attaining optimal performance. Coding our touch display to give us

extensive details about the measurements we have taken from all of the sensors

connected to our system in synchronization with the real-time clock module.

Techniques for constructing our microcontroller and detectors:

Taking into consideration various approaches for the best potential

incorporation of the Arduino Pro Mini and the sensors, keeping in mind crucial hazards

including device communication protocols, data synchronization between devices, and

5

calibration. Examining the related issues that exist when wiring and communicating

through to gain an overview of the system setup and integration.

Applications and Case Studies:

Even our instance of the air monitoring station, microcontrollers, and sensors

are being used in every possible useful everyday life application in a variety of fields,

such as medical care, present scientific and manufacturing automation. Focusing on

how utilizing scheduled in advance, carefully thought-out microcontrollers and

sensors can improve the system's efficiency and measurement precision.

The integration of the Internet of Things (IoT):

Considering various analyses and acquiring a broader understanding of the

additional incorporation of detectors into IoT-enabled electronic measuring systems as

a current tendency. Examining how microcontrollers function to provide

communication, transparency for monitoring from afar, and information processing

into multiple devices, with a focus on the possibility of more adaptability and lower

scalability.

The performance evaluation:

Determining the critical performance requirements, such as precision accuracy

in setup, information processing time, and energy efficiency, which we are going to

use for our stationary measuring infrastructure that integrates microcontrollers and

detectors and is dependent on our changes or advancements. Examining the various

ways sensor arrangements, configurations, and calibration.

Upcoming future trends:

Explain the way new developments in sensors and microcontroller architecture

could impact the way electronic measurements are performed soon using our system

as an example. Encouraging a bright prospective vision and broadening the

opportunities.

6

1.4 Organization of the Thesis

This thesis is divided into 7 chapters. The organization is done as follows:

In Chapter 1, the problem statement, motivation and objectives of works is

presented. Chapter 2, includes the literature review……. Chapter 3, consists of the

methodology followed in this study……. In Chapter 4, the experimental results …...

In Chapter 5, conclusions and recommendations for further research are stated.

7

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The literature review in our work comprises various papers explored during our

case study, focusing on the latest advancements in microcontrollers and sensor

technology. These papers are organized in the table below, which includes the paper

title, authors, publication year, and a summary of the issues addressed, proposed

solutions, recommended future work, and other relevant details. Additionally, we have

analyzed these papers, most of which were published in the last four years, and

grouped them into four categories based on the similarities in their content.

2.2 Summary of Literature Review (Resolved Problems)

After going through the articles listed above, we divided them into three groups,

each with an overview of the challenges they solved as well as their techniques or

answers. The classification depends on similarities, such as the microcontroller

utilized or planned for their application intents, how technology is integrated into

items, and so on.

Group 1: Environmental Events Detection and Monitoring

The publications listed above focus on building monitoring and control systems

for recognizing and measuring environmental characteristics such as temperature,

humidity, air quality, and pollution levels using particular sensors. They are generally

built on microcontrollers such as the Arduino Pro Mini or Mega to deliver efficient

smart solutions and advancements for indoor and outdoor environments. In addition,

a couple of solutions involve the implementation of wireless sensor networks and the

use of IoT interactivity for real-time data collecting and analysis.

Group 2: Sensor Technology and Practical Applications

8

The studies in group 2 investigate very outstanding emerging innovations and

new implications in the field of sensors, starting with analog front ends and circuits for

a variety of applications, largely industrial, comparable to our work. They emphasize

model advancements and electronics issues in programmable components and

detectors and analyze their performance to achieve highly accurate integration, while

also determining how to improve performance in a variety of ways.

Group 3: IoT and Remote connectivity

This collection of papers exhibits recent study cases in applications for the

Internet of Things and ways to connect between sensors using microcontroller-based

platforms such as Arduino, which are the focus of our work. The papers in this section

discuss weather surveillance systems, residential alert systems, and cost-effective

sensor assessments. They primarily emphasize the role of IoT in improving efficiency,

internet access, automation across several domains, data transmission flexibility, and

the creation of beneficial outcomes and networks.

2.3 Summary of Literature Review (Future Work)

In this particular section, we have conducted a summary of the unsolved

problems proposed by each group of the specific papers. These problems appear as a

consequence of their testing or their performance evaluation during the performance

of their experimental conducting. While some of these papers prefer to specify their

problems, the rest have shown small indices of their challenges. Based on studying

this section, we have been able to construct the research gaps and also the enthusiasm

to operate our work.

For Sensor Technology, the challenges include enhancing sensor accuracy and

reliability, especially in detecting physical environments, improving sensor calibration

techniques for optimal performance, and addressing compatibility, scalability issues,

and providing noise immunity.

9

In Communication and Connectivity, the focus is on developing better

communication protocols for improved data transmission and increasing the wireless

communication range for remote applications.

For Control and Automation, the main issues are optimizing power

consumption for prolonged battery life and low power consumption, and improving

system responsiveness and real-time response capabilities.

Regarding Safety and Efficiency, the problems include improving algorithms

for early detection and prediction in the monitoring process, focusing on privacy

concerns associated with sensitive data transmission, and optimizing energy efficiency

and reliability.

2.4 Summary of Literature Review (Unsolved Problems)

In this particular section, we have conducted a summary of the unsolved

problems proposed by each group of the specific papers. These problems appear as a

consequence of their testing or their performance evaluation during their experimental

conducting. While some of these papers prefer to specify their problems, the rest have

shown small indices of their challenges. Based on studying this section, we have been

able to construct the research gaps and also the enthusiasm to operate our work.

In the area of Sensor Technology, the challenges include enhancing sensor

accuracy and reliability, especially in detecting physical environments, improving

sensor calibration techniques for optimal performance, and addressing compatibility,

scalability issues, and providing noise immunity.

Regarding Communication and Connectivity, the focus is on developing better

communication protocols for improved data transmission and increasing the wireless

communication range for remote applications.

For Control and Automation, the main issues are optimizing power

consumption for prolonged battery life and low power consumption, and improving

system responsiveness and real-time response capabilities.

10

In the context of Safety and Efficiency, the problems include improving

algorithms for early detection and prediction in the monitoring process, focusing on

privacy concerns associated with sensitive data transmission, and optimizing energy

efficiency and reliability.

2.5 Research Gaps

Besides the research done in these papers, some parts need to be resolved and

critically analyzed. We have listed below the main research gaps for every group of

papers:

Group 1: Environmental Phenomena Detecting and Monitoring:

Energy Efficient Air Quality Monitoring System using Arduino: Research

Gaps: Integration of real-time data organization to optimize energy consumption

dynamically, standardized protocols for data communication and control across

different systems, evaluation of long-term performance and maintenance needs in

diverse environmental conditions, and increasing trials performed.

Microcontroller-Based Detection and Prevention System: Research Gaps:

Improvements in sensor sensitivity and longer range to detect accurately, development

of fail-safe protection mechanisms and alert systems wherever needed, longer time

reliability, and careful calibration of sensors in varying conditions.

Framework for Real-Time Air Monitoring: Research Gaps: Security challenges

in IoT networks, design and implementation of the system for large-scale deployment,

and integration of predictive analytics for proactive pollution management.

Group 2: Sensor Technology and Applied Applications:

High-Precision Microcontroller for Industrial Sensing: Research Gaps:

Hardware optimization to minimize noise and enhance precision in industrial

applications, development of cost-effective solutions for production and deployment,

ensuring compatibility and integration with existing industrial control systems and

standards.

11

Wireless Temperature Sensor: Research Gaps: Integration of wireless

communication modules without compromising sensor performance, exploration of

new application areas, and customization for specific industrial or medical needs.

Group 3: IoT and Remote Connectivity:

Arduino-Based Ambient Air Pollution Sensing System: Research Gaps:

Development of reliable low-power techniques for extended sensor operation,

standardization of data formats and communication protocols for seamless integration

with other systems, addressing data issues in large sensor networks.

In our research work, we will be focused on the first group of papers analyzed,

moreover on the microcontroller-based detection and prevention system gaps.

2.6 Hypotheses and Research Questions

Hypothesis 1: Environmental Phenomena Detecting and Monitoring

Hypothesis: Implementing real-time data integration recorded from multiple

environmental sensors will significantly optimize energy consumption in systems and

improve accuracy.

Research Questions:

1. How does the integration of real-time data impact the energy efficiency of our

systems?

2. What improvements in sensor technology can enhance the sensitivity and

specificity of our monitoring systems?

3. What are the long-term reliability and maintenance requirements needed for

integrated environmental monitoring systems in diverse conditions?

Hypothesis 2: Health and Medical Systems Monitoring

Hypothesis: Maximizing the capabilities of wireless health monitoring systems to

include multiple signs will enhance their performance matrices, especially in diverse

and resource-limited settings.

Research Questions:

12

1. How can multi-sensor integration improve the accuracy and reliability of

wireless health monitoring systems?

2. How does ensuring data privacy and security impact the effectiveness of

wireless health monitoring systems in real-world settings?

Hypothesis 3: Sensor Technology and Applied Applications

Hypothesis: Improving the formats and communication protocols of the data recorded,

will enhance the reliability and scalability of IoT-based air pollution sensing systems,

facilitating their large-scale deployment and interconnection with other IoT systems.

Research Questions:

1. What are the most effective low-power techniques to extend the operation of

IoT sensor nodes in air pollution monitoring systems?

2. How does the standardization of data formats and communication protocols

impact the integration and performance of large-scale IoT sensor networks?

2.7 Research Aim

This research aims to investigate and optimize the integration and performance

of multi-sensor environments. This includes enhancing energy efficiency, accuracy,

and usability of systems, as well as addressing the challenges of data standardization,

security, and scalability. Specifically, the research seeks to improve the energy

efficiency and functionality of air quality monitoring systems through the integration

of real-time environmental data and advanced sensor technologies.

13

CHAPTER 3

METHODOLOGY

3.1 Introduction

This section outlines the techniques and methods used to process, select, and

investigate the resources and papers relevant to our goal of creating and evaluating an

air monitoring system that is effective, accurate, and easily accessible. This design

process includes the development of blueprints and circuit diagrams. Comprehensive

examinations will be conducted under various conditions to test and measure the

performance of the devices. Visualizations will be provided to display the data

collected from each sensor over 24 hours. Additionally, coding will be done for the

Nextion Display and the Arduino Pro Mini to facilitate real-time monitoring and

analysis of the measured parameters.

Normative investigations will be presented both quantitatively, using the

experimental approach, and qualitatively, to provide a thorough evaluation of the

system's performance.

3.2 Quantitative Research

As mentioned above the work of this research will serve to determine our

indication of the according field of study. The results of our modified work organized

schematically and mathematically will be used to test the effects predicted by our

hypotheses while also comparing to the existing systems to show which one provides

better performance.

14

3.3 Qualitative Research

As we mentioned above, in this work qualitative research will be included. It

will point out the significance of this research and also give a kind of background about

this research area. There will also a research about the designs used before to improve,

always by concentrating on the aspects that will be studied.

15

CHAPTER 4

SYSTEM DESIGN

4.1 Introduction

Our study will be focused on building an environmental monitoring station

combining the hardware components and using the software to activate the sensors and

present their reading in a touch display. The first thing was the selection of the

components, which we will present down below, as well as their detailed explanations

such as their datasheets and their working principles. Furthermore, we also will build

our circuit diagram to show how the connections are made. Moreover, we will build

our circuit 3D model based on the circuit diagram to create a better visualization of

how this monitoring station would look if it was implemented in a PCB. We intend to

order a custom PCB in the future, but just for the moment, we are using a universal

PCB for our prototype.

4.2 Design Specification

As shown below in Table 1 our monitoring system is constructed based on 8

detectors ranging from the PMS5003, MH-Z19B CO2, MQ-131 low-concentration

Ozone sensor, MP503 VOC, DHT22 temperature and humidity, LDR (Light

Depended Resistor), as well as a UV sensor module. All the units will be powered on

with an AC/DC adapter operating at an input of 100-240 V and producing an output

of 5V, 2A which can power all sensors. The controlling unit for our study will be an

Arduino Pro Mini, which operates at 5V and will serve as the sensor interface to collect

the data provided by each sensor. To present the readings of our sensors we will be

using a Nextion touch display, which is a user-friendly output unit that allows the end

users to interact as well as perform data visualization, and real-time monitoring, enable

plotting graphs, and give alerts when the thresholds are exceeded.

16

Table 1. Design Components of The System

 The List of Components

Nr. Component Operation

1. PMS5003 Particulate Matter Sensor

2. MH-Z19 Carbon dioxide sensor

3. MQ-131 Low-concentration ozone sensor

4. MP503 VOC sensor

5. DHT22 Temperature & Humidity sensor

6. Nextion NX3224T028 2.8″ Display Output unit

7. Arduino Pro Mini Microcontroller unit

8. DS3231 High-precision Real-Time Clock module

9. Mini USB Connector Power unit 5V

10. LDR4589 Light Dependent Resistor

11. UV 8521 UV Sensing unit

4.3 Design Schematics and Flowchart

Figure 1 depicts our proposed design concept schematics, which are performed

using KiCad software. It includes all the devices used in our work with each pin and

the way they are connected within the system, whereas Figure 2 shows the flowchart

of the system communication between the input block containing all our sensors

connected in serial connection with their respective values of the display output, signal

processing, and the display. Additionally, we have included the block diagram and the

operational description highlighted as follows.

17

Figure 1. The Schematics design of the system using KiCad

Figure 2. The Circuit Flowchart of the System between Input / Output

18

4.4 Design Block-diagram

Figure 3 shows the block diagram of the circuit represented in 3D. The model

consists of the PM2.5 sensor which is for sensing particulate matter with a diameter of

less than 2.5 microns. This sensor requires 5V to power on, but the RX logic level of

its components requires 3,3V, so we have to use a voltage divider. Moreover, we have

the CO2 sensor, just like the previous sensor, it also uses the serial connection. For the

other sensors, like VOC and Ozone we have to use analog input ports of the Arduino

Pro Mini, while the DHt22 uses digital connection input ports. Since VOC and Ozone

sensors have built-in heaters, we use 2 transistors to activate them.

For traction of the time a high-precision Real-Time Clock is used. The RTC

uses I2C communication protocole. The device is powered by an AC/DC adapter

which produces a 5V, 2A, enough power to keep up with all the sensors.

Figure 3. Real-Time Circuit Implementation of the System

19

4.5 The PM2.5 Sensor – PMS5003

The basic principle of this sensor is that it works as a digital particle

concentration sensor that calculates the intensity of pollutants in the air and then it

produces an output in the form of a digital interface for our system and provides correct

data in time. It has four main components and measures matter in the air of around 2.5

microns which by the way are considered truly harmful for humans hence they

penetrate deep into our system causing different health problems.

Working principle: The sensor uses a laser or LED light to illuminate the air

sample. A photodetector measures the light scattered by particles in the air sample.

The sensor has a small fan to draw air into the sensing chamber. A microcontroller

processes the data from the photodetector and calculates the PM2.5 concentration. Air

Sampling: The sensor draws an air sample into the sensing chamber using a fan. Light

Scattering: The light source (laser) emits light that interacts with the particles in the

air. When the light hits a particle, it scatters in different directions. Detection: The

photodetector captures the scattered light. The amount and angle of scattered light

depend on the size and concentration of the particles. Signal Processing: The

Figure 4. The functional Block Diagram of the system in 3D using KiCad

20

microcontroller processes the signal from the photodetector. It uses algorithms to

interpret the scattered light data and calculate the concentration of PM2.5 particles.

Output: The sensor outputs the PM2.5 concentration, usually in micrograms per cubic

meter (µg/m³). This data can be displayed on an interface or sent to other devices for

further analysis or action.

The block diagram of this sensor is directly taken from its datasheet and we will

show below in Figure 5 while its major configuration features are listed in

Table 2.

Table 2. The PM2.5 Sensor Parameters

Feature Definition Measurement Unit

Component Name PMS5003

Operation Range 0.3-1.0;1.0-2.5;2.5-10 (μ m)

Efficiency in Counting
50% for 0.3μ m 98% for

0.5μ m

The Range of effictiveness 0 up to 500 μ g/m3

The Maximum Range

Covered
1000 μ g/m3

Error as Consistency

10% for 100 up to 500μ

g/m3

10μ g/m3 for 0~100μ g/m3

The Power Supply In DC 5.0 Min & 4.5 Max: 5.5 (V)

Current in Active Mode 100 (mA)

Current Standby mode 200 (μ A)

The Temperature Range of

Operation
10 up to 60 °C

21

The installation process of the PM2.5 sensor required a DV 5V power supply,

as the fan inside the component needed to be driven by that voltage. Given that the

data pin level was 3.3V, we used a conversion whenever the MCU was 5V.

Concerning the pins, the set and reset pins, including pins 7 and 8, were not

connected. Additionally, we ensured that the airflow path of the sensor remained free

of any shield or structure.

The PMS5003 sensor communicates using UART with a specified baud rate to

transmit data in a structured format consisting of 32 bytes. Each byte in the

transmission has a specific purpose: Bytes 0-1 are the start characters (0x42, 0x4D),

Bytes 2-3 indicate the frame length (always 28 bytes), Bytes 4-5 represent PM1.0

concentration, Bytes 6-7 represent PM2.5 concentration, Bytes 8-9 represent PM10

concentration, Bytes 10-11 represent PM1.0 concentration, Bytes 12-13 represent

PM2.5 concentration, Bytes 14-15 represent PM10 concentration, Bytes 16-29 contain

reserved data and other sensor data, and Bytes 30-31 indicate the checksum rate (9600

in this example).

The data frame, containing 32 bytes, includes start characters, frame length, PM

concentrations, reserved data, and checksum. Data extraction involves retrieving

PM1.0, PM2.5, and PM10 values from specific bytes in the data frame. Error checking

utilizes the checksum to validate data integrity. The start characters (0x42, 0x4D)

signify the beginning of a data frame, and the frame length always indicates 28 bytes

for the PMS5003. PM concentrations are stored as two bytes each, representing

concentrations in µg/m³.

Figure 5. The Flowchart of the PM2.5 Functional Sensor Mechanism

22

Table 3. PM2.5 Sensor Pin Definition

Pin

Coordination
Definition

Measurement

Unit

PIN1 VCC 5V

PIN2
GND Negative

PIN3
SET Set pin 3.3V

PIN4
RX Serial

PIN5
TX Serial

PIN6 RESET
Module reset

signal

PIN7/8 NC

Figure 6. PM2.5 Sensor

Figure 7. Real-Time Implementation in Board

23

4.6 The CO2 Sensor – MH-Z19

The next sensor that we are going to be using is the MH-Z19 which is

responsible for recording the CO2 in the air. As humans breathe and exit carbon

dioxide while respiration we can agree that the indoor concentration of this gas can

easily reach high levels resulting in being dangerous not only for its density but also

for its effects on us like tiredness, sleepiness, and more. This sensor uses infrared

principles for measuring this gas in air an infrared source of the component directs or

shoots light through a tube filled with the air where our device is operating, the CO2

molecules present absorb a specific band of the IR light directed from the source while

letting some other wavelengths to pass through. The reasons that we chose this sensor

are because of its good selectivity, long lifespan, accuracy, not depend on oxygen, and

low power consumption while also its built-in temperature sensor can do the

compensation. Below we represent its main features in Table 4 and how it looks in

Figure 9.

Figure 8. PM2.5 Schematics

24

 Table 4. The CO2 Sensor

The installation of the CO2 sensor MH-Z19 involves connecting the MH-Z19

VCC to the Arduino Pro Mini VCC (5V), the MH-Z19 GND to the Arduino Pro Mini

GND, the MH-Z19 TX to the Arduino Pro Mini RX (Pin 2), and the MH-Z19 RX to

the Arduino Pro Mini TX (Pin 3).

The MH-Z19 sensor transmits data in a structured format consisting of 9 bytes:

Byte 0 is the start byte (0xFF), Byte 1 is the command byte (0x86), Bytes 2-3 contain

the high and low bytes of the CO2 concentration (in ppm), Bytes 4-6 are reserved bytes

(usually zero), and Bytes 7-8 are the checksum bytes. For data interpretation, the

concentration of CO2 is calculated by combining bytes 2 and 3: CO2 Concentration =

Component Measurement Unit

The Component Name MH-Z19

Operational Voltage From 3.6 up to 5.5 V

Operational Current 18 mA

Covered Range From 0 up 0.5%

The Operational Working Temperature From 0 up to 50 °C

Pin Nr.6 Vin

Pin Nr.7 GND

Pin Nr.1 Vout (3.3V, 10mA)

Figure 9 MH-Z19

25

(Byte 2 << 8) + Byte 3. The sensor sends a 9-byte data packet, which is read by the

library to extract the CO2 concentration, with bytes 2 and 3 containing the CO2

concentration in ppm. For example, if the sensor sends 0xFF 0x86 0x01 0xF4 0x00

0x00 0x00 0x79, bytes 2 and 3 are 0x01 and 0xF4, which combine to form 0x01F4

(500 in decimal), resulting in a CO2 concentration of 500 ppm.

4.7 The VOC and Ozone Sensors – MP503 and MQ-131

In this section, we have two more gas sensors that we are using in our work for

measuring Ozone Figure 12 which is an indoor normal household gas generated by

different devices like steamers, lamps that use ultraviolet light, or even air purifiers,

while on the other hand, we have the other sensor which measures gases like smoke,

alcohol, methanol, butane and more on. These sensors are semiconductor-heated metal

oxide devices based on detecting changes in their resistance of the aimed gases as

mentioned above. The amount or density of the gases present in our area of operation

changes the resistance as a specific electrical current passes through the metal substrate

constructing these components.

Figure 10. Real Time Implemtation

in Board

Figure 11. MH-Z19 Schematics

26

Our MQ131 gas sensor has high conductivity in clean air and high sensitivity

to ozone, which means that when ozone gas rises, the sensor's conductivity will get

lower while converting this change to the output signal for our system through its

circuit. On the other hand, the MP503 sensor Figure 15 is more about the air quality

than the other sensor but the working principle is almost the same.

The MP503 sensor, also known as the MP503A or MP503B, is a type of gas

sensor specifically designed to detect volatile organic compounds (VOCs) in the air.

The heart of the MP503 sensor is a metal oxide semiconductor material, typically tin

dioxide (SnO2). Integrated within the sensor is a heater element used to heat the metal

oxide semiconductor to a specific temperature range (usually around 300-400°C). The

sensor includes electrodes that measure the electrical resistance or conductivity

changes of the metal oxide semiconductor when exposed to VOCs. These electrodes

are connected to the sensor's circuitry to capture the sensor's response. The sensor’s

circuitry processes the changes in electrical resistance or conductivity of the metal

oxide semiconductor and converts these changes into an electrical signal that

corresponds to the concentration of VOCs detected. The sensor is typically housed in

a protective enclosure with openings or vents to allow air to reach the sensing element.

It also includes connection points for power supply and output signals.

The MP503 VOC sensor operates on the principle of metal oxide

semiconductors (MOS). It detects gases based on changes in electrical conductivity of

a metal oxide semiconductor when exposed to VOCs in the air. The sensor includes a

metal oxide semiconductor material, typically tin dioxide (SnO2), which acts as a

sensing element. It contains an integrated heater element that heats the sensing element

to a specific temperature (usually around 300-400°C). This heating is essential to

facilitate the reaction between the target gases and the semiconductor surface. When

VOCs or other reducing gases (such as ethanol, methane, benzene, etc.) are present in

the air, they chemically react with the heated semiconductor surface, causing a change

in its electrical conductivity. The change in conductivity alters the electrical resistance

of the sensor. This resistance change is then converted into a measurable electrical

signal.

27

For installation, the MP503 sensor requires specific wiring connections. Power

connections include connecting the MP503 VCC to the Arduino 5V pin and the MP503

GND to the Arduino GND pin. For analog output connection, the MP503 OUT should

be connected to the Arduino analog input pin (A1), which will read the analog voltage

output from the sensor. Some sensors require a separate control signal to activate or

adjust the heater element. The MP503 sensor typically operates at 5V logic levels,

which is compatible with the Arduino Pro Mini (also 5V). Ensure all connections

adhere to this voltage compatibility to prevent damage to components.

The MP503 sensor outputs an analog voltage signal that varies proportionally

with the concentration of volatile organic compounds (VOCs) in the air. This analog

signal is directly connected to one of the analog input pins on the Arduino. The

Arduino uses its built-in Analog-to-Digital Converter (ADC) to convert the analog

voltage from the MP503 sensor into a digital value. The ADC in Arduino provides a

numerical value (typically between 0 and 1023 for a 10-bit ADC) corresponding to the

voltage level received from the sensor. Once the Arduino reads the analog voltage

(converted to a digital value), this value can be used directly in your code or converted

into meaningful units (such as parts per million, ppm, if calibrated) based on the

sensor's characteristics and calibration.

Table 5. The VOC sensor

Component Measurement Unit

Component Name MP503

Operational Voltage Inside the Loop Less than 24V DC

The Voltage in Heating From 5.0V up to 0.1V AC/DC

The Range of Detection From 10 up to1000ppm

Time needed to Heat Up 48 hours

Pin Nr. 1&2 Electrode Heating

Pin Nr. 3&4 Electrode Measuring

28

 The MQ131 ozone sensor operates on the principle of electrochemical sensing

combined with a heating element. It contains an electrochemical cell that reacts with

ozone molecules when they come into contact with the sensor’s surface. Like other

MQ series sensors, the MQ131 has an internal heater (WO3) that is used to heat the

sensing element to a specific temperature range (around 300-400°C). This heating

process is crucial as it enhances the sensitivity and selectivity of the sensor by

promoting chemical reactions on the sensor’s surface. When ozone molecules interact

with the heated sensing element, they undergo a chemical reaction that causes a change

in the sensor’s electrical conductivity or other measurable electrical properties. The

change in conductivity or electrical properties due to the presence of ozone is then

converted into a measurable electrical signal by the sensor’s circuitry.

For installation, connect the MQ131 VCC to the Arduino 5V pin and the

MQ131 GND to the Arduino GND pin. The analog output connection involves

connecting MQ131 OUT to the Arduino analog input pin (e.g., A0). This pin will read

the analog voltage output from the sensor. Some versions of the MQ131 sensor may

require a separate control signal to activate or adjust the heater element. Connect this

to a digital output pin on the Arduino (e.g., D7) if needed. The MQ131 sensor typically

operates at 5V logic levels, which matches the Arduino Pro Mini (also 5V).

The data transmission method for the MQ131 sensor involves providing an

analog voltage output that corresponds to the ozone concentration it detects in the

environment. This analog output signal varies linearly with changes in ozone

concentration. To read data from the MQ131 sensor, connect its analog output pin

(typically labeled as OUT or AOUT) to one of the analog input pins on the Arduino

(e.g., A0, A1, etc.). Arduino's Analog-to-Digital Converter (ADC) then converts this

analog voltage into a digital value representing the ozone concentration level.

29

The Arduino reads the analog voltage directly from the sensor and interprets it using

its ADC capabilities.

Table 6. The Ozone sensor

Component Measuring Unit

Component Name MQ131

Operational Voltage Inside the Loop From 5.0V up to 0.1V DC

The Voltage in Heating From 5.0V up to 0.1V AC or DC

The Range of Detection From 10 up to 1000ppb

Time needed to Heat Up 48 hours

Pin Nr. 1&2 Electrode Measuring

Pin Nr. 3&4 Electrode Heating

Figure 12. MQ-131 Figure 13. MQ-131 Schematics

30

Figure 14. MP503

Figure 15. MP503 Schematics

31

4.1 DHT22 – Temperature and Humidity Sensor

The next sensor we will be using is the DHT22, which outputs a calibrated

digital signal that is subsequently connected to and displayed on our screen. This

sensor employs a technique that gathers digital signals, with its sensing elements

linked to an 8-bit chip computer. Additionally, we chose to implement this sensor due

to its reliability, stability, compact size, and low power consumption. On the other

hand, these specifications in Table 7 make it suitable for almost all kinds of occasions.

Figure 17. MQ131 in Real Time

Circuit Implementation

Figure 16. MP503 in Real Time Circuit

Implementation

32

Table 7. The Temperature and Humidity Sensor

Component Measuring Unit & Definition

Component Name DHT22

The supplied Power From 3.3 up to 6V DC

The Signal of Output Digital

Level of Sensitivity Hum. 0.1%RH; Temp. 0.1Celsius

The range of the operation Hum. 0-100%RH; Temp. 4080Celsius

Pin Nr.1 VDD

Pin Nr.2 DATA

Pin Nr.3 NULL

Pin Nr.4 GND

The DHT22 sensor communicates with microcontrollers like Arduino using a

proprietary communication protocol. The microcontroller initiates communication by

sending a start signal to the DHT22. The DHT22 responds with a response signal to

acknowledge the start signal. The sensor then sends 40 bits of data to the

microcontroller: 16 bits for Humidity (in tenths of a percent, e.g., 533 means 53.3%

RH), 16 bits for Temperature (in tenths of degrees Celsius, e.g., 215 means 21.5°C),

and 8 bits of Checksum to verify data integrity. The microcontroller reads these bits,

processes them, and converts them into meaningful temperature and humidity values

for further use in applications.

For installation, we connect the VCC pin of the DHT22 sensor to the Arduino

5V pin, the GND pin to the Arduino GND pin, and the OUT pin to the Arduino digital

pin (D5). We make sure to use a pull-up resistor (10kΩ) between the VCC and OUT

pins of the DHT22 sensor to stabilize the data line.

33

Figure 18. Real Time Implementation in Board

Figure 19. DHT22 Schematics

34

4.2 DS3231 RTC- Real Time Clock

Next, we will use an RTC component to track the values recorded by each

sensor over 24 hours. We chose the DS3231 RTC because it is versatile and can be

used in various applications such as telematics, GPS, and power meters. It is capable

of counting seconds up to days of the week and year, utilizing a 400 kHz I2C interface.

Table 8. RTC- Real Time Clock

Parameter Index

Product Model DS3231

Supply voltage From 2.3V up to 5.5V

Active supply current From 200 up to 300 μA

Standby supply current From 110 up to 170 μA

Active Battery Current From 70 up to 150 μA

Timekeeping Battery Current From 0.84 up to 3.5 μA

For the DS3231 RTC connections, we connect the VCC pin to the Arduino 5V

pin, the GND pin to the Arduino GND pin, the SDA pin to the Arduino A4 pin (or the

SDA pin on the Arduino Pro Mini), and the SCL pin to the Arduino A5 pin (or the

SCL pin on the Arduino Pro Mini).

35

Figure 20. DS3231 RTC

Figure 21. DS3231 RTC Schematics

36

4.3 NX3224T028 – Nextion Display

To monitor our recorded data, we will use the NX3224T028 Nextion display,

which provides human control and a visualization interface. This display is a TFT LCD

touchscreen display, measuring 2.8 inches diagonally with a resolution of 320x240

pixels. It features a resistive touchscreen capability and is equipped with a Nextion

Intelligent Series Processor. The memory and storage include 4M flash storage and

3584B RAM. Communication with external microcontrollers is facilitated via a UART

serial interface. The development environment for this display includes the Nextion

Editor Software and a drag-and-drop interface. Power requirements for the display are

typically 5V DC, and it is designed for low power consumption, making it suitable for

battery-operated applications.

The data transmission for the NX3224T028 display utilizes a communication

protocol that involves serial communication. The Arduino Pro Mini communicates

with the Nextion display via UART (Serial). Commands are sent as strings or byte

arrays representing actions like setting text, updating variables, or handling touch

events. Commands to the Nextion display typically end with three bytes (0xFF, 0xFF,

0xFF) to signify the end of the command packet. The Nextion display can also send

responses, such as touch event notifications or acknowledgments for commands sent.

Table 9. The Nextion Display

Parameter Index

Product Model NX3224T028

Operating voltage From 4.75V up to 7V

Operating current 65 mA

The recommended supplied power：5V, 500mA, DC

37

Figure 22.Nextion Display

Figure 23. Real Time Graph Display

Figure 24. Real Time Implementation in Board

38

4.4 Arduino Pro Mini – Microcontroller

The Arduino Pro Mini 5V is a compact, low-power microcontroller featuring

the ATmega328P with a 16 MHz clock speed, 32 KB flash memory, 2 KB SRAM, and

1 KB EEPROM. It operates at 5V and has 14 digital I/O pins (6 PWM), 6 analog input

pins, and supports UART, SPI, and I2C communication. When powered, the voltage

regulator ensures a stable 5V supply, and the ATmega328P initializes the stored

program. The microcontroller reads analog and digital signals from sensors and

switches, processes the input data according to sketch logic for computations and

decision-making, and controls devices through digital, PWM signals, or serial

communication based on the processed data.

For installation, we connect a power source to the RAW (6-12V) or VCC (5V)

pin. We use an FTDI adapter connected to the GND, VCC, RX, and TX pins to upload

code. In the Arduino IDE, we select “Arduino Pro or Pro Mini,” choose ATmega328P

5V 16MHz, select the COM port, and upload the sketch.

Table 10. Arduino Pro Mini

Component Definition

Name ATmega328P

Supply power (5V model)

Operating Voltage 5V

Clock 16 MHz

 Memory 32KB

39

 For uploading code, we select “Arduino Pro or Pro Mini” in the Arduino IDE

under Tools -> Board. We choose the correct processor (ATmega328P 5V 16MHz),

select the correct COM port, and upload the sketch.

Figure 25. Arduino Real Time Implementation in Board

Figure 26. Arduino Schematics

40

4.5 LDR4589

This specific sensor that we use detects light density or darkness around the

area which we are investigating, proving adjustable digital or analog output trigger

level, suitable for different systems such as lighting, alarm etc.

Table 11. LDR

Component Definition

Product Model LDR4589

Operating voltage From 3.3V to 5V DC

Operating current 15 mA

Output digital 0V to 5V

Pin Nr.1 AO

Pin Nr.2 DO

Pin Nr.3 GND

Pin Nr.4 VCC

For the installation, we connect one end of the LDR to the 5V pin of the

Arduino. We connect the other end of the LDR to one end of the fixed resistor. We

connect the junction of the LDR and the fixed resistor to an analog input pin of the

Arduino (A0). Finally, we connect the free end of the fixed resistor to the GND pin of

the Arduino.

41

4.6 UV detection sensor

The last sensor that we will use is a UV detection sensor which is essential for

monitoring ultraviolet radiation and truly crucial in industrial processes, consumer

electronics, etc. They provide accurate data for ensuring safety and healthy

environments when they are exposed to radiation. Those sensors' operations rely on

converting the radiation or light into an electrical signal using a photodiode made from

truly sensitive materials to light. The operation results in a current that is proportional

to the intensity of the light which is generated by electron-hole pairs of the device

system.

For the installation, we connect the VCC to the 5V pin of the Arduino, the GND

to the GND pin of the Arduino, and the Analog Output (AOUT) to an analog input pin

of the Arduino.

Figure 27. Real Time LDR Impelemtation

42

Table 12. UV Sensor

Component Definition

Product Model UV sensor 8521

Operating voltage From 3.3 to 5 DC

Current From 0.06 to 0.1 mA

Output 0V to 1V DC

Wavelength From 200 up to 370nm

Pin Nr. 1 OUT

Pin Nr. 2 VCC

Pin Nr. 3 GND

Figure 28. UV Sensor

Figure 29. Real Time Implementation

43

CHAPTER 5

SOFTWARE IMPLEMENTATION

5.1 Introduction

The software implementation of our system is divided into two parts, the first

part is implemented in Arduino Ide which will be useful to execute all the necessary

commands and functions to connect our microcontroller with all the other parts of the

system, while the second part we will use Nextion Editor to implement the code for

the display. For the second part, my collaborator and classmate Dorian Dafku handled

the software implementation.

5.2 Arduino Ide Code Implementation

The final code of the system will be included in the appendix part.

For the calibration part, we conducted several Arduino code implementations

to observe how our sensors reacted to different situations and physical phenomena,

and to test their limits. Our system is programmed to test and record data over a 24-

hour cycle, which can be displayed using graphs, as shown in the images below. We

used the Nextion Editor to assign variables for each of the parameters recorded by the

sensors and incorporated different color ranges in the gadgets to represent danger

levels and raise awareness.

44

OZONE SENSOR CALIBRATION:

#include <MQ131.h>

void setup() {

 Serial.begin(115200);

 // Init the sensor

 // - Heater control on pin 6

 // - Sensor analog read on pin A0

 // - Model LOW_CONCENTRATION

 // - Load resistance RL of 1MOhms (20000 Ohms)

 MQ131.begin(6,A0, LOW_CONCENTRATION, 1000000);

 Serial.println("Calibration parameters");

 Serial.print("R0 = ");

 Serial.print(MQ131.getR0());

 Serial.println(" Ohms");

 Serial.print("Time to heat = ");

 Serial.print(MQ131.getTimeToRead());

 Serial.println(" s");

}

void loop() {

 Serial.println("Sampling...");

 MQ131.sample();

 Serial.print("Concentration O3 : ");

45

 Serial.print(MQ131.getO3(PPM));

 Serial.println(" ppm");

 Serial.print("Concentration O3 : ");

 Serial.print(MQ131.getO3(PPB));

 Serial.println(" ppb");

 Serial.print("Concentration O3 : ");

 Serial.print(MQ131.getO3(MG_M3));

 Serial.println(" mg/m3");

 Serial.print("Concentration O3 : ");

 Serial.print(MQ131.getO3(UG_M3));

 Serial.println(" ug/m3");

 delay(60000);

}

46

Table 13. Ozone Calibration

Time (s) Concentration O3 (ppm) Concentration O3 (ppb) Concentration O3 (mg/m³)

80 7.79 7789.62 16.46

160 11.94 11941.79 25.24

240 15.32 15320.62 32.38

320 19.22 19222.25 40.63

400 23.68 23675.72 50.04

480 28.71 28710.62 60.68

560 32.89 32885.86 69.50

640 39.01 39009.21 82.45

720 44.04 44035.27 93.07

800 47.60 47599.49 100.60

880 53.28 53275.82 112.60

960 59.36 59359.90 125.46

1040 68.13 68129.26 143.99

1120 70.44 70442.24 148.88

Figure 30. Ozone Concentration Graph Plot

47

PARTICULATE MATTER SENSOR TEST CODE:

#include <SoftwareSerial.h>

#include "PMS.h"

// Define software serial pins

#define RX_PIN 8

#define TX_PIN 9

// Create a SoftwareSerial instance

SoftwareSerial mySerial(RX_PIN, TX_PIN);

// Initialize PMS instance

PMS pms(mySerial);

PMS::DATA data;

void setup()

{

 // Initialize the software serial communication

 mySerial.begin(9600);

 // Initialize the hardware serial communication for debugging

 Serial.begin(9600);

}

void loop()

{

48

 if (pms.read(data))

 {

 Serial.print("PM 1.0 (ug/m3): ");

 Serial.println(data.PM_AE_UG_1_0);

 Serial.print("PM 2.5 (ug/m3): ");

 Serial.println(data.PM_AE_UG_2_5);

 Serial.print("PM 10.0 (ug/m3): ");

 Serial.println(data.PM_AE_UG_10_0);

 Serial.println();

 }

 // Do other stuff...

}

49

Table 14. PM Sensor Test

Time (s) PM 1.0 (µg/m³) PM 2.5 (µg/m³) PM 10.0 (µg/m³)

1 10 10 10

2 12 13 13

3 14 15 15

4 13 14 14

5 13 14 14

6 13 16 16

7 13 16 16

8 13 17 17

9 16 20 20

10 18 24 24

11 20 29 30

12 21 31 34

13 26 39 44

14 28 41 48

15 30 46 54

16 32 48 57

17 33 50 60

18 34 52 62

19 34 52 63

Figure 31. Testing of PM2.5 – Graph Plotting

0

50

100

1 4 7 10 13 16 19 22 25

PM 1.0
(µg/m³)

PM 2.5
(µg/m³)

50

DHT22 TEST CODE:

#include <dht.h>

dht DHT;

#define DHT22_PIN 5

struct

{

 uint32_t total;

 uint32_t ok;

 uint32_t crc_error;

 uint32_t time_out;

 uint32_t connect;

 uint32_t ack_l;

 uint32_t ack_h;

 uint32_t unknown;

} stat = { 0,0,0,0,0,0,0,0};

void setup()

{

 Serial.begin(115200);

 Serial.println("dht22_test.ino");

 Serial.print("LIBRARY VERSION: ");

 Serial.println(DHT_LIB_VERSION);

 Serial.println();

51

 Serial.println("Type,\tstatus,\tHumidity (%),\tTemperature (C)\tTime (us)");

}

void loop()

{

 // READ DATA

 Serial.print("DHT22, \t");

 uint32_t start = micros();

 int chk = DHT.read22(DHT22_PIN);

 uint32_t stop = micros();

 stat.total++;

 switch (chk)

 {

 case DHTLIB_OK:

 stat.ok++;

 Serial.print("OK,\t");

 break;

 case DHTLIB_ERROR_CHECKSUM:

 stat.crc_error++;

 Serial.print("Checksum error,\t");

 break;

 case DHTLIB_ERROR_TIMEOUT:

 stat.time_out++;

 Serial.print("Time out error,\t");

52

 break;

 case DHTLIB_ERROR_CONNECT:

 stat.connect++;

 Serial.print("Connect error,\t");

 break;

 case DHTLIB_ERROR_ACK_L:

 stat.ack_l++;

 Serial.print("Ack Low error,\t");

 break;

 case DHTLIB_ERROR_ACK_H:

 stat.ack_h++;

 Serial.print("Ack High error,\t");

 break;

 default:

 stat.unknown++;

 Serial.print("Unknown error,\t");

 break;

 }

 // DISPLAY DATA

 Serial.print(DHT.humidity, 1);

 Serial.print(",\t");

 Serial.print(DHT.temperature, 1);

 Serial.print(",\t");

 Serial.print(stop - start);

 Serial.println();

53

 if (stat.total % 20 == 0)

 {

 Serial.println("\nTOT\tOK\tCRC\tTO\tCON\tACK_L\tACK_H\tUNK");

 Serial.print(stat.total);

 Serial.print("\t");

 Serial.print(stat.ok);

 Serial.print("\t");

 Serial.print(stat.crc_error);

 Serial.print("\t");

 Serial.print(stat.time_out);

 Serial.print("\t");

 Serial.print(stat.connect);

 Serial.print("\t");

 Serial.print(stat.ack_l);

 Serial.print("\t");

 Serial.print(stat.ack_h);

 Serial.print("\t");

 Serial.print(stat.unknown);

 Serial.println("\n");

 }

 delay(2000);

}

54

 Figure 32. DHT22 Test

MHZ19 SENSOR CALIBRATION CODE:

#include <Arduino.h>

#include "MHZ19.h"

#include <SoftwareSerial.h>

#define RX_PIN 3 // RX pin for SoftwareSerial (to MH-Z19 TX)

#define TX_PIN 2 // TX pin for SoftwareSerial (to MH-Z19 RX)

#define BAUDRATE 9600

MHZ19 myMHZ19;

SoftwareSerial mySerial(RX_PIN, TX_PIN); // Create SoftwareSerial instance

unsigned long timeElapse = 0;

DHT22, OK, 99.9, 32.4, 5020

DHT22, OK, 99.9, 32.3, 5020

DHT22, OK, 99.9, 32.2, 4976

DHT22, OK, 99.9, 32.1, 4928

DHT22, OK, 99.9, 32.0, 4928

DHT22, OK, 99.8, 32.0, 4836

DHT22, OK, 98.1, 31.9, 5020

DHT22, OK, 96.7, 31.8, 4976

DHT22, OK, 94.1, 31.8, 5204

DHT22, OK, 92.6, 31.7, 5204

DHT22, OK, 90.5, 31.7, 4976

DHT22, OK, 89.3, 31.7, 5208

DHT22, OK, 87.0, 31.6, 4972

DHT22, OK, 85.5, 31.6, 5068

DHT22, OK, 83.4, 31.6, 4792

DHT22, OK, 82.0, 31.5, 5020

DHT22, OK, 80.0, 31.5, 4976

DHT22, OK, 78.8, 31.5, 4928

DHT22, OK, 77.4, 31.4, 4792

DHT22, OK, 76.8, 31.4, 4836

TOT OK CRC TO CON ACK_L ACK_H UNK

60 60 0 0 0 0 0 0

55

void setup() {

 Serial.begin(9600); // Initialize serial communication for debugging

 mySerial.begin(BAUDRATE); // Initialize software serial for MH-Z19

 myMHZ19.begin(mySerial); // Pass software serial to MH-Z19 library

 myMHZ19.autoCalibration(false); // Disable auto calibration

 bool abcStatus = myMHZ19.getABC();

 Serial.print("ABC Status: ");

 Serial.println(abcStatus ? "ON" : "OFF"); // Print ABC status

 Serial.println("Waiting 20 minutes to stabilize...");

 timeElapse = 20UL * 60UL * 1000UL; // 20 minutes in milliseconds

 delay(timeElapse); // Wait for the sensor to stabilize

 Serial.println("Calibrating..");

 myMHZ19.calibrate(); // Calibrate the sensor

}

void loop() {

 if (millis() - timeElapse >= 2000) { // Check if 2 seconds have passed

 int CO2 = myMHZ19.getCO2(); // Get CO2 concentration

 if (CO2 == -1) {

 Serial.println("!Error: Failed to get CO2 reading.");

 } else {

 Serial.print("CO2 (ppm): ");

 Serial.println(CO2);

56

 }

 int8_t Temp = myMHZ19.getTemperature(); // Get temperature

 if (Temp == -1) {

 Serial.println("!Error: Failed to get temperature reading.");

 } else {

 Serial.print("Temperature (C): ");

 Serial.println(Temp);

 }

 timeElapse = millis(); // Reset the timer

 }

}

57

CHAPTER 6

TESTING PERFORMANCE

6.1 Introduction

As we can see in Figure 37 for that period our sensors have detected that: the

purity of the air is quite acceptable at 29 PM2.5, the temperature was 22, humidity at

42%, VOV at 84, and Ozone 42 inactive since it needed 48 hours to turn on, CO2 is

extremely normal at 541. In the display it also includes a range of colors with

additional descriptions to better understand the environmental status even by looking

only at the gadgets.

6.2 Testing and Results for a cycle of 24 hours

Below we will display and observe the recordings done of these environmental

monitoring system components during a 24-hour shift at a stationary position.

As we can see from the graph the PM2.5 or the particle sensor monitoring has

changed quite a lot during the 24-hour interval starting from 25 and ending at a higher

level. During this measurement, we observed that during the night the sensor recorded

the lowest values approximately 15 while during the day it reached values up to 40.

This substantial variance shows that particle concentration levels vary greatly during

the day, presumably due to variations in human activity, transportation, and

environmental variables. The lower readings measured at night could be ascribed to

less outside activity and traffic, resulting in cleaner air. Higher levels throughout the

58

day, on the other hand, are most likely due to increased particulate-generating

activities, such as automobile emissions and industrial operations.

The visualization graph demonstrates that the CO2 sensor's results vary widely

over time. The highest value recorded throughout this experiment, which was carried

out under difficult conditions, was above 2000 ppm. In our steady scenario,

nevertheless, the maximum value was approximately 1600 ppm, as well as a minimum

of 600 ppm. This wide range of data suggests that CO2 concentrations fluctuate

greatly, most likely due to environmental and human activity changes.

Figure 33. PM2.5 Graph Representation of 24 Hours Measurement

Figure 34. CO2 Graph Representation of 24 Hours Measurement

59

The result of this measurement is different compared to the other sensors since

as we can distinguish the graph distribution is smoother and the range or difference

between the values of this measurement conducted is very close to each other.

The minimum value of the VOC sensor is around 35 while the maximum value

is around 55. This small range and smooth distribution indicate that VOC levels remain

generally steady over time, with few variations.

Figure 35. TVOC Graph Representation of 24 Hours Measurement

Figure 36. Temperature and Humidity 24 Hours Measurement

60

Figure 37. Display Color Range and Parameters Testing

61

CHAPTER 7

CONCLUSIONS

7.1 Conclusions

During the operation of this project, we were able to sketch detailed schematics

and the circuit and we were able to test it in different places.

The devices' programming was performed using the integration of the Nextion

Display and Arduino Pro Mini in Arduino Ide and Nextion Editor.

The successful implementation of this environmental monitoring station

demonstrates its potential as a reliable tool for air quality assessment, paving the way

for broader applications in environmental monitoring and public health initiatives.

Table 15. Power Consumption and Current Needed

Component Voltage (V) Current (mA) Power (mW)

PMS5003 5 100 500

MH-Z19 5 60 300

MQ-131 5 150 750

MP503 5 150 750

DHT22 5 2.5 12.5

DS3231 5 0.3 1.5

Nextion NX3224T028 5 65 325

BMP180 3.3 0.003 0.0099

LDR4589 5 15 75

UV 8521 5 0.1 0.5

Total Current Needed: 543 mA

Total Power Consumption: 2.715 W

62

Table 16. Total Price

Component Price ($)

PMS5003 13.80

MH-Z19 18.71

MQ-131 12.10

MP503 6.05

DHT22 4.47

DS3231 5.79

Nextion NX3224T028 40.45

Standoff Support Spacers 11.10

LDR4589 3.24

UV 8521 6.15

Arduino Pro Mini 7.20

Programming Header for Arduino Pro Mini 11.10

Mini USB Type B 3.71

Adapter 5V 10

Wires 20

Universal PCB 10

Case 30

Port for Adapter 1

2pcs Three Terminal Switch 1

Resistors, Transistors, Capacitors 2

SD Card 5

SD Card to USB adapter 1

Total 238.32

The cost of the device does not include the purchase of a multimeter, soldering

iron, solder, flux, wick, desoldering pump, or transportation for each part. It also

excludes the cost of the MQ131 sensor with fast delivery, which is quite expensive,

the Arduino connector cables, and the sensors that are not installed, such as the

barometric sensor, raindrop sensor, and soil moisture sensor.

Table 17. Frequency and Data Acquisition Rate

Component Data Acquisition Rate (Hz)

PMS5003 1

MH-Z19 1

MQ-131 0.008 (1 per 2 min)

MP503 0.008 (1 per 2 min)

DHT22 0.5

DS3231 400 kHz (I2C)

Nextion NX3224T028 As needed

BMP180 7.5

LDR4589 Continuous analog output

UV 8521 Continuous analog output

Data Recording Frequency: 1 Hz (once per second)

63

Table 18. Calibration

Component Calibration Status

PMS5003
Factory calibrated; requires periodic field calibration after

assembly

MH-Z19
Factory calibrated; zero and span calibration recommended

after installation

MQ-131
Requires calibration in clean air and target gas environment

post-assembly

MP503 Requires baseline and target gas calibration post-assembly

DHT22
Factory calibrated; no additional calibration needed after

installation

DS3231 Factory calibrated; no additional calibration needed

Nextion

NX3224T028
Not applicable

BMP180
Factory calibrated; no additional calibration needed after

installation

LDR4589 Requires calibration for ambient light levels after installation

UV 8521 Requires calibration for UV index after installation

7.2 Recommendations for future research

As for future work, we hope to add additional sensors to this system, allowing

it to be fuller and more intelligent. Along with to our scientific trials, we will take

additional measurements in various locations within our campus environment, so that

our data compiled and shown on our monitor will raise people's awareness of the state

of their community.

In addition, by linking the system to the Internet of Things systems, users can

get immediate data evaluation and distant monitoring of air purity via Internet or

smartphone apps from any location. Using artificial intelligence algorithms to forecast

air quality trends and identify anomalies can provide more insight into the factors that

influence air quality and aid in the quick identification of pollution occurrences.

64

The monitoring station's usefulness will be increased by installing additional

sensors to the collection to monitor additional outside parameters such as levels of

noise, nitrogen oxides (NO2), and sulfur dioxide (SO2). The whole thing can be

enhanced environmentally friendly and suitable for remote deployments by

minimizing power consumption with energy-efficient components, offering sleep

modes, and researching the utilization of sources of clean energy such as solar panels.

To ensure the long-term precision and dependability of monitoring data,

automatic calibration algorithms will need to be developed, as well as the usage of

more accurate sensors. The Nextion Display's user experience might be improved by

introducing more interactive elements such as customizable settings, alarms, and

historical data visualization.

Including monitoring data in policy frameworks, in collaboration with

lawmakers and environment agencies, would help to foster more information-driven

choices and regulatory compliance. Further availability will also be secured through

inquiry into ways to reduce the expenses associated with the surveillance station while

keeping it scalable for bigger deployments, such as using low-cost components and

manufacturing economies of scale.

.

65

REFERENCES

[1] A. Bushnag, "Air Quality and Climate Control Arduino Monitoring System

using Fuzzy Logic for Indoor Environments," IEEE, pp. 1-6, 2021.

[2] R. K. Jha, "“Air Quality Sensing and Reporting System Using IoT”," IEEE, pp.

790-793, 2020.

[3] Y. M. F. R. T. A. M. S. M. E. M K Fadzly, "Smart Air Quality Monitoring

System Using Arduino Mega," IOPScience, vol. 864, pp. 1-7, 2020.

[4] B. K. Moharana, P. Anand, S. Kumar and P. Kodali, "Development of an IoT-

based Real-Time Air Quality Monitoring Device," IEEE, pp. 191-194, 2020.

[5] L. Fraiwan and A. M. Rajab, "Smart Indoor Environment Monitoring System,"

IEEE, pp. 1-4, 2020.

[6] T. Manglani, A. Srivastava, A. Kumar and R. Sharma, "IoT Based Air and Noise

Pollution Monitoring System," IEEE, pp. 604-607, 2021.

[7] M. Lobur, D. Korpyljov, N. Jaworski, M. Iwaniec and U. Marikutsa, "Arduino

Based Ambient Air Pollution Sensing System," IEEE, pp. 32-35, 2020.

[8] N. B. E. S. A. B. I Ardiansah, "Design of Micro-Climate Data Monitoring

System for Tropical Greenhouse based on Arduino UNO and Raspberry Pi," IOP

science, vol. 757, no. 1, p. 012017, 2020.

[9] A. Chaturvedi and L. Shrivastava, "IOT Based Wireless Sensor Network for Air

Pollution Monitoring," IEEE, pp. 78-81, 2020.

[10] N. Nowshin and M. S. Hasan, "Microcontroller Based Environmental Pollution

Monitoring System though IoT Implementation," IEEE, pp. 493-498, 2021.

[11] A. Géczy, L. Kuglics, L. Jakab and G. Harsányi, "Wearable Smart Prototype for

Personal Air Quality Monitoring," IEEE, pp. 84-88, 2020.

[12] M. N. Bhuiyan, M. M. Billah and F. Bhuiyan, "Design and Implementation of a

Feasible Model for the IoT Based Ubiquitous Healthcare Monitoring System for

Rural and Urban Areas," IEEE, pp. 91984-91997, 2020.

[13] S. L. K. K. Kazi Sultanabanu, "Arduino-Based Weather Monitoring System,"

ResarchGate, pp. 24-29, 2023.

66

[14] Q. I. Sarhan, "Arduino Based Smart Home Warning System," IEEE, pp. 201-

206, 2020.

[15] N. M. M. R. Pedro F. Pereira, "Low-cost Arduino-based temperature, relative

humidity and CO2 sensors - An assessment of their suitability for indoor built

environments," ResearchGate, p. 105151, 2022.

[16] C. C. Paglinawan, G. M. Cruz and K. R. M. D. Villar, "Design of an Arduino-

Powered Sleep Monitoring System Based on Electrooculography (EOG) with

Temperature Control Applications," IEEE, pp. 297-302, 2022.

[17] E. L. A. Puput Wanarti Rusimamto, "Implementation of arduino pro mini and

ESP32 cam for temperature monitoring on automatic thermogun IoT-based,"

ResearchGate, pp. 1366-1375, 2020.

67

APPENDIX

#include "SoftwareSerial.h"

#include "MHZ19.h" // https://github.com/WifWaf/MH-Z19

#include "PMS.h" //https://github.com/fu-hsi/pms

#include "MQ131.h" // https://github.com/ostaquet/Arduino-MQ131-driver

#include "dht.h" // https://github.com/RobTillaart/DHTlib

#include "DS3231.h" // http://www.rinkydinkelectronics.com/library.php?id=73

#define led 13

#define tvocPin 7 // VOC sensor activation

#define dht22 5 // DHT22 temperature and humidity sensor

#define ldrPin A7 // LDR sensor pin

#define uvPin A6 // UV sensor pin

dht DHT; // Creates a DHT object

DS3231 rtc(SDA, SCL); // Initiate the DS3231 Real Time Clock module using the

I2C interface

Time t; // Init a Time-data structure

MHZ19 myMHZ19; // CO2 Sensor

SoftwareSerial co2Serial(2, 3); // (RX, TX) MH-Z19 serial

SoftwareSerial pmsSerial(8, 9); // Particulate Matter sensor

PMS pms(pmsSerial);

PMS::DATA data;

unsigned long dataTimer = 0;

68

unsigned long dataTimer3 = 0;

unsigned long dataTimer4 = 0;

int readDHT, temp, hum;

int CO2;

int o3;

int tvoc;

int pm25;

int ldrValue; // LDR value

int ldrPercent; // LDR percentage value

int uvValue; // UV sensor value

int hours, minutes;

int previousMinutes = 1;

String timeString;

String receivedData = "Z";

// We store the last 24 hours sensor values in arrays - store value each 15 minutes so

for 24 hours we need 96 bytes.

// We must use bytes and can't increase the storing to let's say 5 mins because the

Arduino Pro Mini has a limited dynamic memory

uint8_t tempData[96] = {};

uint8_t humData[96] = {};

uint8_t tvocData[96] = {};

uint8_t co2Data[96] = {};

uint8_t pm25Data[96] = {};

uint8_t o3Data[96] = {};

uint8_t ldrData[96] = {}; // Array to store LDR values

uint8_t uvData[96] = {}; // Array to store UV sensor values

69

int8_t last24Hours[12] = {};

int yAxisValues[4] = {};

int maxV = 0;

int8_t r = 99;

void setup() {

 Serial.begin(9600);

 // Device to serial monitor feedback

 pinMode(6, OUTPUT);

 pinMode(tvocPin, OUTPUT);

 // Warming up sensors

 digitalWrite(6, HIGH); // Ozone sensor

 digitalWrite(tvocPin, HIGH); // TVOC sensor

 delay(20 * 1000); // delay 20 seconds

 digitalWrite(6, LOW);

 digitalWrite(tvocPin, LOW);

 // Initialize all sensors

 rtc.begin();

 co2Serial.begin(9600);

 pmsSerial.begin(9600);

 myMHZ19.begin(co2Serial);

 myMHZ19.autoCalibration(false); // Turn auto calibration ON (OFF

autoCalibration(false))

70

 MQ131.begin(6, A0, LOW_CONCENTRATION, 1000000); //

 MQ131.setTimeToRead(20); // Set how many seconds we will read from the Ozone

sensor. It blocks flow

 MQ131.setR0(9000); // We get this value using the calibrate() function from the

Library calibration example

}

void loop() {

 // Read temperature and humidity from DHT22 sensor

 readDHT = DHT.read22(dht22); // Reads the data from the sensor

 temp = DHT.temperature; // Gets the values of the temperature

 hum = DHT.humidity; // Gets the values of the humidity

 // Read TVOC for 5 seconds

 digitalWrite(tvocPin, HIGH);

 delay(5000); // Blocking the program - It would be best if the sensor heater is active

all the time, we would get the most accurate values that way. The thing is that the

sensors heat up quite a lot and mess with the temperature values. If better air circulation

is provided to the case, that's the way to go.

 tvoc = analogRead(A1); // Please note that we are only reading raw data from this

sensor, not ppm or ppb values. Just analog values from 0 to 1024. Higher values mean

there is a presence of VOC

 digitalWrite(tvocPin, LOW);

 // Read LDR value

 ldrValue = analogRead(ldrPin);

 ldrPercent = map(ldrValue, 0, 1023, 0, 100); // Map LDR value to 0-100

71

 // Read UV sensor value

 uvValue = analogRead(uvPin);

 // Check for incoming data from the display - check whether we have clicked a

particular sensor for reading the last 24 hours

 checkForIncomingData();

 // Read MHZ19 - CO2 sensor for 3 seconds - if we don't use a blocking method with

the while loop we won't get values from the sensor.

 co2Serial.listen();

 dataTimer = millis();

 while (millis() - dataTimer <= 3000) {

 CO2 = myMHZ19.getCO2(); // Request CO2 (as ppm)

 }

 // we check for incoming data after each operation, because the operation is blocking

the program

 checkForIncomingData();

 // Read Particulate Matter sensor for 2 seconds

 pmsSerial.listen();

 dataTimer3 = millis();

 while (millis() - dataTimer3 <= 1000) {

 pms.readUntil(data);

 pm25 = data.PM_AE_UG_2_5;

 }

 checkForIncomingData();

72

 // Read MQ131 Ozone sensor

 MQ131.sample();

 o3 = MQ131.getO3(PPB);

 checkForIncomingData();

 // Get the time from the DS3231 Real Time Clock module - For setting the time use

the library example

 t = rtc.getTime();

 hours = t.hour;

 minutes = t.min;

 // Store current sensors data

 storeData();

 // Send the data to the Nextion display

 dataTimer4 = millis();

 while (millis() - dataTimer4 <= 200) {

 Serial.print("co2V.val=");

 Serial.print(CO2);

 // each command ends with these three unique write commands in order for the data

to be sent to the Nextion display

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.print("pm25V.val=");

73

 Serial.print(pm25);

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.print("o3V.val=");

 Serial.print(o3);

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.print("tempV.val=");

 Serial.print(temp);

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.print("humV.val=");

 Serial.print(hum);

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.print("tvocV.val=");

 Serial.print(tvoc);

 Serial.write(0xff);

74

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.print("ldrV.val=");

 Serial.print(ldrPercent); // Send the mapped percentage value

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.print("uvV.val=");

 Serial.print(uvValue);

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.write(0xff);

 }

}

void checkForIncomingData() {

 // Check if data is coming from the Nextion

 if (Serial.available() > 0) {

 receivedData = Serial.readString();

 delay(30);

 if (receivedData == "0") {

 r = 0;

 }

 if (receivedData == "1") {

75

 r = 1;

 }

 if (receivedData == "2") {

 r = 2;

 }

 if (receivedData == "3") {

 r = 3;

 }

 if (receivedData == "4") {

 r = 4;

 }

 }

 // if we have received any data, send data to the Nextion display to change to page 1,

or the waveform

 if (r == 0 || r == 1 || r == 2 || r == 3 || r == 4) {

 delay(200);

 dataTimer3 = millis();

 while (millis() - dataTimer3 <= 200) {

 Serial.print("pageSwitch.val="); // Activate page 1, or the waveform on the

Nextion display

 Serial.print(1);

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.write(0xff);

 }

 delay(100);

76

 getLast24Hours(); // get the last 24 hours and print them as X-axis values on the

waveform

 getYAxisValues(); // get the Y-axis values according to the sensor, its range, and its

max value. Print the Y-axis values as well as scale the Y-axis of the waveform

accordingly

 sendDataToWaveform(); // send the stored data of the last 24 hours to the waveform

 r = 99; // reset the "r" to 99 (an arbitrary number, different from the ones we assign

when we receive data depending on which sensor we have pressed)

 }

}

void storeData() {

 // Storing current sensor values into arrays

 if ((minutes - previousMinutes) >= 15) { // store the value each 15 minutes

 memmove(tempData, &tempData[1], sizeof(tempData)); // Slide data down one

position

 tempData[sizeof(tempData) - 1] = temp; // store newest value to the last position

 memmove(humData, &humData[1], sizeof(humData));

 humData[sizeof(humData) - 1] = hum;

 memmove(tvocData, &tvocData[1], sizeof(tvocData));

 // we use bytes for storing the data, as we said the Arduino Pro mini doesn't have

enough memory, so we must convert the values from 0 to 1000 to 0 to 255 which is

one byte

 tvocData[sizeof(tvocData) - 1] = map(tvoc, 0, 1000, 0, 255);

 memmove(co2Data, &co2Data[1], sizeof(co2Data));

 co2Data[sizeof(co2Data) - 1] = map(CO2, 0, 3000, 0, 255);

 memmove(pm25Data, &pm25Data[1], sizeof(pm25Data));

 pm25Data[sizeof(pm25Data) - 1] = map(pm25, 0, 1000, 0, 255);

77

 memmove(o3Data, &o3Data[1], sizeof(o3Data));

 o3Data[sizeof(o3Data) - 1] = map(o3, 0, 1000, 0, 255);

 memmove(ldrData, &ldrData[1], sizeof(ldrData));

 ldrData[sizeof(ldrData) - 1] = map(ldrValue, 0, 1024, 0, 255); // store LDR value

 memmove(uvData, &uvData[1], sizeof(uvData));

 uvData[sizeof(uvData) - 1] = map(uvValue, 0, 1024, 0, 255); // store UV value

 previousMinutes = minutes;

 }

 // So these if statements check whether 15 mins have passed since the last time we

stored a value - you can change this to any minutes you want, but you need to do that

on both if statements, for example "10" in the first if statement, and "-50" in the second

if statement

 else if ((minutes - previousMinutes) == -45) { // when minutes start from 0, next hour

 memmove(tempData, &tempData[1], sizeof(tempData)); // Slide data down one

position

 tempData[sizeof(tempData) - 1] = temp; // store newest value to the last position

 memmove(humData, &humData[1], sizeof(humData));

 humData[sizeof(humData) - 1] = hum;

 memmove(tvocData, &tvocData[1], sizeof(tvocData));

 tvocData[sizeof(tvocData) - 1] = map(tvoc, 0, 1000, 0, 255);

 memmove(co2Data, &co2Data[1], sizeof(co2Data));

 co2Data[sizeof(co2Data) - 1] = map(CO2, 0, 3000, 0, 255);

 memmove(pm25Data, &pm25Data[1], sizeof(pm25Data));

 pm25Data[sizeof(pm25Data) - 1] = map(pm25, 0, 1000, 0, 255);

 memmove(o3Data, &o3Data[1], sizeof(o3Data));

 o3Data[sizeof(o3Data) - 1] = map(o3, 0, 1000, 0, 255);

 memmove(ldrData, &ldrData[1], sizeof(ldrData));

78

 ldrData[sizeof(ldrData) - 1] = map(ldrValue, 0, 1024, 0, 255); // store LDR value

 memmove(uvData, &uvData[1], sizeof(uvData));

 uvData[sizeof(uvData) - 1] = map(uvValue, 0, 1024, 0, 255); // store UV value

 previousMinutes = minutes;

 }

}

void getLast24Hours() {

 for (int i = 11; i >= 0; i--) {

 last24Hours[11] = hours; // get the current hour - according to this hour get 12 more

hours, each 2 hours. For example, current hour = 13, so 11, 9, 7...

 last24Hours[i - 1] = last24Hours[i] - 2;

 if (last24Hours[i - 1] < 0) {

 for (int k = -0; k > -11; k--) {

 if (last24Hours[i - 1] == k) {

 last24Hours[i - 1] = 24 + k;

 }

 }

 }

 }

 // send the hours values to the Nextion display

 for (int i = 0; i < 12; i++) {

 String last24 = ("n") + String(i) + String(".val=") + String(last24Hours[i]); // e.g.

for i=0 > "n0.val="

 Serial.print(last24);

 Serial.write(0xff);

 Serial.write(0xff);

79

 Serial.write(0xff);

 delay(20);

 }

 // Another write just to make sure it sends all data

 for (int i = 0; i < 12; i++) {

 String last24 = ("n") + String(i) + String(".val=") + String(last24Hours[i]); // e.g.

for i=0 > "n0.val="

 Serial.print(last24);

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.write(0xff);

 delay(20);

 }

}

// With the following custom function we set the Y axis value for each sensor

individually, as each sensor has different maximum value for the Y axis

void getYAxisValues() {

 maxV = 0;

 // PM2.5 Y-axis values

 if (r == 0) {

 // Get the max sensor value from the last 24 hours

 for (int i = 0; i < sizeof(pm25Data); i++) {

 if (maxV < map(pm25Data[i], 0, 255, 0, 1000)) {

 maxV = map(pm25Data[i], 0, 255, 0, 1000);

 }

 }

80

 // Setting the Y-axis values and scaling the waveform

 if (maxV <= 100) {

 yAxisValues[0] = 25;

 yAxisValues[1] = 50;

 yAxisValues[2] = 75;

 yAxisValues[3] = 100;

 Serial.print("s0.dis="); // this command ".dis" is used for scaling the Y-axis

 Serial.print(78 * 10); // scale the waveform Y-axis - pm2.5 values are from 0 to

1000 which are represented from 0 to 78% in the Y axis - 78% because the waveform

is 200px which is 78% of 255 which is the default 100% value of the waveform -

78*10 because we show values from 0 to 100, which are 10 times smaller

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.write(0xff);

 }

 // if the value is higher than 100, get its max value, and according to it scale the y-

axis - For example, if the max value is 235, set the max value of the Y-axis to 300 -

235/100=2+1=3*100=300

 else if (maxV > 100) {

 int l = ((maxV / 100) + 1) * 100; // get the hundreds value so we can properly scale

the Y axis of the waveform

 yAxisValues[0] = l / 4;

 yAxisValues[1] = l / 2;

 yAxisValues[2] = l * 3 / 4;

 yAxisValues[3] = l;

 float ll = 78.0 / (l / 1000.0); // scale value for the Y-axis in % - We multiply by 78

instead of 100 because our waveform is 200px in height, which is 78% of 255 (255 is

max value the waveform can accept, 1 byte)

81

 Serial.print("s0.dis=");

 Serial.print(round(ll));

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.write(0xff);

 }

 }

 // TVOC Y-axis values

 if (r == 2) {

 // Get the max sensor value from the last 24 hours

 for (int i = 0; i < sizeof(tvocData); i++) {

 if (maxV < map(tvocData[i], 0, 255, 0, 1000)) {

 maxV = map(tvocData[i], 0, 255, 0, 1000);

 }

 }

 // Setting the Y-axis values and scaling the waveform

 if (maxV <= 100) {

 yAxisValues[0] = 25;

 yAxisValues[1] = 50;

 yAxisValues[2] = 75;

 yAxisValues[3] = 100;

 Serial.print("s0.dis=");

 Serial.print(78 * 10);

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.write(0xff);

82

 }

 else if (maxV > 100) {

 int l = ((maxV / 100) + 1) * 100; // get the hundreds value so we can properly scale

the Y axis of the waveform

 yAxisValues[0] = l / 4;

 yAxisValues[1] = l / 2;

 yAxisValues[2] = l * 3 / 4;

 yAxisValues[3] = l;

 float ll = 78.0 / (l / 1000.0); // scale value for the Y-axis in % - We multiply by 78

instead of 100 because our waveform is 200px in height, which is 78% of 255 (255 is

max value the waveform can accept, 1 byte)

 Serial.print("s0.dis=");

 Serial.print(round(ll));

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.write(0xff);

 }

 }

 // Ozone Y-axis values

 if (r == 3) {

 // Get the max sensor value from the last 24 hours

 for (int i = 0; i < sizeof(o3Data); i++) {

 if (maxV < map(o3Data[i], 0, 255, 0, 1000)) {

 maxV = map(o3Data[i], 0, 255, 0, 1000);

 }

 }

 // Setting the Y-axis values and scaling the waveform

83

 if (maxV <= 100) {

 yAxisValues[0] = 25;

 yAxisValues[1] = 50;

 yAxisValues[2] = 75;

 yAxisValues[3] = 100;

 Serial.print("s0.dis=");

 Serial.print(78 * 10);

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.write(0xff);

 }

 else if (maxV > 100) {

 int l = ((maxV / 100) + 1) * 100; // get the hundreds value so we can properly scale

the Y axis of the waveform

 yAxisValues[0] = l / 4;

 yAxisValues[1] = l / 2;

 yAxisValues[2] = l * 3 / 4;

 yAxisValues[3] = l;

 float ll = 78.0 / (l / 1000.0); // scale value for the Y-axis in % - We multiply by 78

instead of 100 because our waveform is 200px in height, which is 78% of 255 (255 is

max value the waveform can accept, 1 byte)

 Serial.print("s0.dis=");

 Serial.print(round(ll));

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.write(0xff);

 }

84

 }

 // CO2 Y-axis values are fixed from 0 to 3000 so we don't need to look for the max

value in the array

 if (r == 1) {

 // Get the max sensor value from the last 24 hours

 for (int i = 0; i < sizeof(co2Data); i++) {

 if (maxV < map(co2Data[i], 0, 255, 0, 3000)) {

 maxV = map(co2Data[i], 0, 255, 0, 3000);

 }

 }

 if (maxV <= 2000) {

 // Setting the Y-axis values and scaling the waveform

 yAxisValues[0] = 500;

 yAxisValues[1] = 1000;

 yAxisValues[2] = 1500;

 yAxisValues[3] = 2000;

 Serial.print("s0.dis=");

 Serial.print(117); // scale the waveform from 0 - 3000 to 0 - 2000 range

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.write(0xff);

 }

 if (maxV > 2000) {

 // Setting the Y-axis values and scaling the waveform

 yAxisValues[0] = 750;

 yAxisValues[1] = 1500;

85

 yAxisValues[2] = 2250;

 yAxisValues[3] = 3000;

 Serial.print("s0.dis=");

 Serial.print(78);

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.write(0xff);

 }

 }

 // Temperature and Humidity Y-axis values - fixed from 0 to 100

 if (r == 4) {

 // Setting the Y-axis values and scaling the waveform

 yAxisValues[0] = 25;

 yAxisValues[1] = 50;

 yAxisValues[2] = 75;

 yAxisValues[3] = 100;

 Serial.print("s0.dis=");

 Serial.print(200); // from 0 to 100 - 255/100 * 78 = ~200

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.write(0xff);

 }

 delay(50);

 // Send the Y-axis values to the Nextion display

 for (int i = 0; i < 4; i++) {

86

 String yValues = ("y") + String(i) + String(".val=") + String(yAxisValues[i]); // e.g.

for i=0 > "y0.val="

 Serial.print(yValues);

 Serial.write(0xff);

 Serial.write(0xff);

 Serial.write(0xff);

 delay(10);

 }

}

void sendDataToWaveform() {

 int k = 0;

 while (k != 2) {

 String str = String("addt 1,0,") + String(288); // with this command we tell the

Nextion display that we will send an array of data to the waveform

 Serial.print(str);

 delay(100);

 Serial.write(0xFF);

 Serial.write(0xFF);

 Serial.write(0xFF);

 delay(100);

 // Now depending on the selected sensor we want the values stored in the arrays

 // PM2.5

 if (r == 0) {

 for (int t = 0; t < sizeof(pm25Data); t++) {

 int z = 0;

 while (z != 3) {

87

 Serial.write(pm25Data[t]);

 z++;

 }

 }

 }

 // CO2

 if (r == 1) {

 for (int t = 0; t < sizeof(co2Data); t++) {

 int z = 0;

 while (z != 3) {

 Serial.write(co2Data[t]);

 z++;

 }

 }

 }

 // TVOC

 if (r == 2) {

 for (int t = 0; t < sizeof(tvocData); t++) {

 int z = 0;

 while (z != 3) {

 Serial.write(tvocData[t]);

 z++;

 }

 }

 }

 // Ozone

88

 if (r == 3) {

 // Temperature values on channel 0

 for (int t = 0; t < sizeof(o3Data); t++) {

 int z = 0;

 while (z != 3) {

 Serial.write(o3Data[t]);

 z++;

 }

 }

 }

 // Temp and hum

 if (r == 4) {

 for (int t = 0; t < sizeof(humData); t++) {

 int z = 0;

 while (z != 3) {

 Serial.write(humData[t]);

 z++;

 }

 }

 delay(100);

 Serial.write(0xFF);

 Serial.write(0xFF);

 Serial.write(0xFF);

 delay(100);

 // Humidity values on channel 1

 String str = String("addt 1,1,") + String(288);

89

 Serial.print(str);

 delay(100);

 Serial.write(0xFF);

 Serial.write(0xFF);

 Serial.write(0xFF);

 delay(100);

 for (int t = 0; t < sizeof(tempData); t++) {

 int z = 0;

 while (z != 3) {

 Serial.write(tempData[t]);

 z++;

 }

 }

 delay(100);

 Serial.write(0xFF);

 Serial.write(0xFF);

 Serial.write(0xFF);

 }

 k++;

 }

}

90

Nr.

Paper title Authors Year Source What is it

about?

Solved Problems Unsolved

Problems

Future work

1. [1]“Air Quality

and Climate

Control Arduino

Monitoring

System using

Fuzzy Logic for

Indoor

Environments”

Anas Bushnag 2021 IEEE The suggested

approach makes

use of fuzzy logic

controllers and

the Arduino

platform to

provide a

completely

automated system

that detects and

regulates

temperature,

humidity, and

indoor air quality.

The approach suggested

works excellently when it

comes to regulating while

maintaining updates on the

indoor air quality within a

room. The fuzzy logic

controller, which modifies the

ventilation system's speed and

interval of execution, is

responsible for this decrease.

This study

does not

present any

unsolved

problems.

The proposed

framework can be

enhanced in a variety of

ways in the future.

Raising the number of

sensors can help

enhance the reliability of

environmental condition

readings. Raising the

number of

member functions

within fuzzy logic to

get a higher accuracy

ventilation speed could

be an additional method

of system improvement.

91

2. [2]“Air Quality

Sensing and

Reporting System

Using IoT”

Rohan Kumar

Jha

2020 IEEE This study

presents an

innovative real-

time air quality

monitoring

system that

combines Internet

of Things (IoT)

infrastructure for

assistance.

The Arduino Uno receives

analog signals from a variety

of gas sensors, including the

MQ135, dust detector, MQ7,

and others, using its analog

input ports. The Arduino

Uno's ADC transforms these

data into digital format. The

obtained data is initially

transformed into parts per

million (ppm) of the gases,

and the index of air quality is

then computed utilizing this

ppm of gases.

This study

does not

present any

unsolved

problems.

This system requires

barely any energy for

operation, and batteries

can power it with ease.

To improve the sensors'

sensitivity and expand

their detecting

capabilities for broad

use, more optimization

work could be done.

92

3. [3]“Smart Air

Quality

Monitoring

System Using

Arduino Mega”

M K Fadzly,

Yiling M F

Rosli T.

Amarul

2020 IOP

Science

The objective is

to use an Arduino

Mega to build and

construct a

system to track

air quality that

will improve

reliability to a

level that just

slight discomfort

in the eyes can

cause an

individual to lose

focus and cause

major incidents.

Whenever a

cloudy day is

detected by the

temperature and

dust sensor, a

buzzer will warn

the user to limit

outdoor activities.

To guarantee that the

information was precise, the

project underwent testing

throughout the entire day.

Furthermore, it could help in

preventing errors in projects.

The buzzer component will

sound to notify the user once

the degree of sensitivity is set

to high.

This study

does not

present any

unsolved

problems.

No future work is

proposed.

93

4. [4]“Development

of an IoT-based

Real-Time Air

Quality

Monitoring

Device”

Bikash Kumar

Moharana,

Prateek

Anand,

Sarvesh

Kumar and

Prakash

Kodali

2020 IEEE The NodeMCU

ESP32, the MQ-

135 gas sensor,

and the DHT-11

humidity and

temperature

sensor component

make up the

recommended air

quality

surveillance

equipment.

Their suggested

system has an

advantage over its

competitors

concerning price,

compact size, and

efficient power

utilization. The

NodeMCU,

which serves as

the setup's base

station, receives

the data that the

sensors capture.

The NodeMCU system

ESP32, which serves as the

setup's base station, is utilized

by the suggested system. It

functions being a

microcontroller chip as well as

a combination of WI-FI and

Bluetooth chips that can

replace the GSM module and

the microcontroller with

identical hardware. It also

boasts a sturdy build and

extremely low power

consumption.

The

experiment

must be

carried out

in several

settings,

including

outside

where

calibration

can be

done.

No future work is

proposed.

94

5. [5]“Smart Indoor

Environment

Monitoring

System”

Luay Fraiwan

Abdulrahman

Mahmoud

Rajab

2020 IEEE The present study

offers an

alternative to the

standard methods

of collecting air

samples and

testing in

laboratories to

maintain indoor

air quality.

A central microprocessor in

the suggested system gathers

information from multiple

sensors, including humidity

and temperature, CO2, CO,

VCO, and LPG. The

microcontroller stores the

information it has collected in

an internet database. With a

dedicated application designed

for this purpose, every

encoded information can be

viewed and examined. The

application continuously

monitors the data and notifies

the user if any measured levels

surpass the user-established

thresholds.

The current

remedies to

the risks

associated

with indoor

environmen

ts are

fragmented

and

insufficient.

Moreover,

they don't

offer a way

to

continuousl

y monitor.

This study provides an

intelligent indoor

environmental

surveillance system. The

data from the recording

can be utilized to create

a mathematical

framework that forecasts

potential mold growth,

allowing for the

implementation of

preventative actions

before mold starts to

form.

95

6. [6]“IoT Based Air

and Noise

Pollution

Monitoring

System”

Pooja

Shraddha

Priyanka

A. D.

Sonawane

2021 IEEE This study

suggests an

Internet of Things

(IoT)-based air

quality and sound

pollution

detection system

that enables real-

time monitoring

and verification

of air quality and

sound pollution in

specific areas.

The device continuously sends

information to the

microcontroller while using an

air sensor to sense the

existence of dangerous gases

and other compounds in the

atmosphere.

This study

does not

present any

unsolved

problems.

They plan to update the

system in the future to

send an SMS or app

alert to the user when

the condition of the air

and noise level exceeds

what is considered

acceptable. Anywhere in

the world, we have

access to monitoring

devices for sound and

air pollution.

96

7. [7]“Arduino

Based Ambient

Air Pollution

Sensing System”

Mykhailo

Lobur

Marek

Iwaniec

Uliana

Marikutsa

2020 IEEE The suggested

ambient air

quality sensing

system transports

data to higher-

level programs

for evaluation and

forecasting and

offers real-time,

flexible, cost-

effective

monitoring of the

five air

parameters such

as CO, PM 2.5,

carbon dioxide

(CO2)

temperature, and

humidity that are

most critical to

human health in

metropolitan

areas.

The system employs the

platform known as Arduino as

the controlling unit and

combines temperature,

humidity, carbon monoxide,

PM 1.0, PM 2.5, PM 10, and

carbon dioxide (CO2) sensors

into a single small unit. GPS

positions and timestamps are

linked together with the data

collected.

The design

would

make

it easy to

monitor

further

critical air

pollution

characteristi

cs by

simply

integrating

more

sensors that

provide the

appropriate

interface.

No future work is

proposed.

97

8. [8]“Design of

Micro-Climate

Data Monitoring

System for

Tropical

Greenhouse based

on Arduino UNO

and Raspberry Pi”

Ardiansah ,

N Bafdal ,

E Suryadi ,

A Bono

2020 IEEE The purpose of

this research

initiative is to

better understand

how to use a

wireless system

of monitoring that

can capture

microclimate data

and upload it into

the cloud for end-

users through a

web application.

The suggested approach needs

to reduce human interference,

be economical, and be

dependable. The Raspberry Pi

serves as a processor for

information and the Arduino

UNO serves as a monitoring

unit. Microclimate analysis

data on the Raspberry Pi is

wirelessly transmitted to a

database in the cloud within a

specific time frame, where it

gets processed by a web

application and displayed

when a web browser request

it.

With a

single

sensor, the

created

gadget can

be used in

small to

medium-

sized

greenhouse

s. The price

of

purchasing

equipment

increases

for

applications

on a large

scale, while

the cost for

surveillance

stays the

same.

By simply modifying

specific code lines in

UNO, RPi, and CA, it

can be achieved to add

additional types of

sensors required for the

growth of plants, such as

carbon dioxide, wind,

sun index, and soil

moisture sensors.

98

9. [9]“IoT Based

Wireless Sensor

Network for Air

Pollution

Monitoring”

Ajay

Chaturvedi

Laxmi

Shrivastava

2020 IEEE Among the

primary fields

where plenty of

effort is being

made is the use of

wireless sensor

networks. The

work

encompasses a

wide range of

tasks, including

air pollution, gas

and water

monitoring, fire

detection, and

spread.

The detectors are placed to

track the surroundings after

the entire targeted region has

been split up into smaller local

zones. Zigbee can be used to

send data that has been

gathered in the nearby

vicinity. Every node that uses

several nodes can send

information to a single

computer. Through the

Internet, information from

computers can be sent to a

shared control center.

This study

does not

present any

unsolved

problems.

No future work is

proposed.

99

10. [10]“Microcontro

ller-Based

Environmental

Pollution

Monitoring

System though

IoT

Implementation”

Nadia

Nowshin Md.

Shajedul

Hasan

2021 IEEE Attempting to

mitigate the

adverse effects of

the

aforementioned

pollution and to

facilitate the

implementation

of anti-pollution

measures, this

study suggested

and carried out a

fully automated

microcontroller-

based air along

with noise

pollution

monitoring.

The built-in sensors combined

with the microcontroller in the

proposed system enable it to

detect greater decibel noise

levels and hazardous gas

components. Through the data

it collects, the sensors

communicate with the

microcontroller. The

microcontroller then uses an

IoT (Internet of Things)

analytical application

framework to analyze and

transmit the data via an

Internet server.

This study

does not

present any

unsolved

problems.

No future work is

proposed.

100

11. [11]“Wearable

Smart Prototype

for Personal Air

Quality

Monitoring”

Attila Géczy,

Lajos Kuglics,

László Jakab,

Gábor

Harsányi

2020 IEEE With its compact

size, ease of use,

and smartphone

integration, this

work intends to

demonstrate a

sophisticated

concept of

affordable

wearing air

quality

monitoring

technology

appropriate for

various use

scenarios.

It makes applications for

Arduino programming and

Mobile software design. The

suggested setup consists of an

Arduino board, a carbon

capture and storage

(CCS811) sensor for

measuring volatile organic

compounds (VOCs), a ZPH01

particle matter (PM) detector,

as well an HC-05 Bluetooth

device.

It can be

challenging

to organize

or evaluate

outcomes

based on

quantitative

data for a

non-

professional

user.

No future work is

proposed.

101

12. [12]“Design and

Implementation

of a Feasible

Model for the IoT

Based Ubiquitous

Healthcare

Monitoring

System for Rural

and Urban Areas”

Mohammad

Nuruzzaman

Bhuiyan; Md

Masum

Billah;

Farzana

Bhuiyan

2022 IEEE The article

describes an IoT-

based health-

tracking system

that can assess,

track, and report

on individual

medical

conditions online

as well as offline

from anywhere.

The suggested IoT-based

approach can convey critical

health data to healthcare

facilities and caretakers in

real-time. The suggested

system uses Arduino UNO,

Nodemcu, and Global System

for Mobile Communication

(GSM) modules to monitor

human body temperature,

heart rate, saturation of

oxygen, ambient temperature,

and pollution levels in a smart

home environment.

Several

constraints

and

pertinent

circumstanc

es hamper

continual

developmen

t; yet, such

investigatio

ns provide

significant

possibilities

to address

the

highlighted

difficulties.

The authentication

process of networks is

an important part of

assuring the foundation

of remote healthcare

surveillance systems.

After proper

manufacture, the system

has great potential for

urban as well as rural

areas, especially

in nations that are

emerging.

102

13. [13]“Arduino-

Based Weather

Monitoring

System”

Kazi

Sultanabanu,

Sayyad

Liyakat,

Kutubuddin

Kazi

2023 Researc

h Gate

In the following

article, they

develop an

Arduino-based

environmental

monitor platform

that can offer us

accurate current

time weather

information for

our location, such

as the condition

of the air,

humidity,

temperature,

pressure in the

atmosphere, and

the intensity of

light.

They use the DHT11 sensor,

which can quickly determine

temperature and humidity.

Furthermore, they utilize the

Arduino Uno to process and

present the data on the screen.

This study

does not

present any

unsolved

problems.

As technology advances,

they can expect

innovations in this field,

which will improve the

efficiency and reliability

of weather monitoring.

103

14. [14]“Arduino

Based Smart

Home Warning

System”

Qusay Idrees

Sarhan

2020 IEEE The article

describes the

conceptualization

and execution of

an Arduino-based

automated home

alert system.

In this framework, the

microcontroller known as

Arduino Uno is being utilized

along with multiple

appropriate detectors (the

DHT22, the MQ2, as well as

the camera), mechanisms (a

buzzer and relays that come

with connected water valve,

air ventilator, as well as a

spotlight lamp), and GSM as a

mobile communications

medium to allow users to

communicate with the system

that has been suggested.

.

This study

does not

present any

unsolved

problems.

For future work,

supplying coordinates

from GPS will be

extremely beneficial

when sending SMSs and

emails to a police or fire

station. This technology

will allow law

enforcement or

firefighters to simply

locate the house that is

having trouble.

104

15. [15]“Low-cost

Arduino-based

temperature,

relative humidity

and CO2 sensors

- An assessment

of their suitability

for indoor built

environments”

Pedro F.

Pereira

Nuno M.M.

Ramos

2022 Researc

hGate

This paper

describes cost-

effective

Arduino-

compatible

detectors that

have been

validated in the

indoor

environments of

Southern

European

countries.

Five various sensors for the

following characteristics were

examined: temperature,

moisture content (RH), and

carbon dioxide. The T and RH

experiments combine two

types of exposure over 24

months, with temperatures

ranging from 10 °C to 35 °C

and humidity levels ranging

from 50% to 95%.

This study

does not

present any

unsolved

problems.

No future work is

proposed.

105

16. [16]“Design of an

Arduino-Powered

Sleep Monitoring

System Based on

Electrooculograp

hy (EOG) with

Temperature

Control

Applications”

Genesis M.

Cruz

Kyle Reifel

M. Del Villar

Charmaine C.

Paglinawan

2022 IEEE This study

proposes an

electrooculogram-

based system for

monitoring sleep.

When contrasted

with PSG or EEG

recording

sessions, EOG is

easy to install and

can be employed

independently.

An EOG sleep tracking device

was created utilizing the

Arduino Uno Module, and it

obtained a total precision of

82.31% in recognizing

different sleep stages. Along

with sleep evaluation, adaptive

temperature management

according to the suggested

system's tracking of users'

phases of sleep was used to

control the active sleep

environment.

This study

does not

present any

unsolved

problems.

It recommended raising

both the total amount of

those involved and the

number of hours of

sleeping tracked per

user.

17. [17]“Implementat

ion of Arduino

Pro Mini and

ESP32 cam for

temperature

monitoring on

automatic

thermogenic IoT-

based "

Puput Wanarti

Rusimamto,

Endryansyah,

Lilik Anifah

2020 Resarch

Gate

The goal of this

study is to track

temperature using

Arduino Pro

Mini and

ESP32 with IoT

technology linked

to a web

interface.

The procedure of

photographing and monitoring

body temperature is

automated. The offered web

interface allows users to view

sensor data as well as photo

information provided by

Arduino and ESP32.

Limitations

with the

proximity

detector,

which is

oversensitiv

e, make it

simple to

detect

nearby

items.

Problems can be

avoided by constructing

the mechanical

construction so that it

limits the sensitivity of

the proximity sensor.

