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ABSTRACT 

 

EVALUATING THE EFECT OF BIOMATERIALS ONTO A549 

CELL USING DEEP LEARNING  

 

Alushllari, Griselda 

M.Sc., Department of Computer Engineering 

Supervisor: Assoc. Prof. Dr. Arban Uka 

 

 This study investigates the performance of 28 different UNet models for 

segmenting and determining cell confluence in brightfield microscopy images, 

combining various hyperparameters such as loss functions, batch sizes, and epochs. 

Ground truths for the images were manually annotated which was another challenge 

of this study. Among the models, two of them were chosen since they achieved high 

accuracy results. The study also evaluates the effects of different biomaterial density 

on cell growth using these models. The results showed that low-density biomaterials 

(5 ug) were non-toxic, while medium (20 ug) and high concentrations (50 ug for 

PAR30 and 500 ug for PLL250) significantly suppress cell growth, with confluence 

ratios dropping below 70%. Additionally, various classification models were tested on 

datasets with different cell images and biomaterial densities. Principal Component 

Analysis (PCA) and hybrid models were found to significantly improve classification 

accuracy, particularly in binary classification tasks, which achieved accuracies nearing 

98%. The study highlights the performance of different model architectures, manual 

annotation for ground truth, and dimensionality reduction techniques in enhancing the 

accuracy of cell confluence segmentation and biomaterial toxicity assessment. 

 

Keywords: A549 Cell, Image Analysis, Brightfield Images, Manual Annotation, 

Segmentation, Classification. 
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ABSTRAKT 

 

VLERËSIMI I EFEKTIT TË BIOMATERIALEVE NË QELIZËN A549 

DUKE PËRDORUR DEEP LEARNING  

 

Alushllari, Griselda  

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike 

Udhëheqësi: Assoc. Prof. Dr. Arban Uka 

 

 Ne kete studim vleresohet performanca e 28 modeleve UNET per te 

segmentuar qelizat dhe per gjetur siperfaqen qe ze qeliza ne imazh (confluence), per 

imazhet te qelizava te pa ngjyrosura duke kombinuar parametra te ndryshme. Ground 

truths per imazhet jane bere manualisht (anotim manual), gje qe ishte nje sfide shume 

e madhe e ktij studimi. Nder modelet e krijuara, dy prej tyre u zgjodhen pasi arriten 

vlera te larta saktesie. Bazuar ne segmentim dhe gjetjen e konfluences, studimi 

gjithashtu vlereson efektet e densiteteve te ndryshme te biomaterialeve te injektuara 

ne qelize per te vezhguar cfare ndodh me qelizen (shumim ose demtim). Rezultatet 

treguan se biomaterialet me densitet te ulet (5 ug) ishin jo-toksike, ndersa biomaterialet 

me perqendrim mesatar (20 ug) dhe te larte (50 ug per PAR30 dhe 500 ug per PLL250) 

ndalonin rritjen e qelizes, duke e demtuar ate dhe duke cuar perqindjen e konfluences 

poshte 70% (duke theksuar qe 70% eshte pragu I toksicitetit). Përveç kësaj, modele të 

ndryshme klasifikimi u testuan ne te gjithe dataset-et. PCA dhe modelet hibride 

përmirësonin ndjeshëm saktësinë e klasifikimit, veçanërisht ne klasifikim binar, të cilat 

arritën saktësi prej 98%.  

 

Fjalët kyçe: Qeliza A549, Analiza e Imazheve, Imazhe pa ngjyrim, Segmentim, 

Klasifikim.
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CHAPTER 1 

INTRODUCTION 

 

1.1 Problem Statement 

The classification of cells in bright-field images is challenging due to variations 

in cell morphology and image quality. Effective preprocessing techniques, are 

essential to enhance image quality and improve the performance of deep learning 

models for cell segmentation and classification. This study aims to identify, 

implement, and optimize preprocessing techniques tailored to bright-field cell images. 

Additionally, the study focuses on developing a deep learning model, utilizing the 

UNet architecture, to accurately find the are coved by the cells differently known as 

cell confluence.  

 

1.2 Thesis Objective 

The objective of this thesis is to improve the accuracy and efficiency of cell 

classification in bright-field cell images by developing and optimizing preprocessing 

techniques, including quantization and pruning, tailored to these images. Based on the 

UNet architecture for segmentation, a cell classification model should be used.  

 

1.3 Scope of works 

 The scope of work includes: 

1. Identifying and analyzing preprocessing techniques suitable for 

enhancing image quality in bright-field cell images. 

2. Implementing and optimizing preprocessing techniques to improve the 

performance of different models for cell classification. 



2 

 

3. Implement different UNet architectures for bright-field cell images 

segmentation. 

4. Evaluating the performance of the system in terms of accuracy and 

efficiency compared to existing methods. 

5. Finding the cell confluency for each dataset to predict the healthiness of 

biomaterials. 

 

1.4 Organization of the thesis 

This thesis is divided into 5 chapters. The organization is done as follows: 

In Chapter 1, the problem statement, thesis objective and scope of works is 

presented.  

Chapter 2, includes the Literature Review covering topics such as image 

analysis techniques, image analysis in various fields, challenges specific to bright-field 

images, cell types (A549, THP-1, and 3T3), preprocessing techniques, manual 

annotation, segmentation tasks (including UNet architecture and stacked UNet), and 

classification tasks.  

Chapter 3 will consist of the methodology and some tests performed in this 

study, including data collection, implementation of preprocessing techniques, manual 

annotation process, UNet model development and trails. 

Chapter 4 will consist of every experiment explained in the methodology. 

Chapter 5 is called conclusions and will conclude every experiment discussed 

above.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction   

There are many reasons and benefits to computerize, digitalize and use 

Artificial Intelligence (AI) in various fields of human lives. Starting with a definition 

first introduced by Alan Turing in 1950; Artificial Intelligence is the simulation of 

intelligent behavior and critical thinking processed by computer systems. There are 

many subfields of AI, where Machine Learning (ML), Artificial Neural Network 

(ANN) and Deep Learning (DL) can be mentioned. As a subfield of AI, ML utilizes 

advanced statistical techniques and gives the computers the ability to learn without 

being specifically programmed (Arthur Samuel, 1959). In 1958, the psychologist 

Frank Rosenblatt invented the first ANN, also known as Perceptron. As a subfield of 

ML, ANN mimics the structure of the human brain by simulating the way it analyzes 

and processes information. 

AI systems perform tasks much faster and without getting tired, leading to 

consistency and increased efficiency. Nowadays an enormous amount of data is 

generated daily, which needs to be processed, analyzed etc. It is impractical to analyze 

this kind of big data manually. AI systems excel at recognizing patterns and trends in 

data. These systems are capable of solving complex problems that may be beyond 

human capacity, such as optimization and simulations. One important beneficial 

reason we cannot forget to mention is cost reduction using AI. Automation and AI can 

minimize errors, optimize resources, predict equipment failures and reduce operational 

costs. All of these benefits serve as a tool for humans used in decision making but 

generally with the intention of making human lives easier.  
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2.2 Image Analysis 

Image analysis (also called image understanding) is treated as a research area 

between image processing and computer vision (Gonzalez and Woods (2018). Since 

it falls between image processing and computer vision it can be said that a continuum 

without distinct boundaries is formed and it is categorized into three computerized 

processes: low-level, mid-level and high-level processes. Low-level processes consist 

of basic tasks such as noise reduction, image sharpening and contrast enhancement. 

The above-mentioned tasks are part of image processing, where both input and output 

are an image. Segmentation and classification can be considered mid-level processes. 

In this level, the input is an image, but output are attributes extracted (edges, contours, 

objects) from the imputed image.  

 

Figure 1: Mid-Level Process Task Example 

Similar to image analysis, high-level processing means to understand a group 

of identified objects. Compared to how humans use their vision to think and 

understand, complex tasks are performed at the further end of this continuum [1].  

The purpose of image analysis is to use different techniques and methods to 

better understand and comprehend images by understanding characteristics, hidden 

structures or patterns of the visual data. This purpose is to obtain quantitative 

measurements and/or relevant feature extraction by performing different 

computational algorithms. Image analysis is becoming an essential part of modern 

research and technology due to the ongoing development of complex algorithms with 

the incorporation of AI. 
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Another point of view is to consider image analysis as the process of extracting 

quantitative information from acquired images (Uka, 2021) [10]. Image analysis plays 

an essential role evaluating medical images. While looking at cells under a microscope 

provides qualitative information, image analysis enables quantitative measurements of 

key parameters like cell number, size, shape, and spreading area. Subtle changes in 

cell morphology, texture, and adhesion patterns that might be missed by the naked eye 

can be detected and quantified through image analysis, providing deeper insights into 

biocompatibility and cell response. Another important characteristic is standardized 

image analysis protocols which ensures consistency and also helps in comparison.  

 

2.2.1. Image Analysis Techniques  

Image analysis plays an essential role evaluating cell images. Processing an 

image into fundamental components to extract meaningful information is its main aim. 

Cell segmentation and counting can be mentioned as one of the tasks of image analysis. 

Isolating individual cells within the image and calculating their total number it's 

essential for quantifying cell growth. Texture analysis techniques like Grey Level Co-

occurrence Matrix (GLCM) analyzes the spatial distribution of pixel intensities, 

providing insights into cell density, granularity, and surface texture changes caused by 

biomaterial interaction (Uka, 2021) [10]. 

 

2.2.2 Image Analysis in Various Fields 

The need to use artificial intelligence can be distinguished in various fields. In 

biology, cell image analysis helps researchers to better understand cell structure and 

function by making it easier to comprehend processes such as: mitosis, apoptosis, 

interactions etc [2]. Assessing the impact of chemical compounds on cell structures 

through image analysis aids in drug discovery, toxicology studies, and environmental 

science [2]. Based on a review article regarding AI in medical field, rather than 

algorithm-only-based medicine, patients have the opportunity for personalized 
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medicine. Predictive models can be used for diagnosis of diseases, prediction of 

therapeutic response, and potentially preventative medicine in the future based on cell 

characteristics, enhancing patient outcomes and medical interventions' efficacy. Kaul, 

Enslin and Gross conclude that AI can improve patient diagnostics, risk classification 

and the efficiency of workflow. Cost-effective AI models and products are needed to 

integrate AI into daily clinical use, promoting a partnership between physicians and 

machines. (Kaul, Enslin, & Gross, 2020). 

Microscopy image processing is essential in enhancing disease 

characterizations (Xing et al. 2018). Computers are quite fast in evaluating large 

datasets in a quantitative approach. This quantitative element can be distinguished in 

different types of tumors (breast, lung, and brain) This way, a crucial role in automated 

diagnosis and prediction can be mentioned. With the exponential growth of data and 

image data, manual processing becomes inefficient and impractical. Xing. et al, 2018 

conclude that this range of new data prompts the development of computational 

approaches that improve efficiency and objectivity [3]. 

 

 

2.3 Bright-field Challenges 

Another article introduces a deep-learning-powered method which employs a 

conditional generative adversarial neural network (cGAN) to assess bright-field 

images of human stem-cell-derived fat cells (adipocytes), which are important towards 

nanomedicine and vaccine development (Helgadottir et al., 2021).  The cGAN is 

trained to virtually stain cellular structures (lipid droplets, cytoplasm, and nuclei) 

which help for a better quantitative assessment of cell structures. The method of 

generating virtually stained fluorescent images is less invasive, less expensive, more 

consistent than traditional chemical staining, and more information can be extracted 

from each cell. According to Helgadottir et al., 2021 fluorescence cell images have 

various disadvantages; including a requirement for a fluorescence microscope with 

filters that match the spectrum profiles of dyes, the complexity of the optical setup, 
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and the limited number of dyes that can be seen during a single experiment. By adding 

chemical fluorescence dyes the cell sample can become toxic, therefore a swap may 

occur during image acquisition (phototoxicity and photobleaching) which negatively 

impacts data quality, time scales and cell health. These drawbacks make it difficult to 

acquire trustworthy and periodic data on the same population (for example when 

studying cell behavior). [4] 

On the other hand, bright field images are less challenging to obtain and require 

no complicated or additional preparation. By replacing fluorescence images with 

bright-field images, the same information can be extracted which is less expensive and 

harmless. However, a challenge of bright-field images is the lack of clear contrast 

when compared to fluorescence images. Unstained brightfield images often lack high 

contrast between cells and background. This can make segmentation and accurate 

feature extraction difficult, leading to potential errors in measurements. This 

disadvantage limits their utility in quantitative analysis. [4] Unlike fluorescence 

microscopy where specific markers can highlight different cell types or structures, 

brightfield images provide limited information about cell identity or internal features. 

This limits the ability to differentiate between various cell types or assess specific 

cellular responses. Brightfield images can be vulnerable to dust, glare, or uneven 

illumination, introducing noise that can interfere with analysis and mask relevant 

information. The complexity of image analysis techniques, especially with large 

datasets, can require significant computational resources and expertise. Except the 

above-mentioned challenge, others drawbacks that can be mentioned are: (a) the 

complexity of segmenting individual cells since they vary in size, shapes and may 

overlap, (b) resolution issues, and (c) data standardization, otherwise it will be difficult 

to compare them.  

Challenges cannot be mentioned without proposed solutions. To improve 

image quality and make the analysis easier, advanced preprocessing techniques such 

as: noise reduction filters, illumination correction algorithms, and background 

subtraction methods are used. Feature extraction using trained algorithms can 

overcome limitations due to low contrast (Uka,2021). Efforts to develop standardized 

protocols can improve comparison and image analysis. 
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2.4 Workflow 

 To have a harmonious workflow for image analysis, binary annotation, 

segmentation and classification are important. This combination improves the analysis 

of cells by allowing researchers to gather numerical data and draw conclusions.  

Binary annotation is an essential step in cell image analysis studies. First a 

binary mask should be created which distinguishes regions of interest (cells in this 

case) from the background. It simplifies the following analysis and aids in unique 

feature extraction of cellular structures. The annotation will be manually done for the 

images using ‘apeer.com’.  

Segmentation is the process of dividing an image into uniform/homogeneous 

regions, separating cells, and precisely identifying their boundaries. It is essential for 

getting precise measurements, making it possible for comprehensive analysis, cell 

counting and understanding how cells are organized. 

Classification is the process of grouping segmented regions according to their 

characteristics/features such as various cell types or phases. It provides an 

understanding of the nature of cells, helping recognize the anomalies and measuring 

cell states. All of this is done for the sole purpose of better understanding the biological 

content of an image.  

 

 

2.5 Cell Types 

 There will be three types of cells taken into consideration: (1) A549 is a human 

lung carcinoma cell line, (2) THP-1 a human monocytic cell line derived from an acute 

monocytic leukemia patient, and (3) 3T3 a mouse fibroblast cell line. Regarding 

immortalization, all three cells can divide indefinitely under laboratory conditions.   
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(a) A549                                (b) THP-1                                (c) 3T3 

Figure 1: Representative images for different cells. 

 

 

2.6 Preprocessing Techniques 

Preprocessing is an important step when dealing with image analysis. Before 

applying analysis techniques, several preprocessing steps are crucial. Some common 

preprocessing techniques for bright-field images are: (1) Contrast Enhancement which 

improves detail visibility, (2) Noise Reduction Techniques like filtering which 

minimize signal noise that can interfere with measurements., (3) Background 

Subtraction which removes uneven illumination, (4) Color Correction which corrects 

color inconsistencies, (5) Rescaling which adjusts image size, (6) Smoothing and 

Sharpening which softens image features, (7) Thresholding which converts grayscale 

images to binary images simplifies object identification and separation,  (8) Cropping 

which removes unnecessary borders or regions, and (9) Inversion which reverses 

intensity values to enhance specific features. [Uka et al, 2020] 

Taking into consideration a paper titled “Brightfield vs Fluorescent Staining 

Dataset–A Test Bed Image Set for Machine Learning based Virtual Staining. Scientific 

Data” a numerous of the above-mentioned techniques are used. [7] The images were 

resized to 512x512 to accommodate the limitations of the neural network. 

Standardization and normalization were done to enhance the convergence rate and 
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improve segmentation accuracy. Images were expanded with Gaussian noise and 

random smoothing. Multi-threshold segmentation was used to fit the same quantiles 

of the physical and virtual channel intensity distributions (Trizna et.al, 2023). 

 

 

2.7 Annotation Type – Manual 

According to Adnan et al., 2020, annotating digital images is important for 

organizing and accessing them effectively. Adding keywords tags to every image 

simplifies searching and improves the use and accessibility of stored data. To 

conclude, image annotation enables efficient management of large collections of 

digital images. 

The type of annotation used is determined by the image annotation task's 

requirements and constraints. There are three types: (a) manual annotation which 

offers accurate descriptions, but it is time-consuming, expensive and also has 

subjectivity issues, (b) semi-automatic annotation which achieves a balance between 

manual and automatic approaches, and (c) automatic annotation which is efficient but 

might require massive sample sizes for learning. In this paper (Adnan et al., 2020) 

authors advise to combine user feedback and a semantic hierarchy in automatic 

annotation models, proposing the use of probabilistic graphical models. [5]  

The chosen type of annotation for this thesis will be manual annotation. As 

every other instance, it has both benefits and drawbacks. Accurate and meaningful 

annotations are counted as benefits. On the other hand, some of its challenges are that 

it is time consuming, expensive and has subjectivity issues based on the annotator’s 

perspective. This can result in annotation inconsistencies, which reduces accuracy and 

reliability. Furthermore, manual annotation may be impractical for large datasets 

because of the high human work and resource requirements. [5]  
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Figure 2:  A549 Annotated and Raw 

 

 

2.8 Segmentation Task  

U-Net is a popular CNN architecture used for accurate cell segmentation in 

brightfield microscopy images. Inspired by the human visual cortex, it combines a 

contracting pathway for capturing contextual information with an expansive pathway 

for precise localization. The "U-shaped" structure allows the network to learn detailed 

features at lower resolutions and progressively recover spatial information, ultimately 

producing high-resolution segmentation masks. 

 

2.8.1 UNet Architecture 

The Unet architecture is a popular CNN model designed for semantic 

segmentation tasks in various fields such as medical imaging, satellite imagery 
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analysis and object detection. Introduced in 2015 [6], the architecture is based on an 

encoder-decoder structure, which enables the acquisition of both global and local 

contextual information for accurate segmentation. The major innovation U-net 

introduces to previous models is the U-shaped design, where the encoder acquires the 

image’s features, the decoder generates the segmentation map, and the skip 

connections facilitate communication between the contracting and expansive paths. 

These connections enable the encoder and decoder to communicate, by enabling the 

decoder to access the high-resolution feature map from the encoder stages and use it 

to perform precise segmentation.  

 

Figure 3: UNET Architecture 

The architecture of the network comprises a contracting path on the left side 

and an expensive path on the right side:  

The contracting path follows a typical convolutional network structure, 

consisting of repeated operations: two 3x3 convolutions with ReLU activation, and a 

2x2 max pooling with a stride of 2 for down-sampling. With each down-sampling step, 

the number of feature channels is doubled. 

The expansive path includes an up-sampling of the feature map, followed by 

a 2x2 convolution (referred to as "up-convolution") that reduces the number of feature 

channels by half. It also involves concatenating the corresponding cropped feature map 

from the contracting path and applying two 3x3 convolutions with ReLU activation. 
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The cropping is necessary to account for the loss of border pixels in each convolution 

operation. 

The final layer of the network employs a 1x1 convolution to map each 64-

component feature vector to the desired number of classes. Overall, the network 

consists of 23 convolutional layers. 

The paper demonstrates that U-Net can outperform the best method on the ISBI 

challenge for segmenting neuronal structures in electron microscopic stacks, using 

data augmentation to generate new training samples. It enhances training efficiency by 

using data augmentation, which generates new training samples by applying random 

transformations to existing ones. This reduces the need for large amounts of annotated 

data, improving performance on image segmentation tasks. U-Net's architecture allows 

precise localization through its symmetric expanding path, which captures context and 

reduces spatial resolution of the input image. This process consists of upsampling 

layers and convolutional layers, capturing local and global information for accurate 

segmentations. [6]  

 

2.8.2 Stacked UNet 

In the realm of cell segmentation, advancements in deep learning architectures 

have led to the exploration of Stacked U-Nets. Based on the UNet architecture this 

approach employs a hierarchical stacking mechanism. The key idea behind a Stacked 

UNet is to stack multiple UNets together, where the output of one UNet becomes 

additional input for the next. This allows the model to learn more complex features 

and make more accurate predictions, as each UNet can improve the predictions made 

by the previous ones. 

Stacked U-Net is an extension of the original U-Net model designed for 

biomedical image segmentation. The original U-Net, introduced by Ronneberger et al. 

(2015), utilizes a symmetric encoder-decoder structure with skip connections to 

capture both high-level and low-level features. The Stacked U-Net enhances this by 

incorporating multiple U-Net structures in a stacked formation, allowing for more 
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refined and accurate segmentation outputs, especially in complex medical imaging 

tasks. 

The Stacked U-Net typically employs a series of U-Net modules where the 

output of one U-Net serves as the input to the next. This stacking mechanism allows 

for deeper feature extraction and better contextual understanding of the input images. 

Each U-Net in the stack maintains the traditional architecture with contracting and 

expanding paths, skip connections, and convolutional layers. The models often use 

data augmentation and patch-wise training to handle large biomedical images 

effectively (Ronneberger et al., 2015). 

Stacked U-Nets have demonstrated significant improvements in segmentation 

accuracy across various biomedical imaging datasets. Studies have shown that this 

architecture excels in tasks such as cell segmentation, organ delineation, and tumor 

detection. The repeated application of the U-Net model within the stack helps in 

refining segmentation boundaries and reducing false positives. For instance, in liver 

and tumor segmentation challenges, Stacked U-Net variants have outperformed 

traditional U-Net models by a notable margin in metrics like Dice coefficient and 

Intersection over Union (IoU) (Çiçek et al., 2016). 

Despite its success, the Stacked U-Net architecture can be computationally 

intensive due to its multiple U-Net models. This complexity might limit its application 

in real-time or resource-constrained environments. Future research could focus on 

optimizing the stack formation or introducing lightweight variants that maintain 

segmentation performance while reducing computational load (Ronneberger et al., 

2015; Çiçek et al., 2016). 
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Figure 4: Stacked UNET Visualization 

 

2.8.3 U2net 

U^2-Net (pronounced "U squared net") is a novel architecture designed 

specifically for salient object detection. It builds on the traditional U-Net structure by 

introducing a nested U-structure within each stage of the encoder and decoder, 

enabling more detailed and hierarchical feature extraction. This model aims to 

accurately detect and segment salient objects in images, even in challenging 

backgrounds. 

The U^2-Net architecture integrates the ReSidual U-block (RSU) within the 

standard U-Net framework. Each RSU block contains its own encoder-decoder 

structure, effectively creating multiple levels of nested U-Nets. This design enhances 

the network's capacity to capture both fine details and global context. The model 

utilizes standard convolutional layers, ReLU activations, and max-pooling operations 

within these nested structures. Training involves optimizing a combination of binary 

cross-entropy and intersection-over-union losses (Qin et al., 2020). 

U^2-Net has achieved state-of-the-art performance in salient object detection 

benchmarks, significantly outperforming existing models. The architecture's ability to 

maintain high-resolution feature maps throughout the network contributes to its 

superior performance. Evaluation metrics such as F-measure, mean absolute error 

(MAE), and precision-recall curves indicate that U^2-Net provides precise and reliable 

segmentation of salient objects across various challenging datasets (Qin et al., 2020). 
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While U^2-Net has shown remarkable results in salient object detection, its 

application to other segmentation tasks such as medical imaging or autonomous 

driving remains to be fully explored. Additionally, the nested structure increases the 

model's complexity, which may hinder deployment in real-time applications. Future 

research could explore ways to generalize the architecture to different domains or 

optimize it for faster inference (Qin et al., 2020). 

 

2.8.4 CellSegNet 

CellSegNet is a modified U-Net architecture tailored for cell segmentation 

tasks in biomedical images. It builds on the strengths of the traditional U-Net by 

incorporating additional layers and mechanisms to enhance its performance in 

segmenting individual cells from complex and cluttered backgrounds. This 

architecture aims to address the unique challenges posed by cell segmentation, such as 

varying cell sizes, shapes, and overlapping cells. 

CellSegNet typically includes modifications like additional convolutional 

layers, attention mechanisms, and custom loss functions designed to improve 

segmentation accuracy. The encoder-decoder structure of U-Net is preserved, but 

enhanced with additional layers for more robust feature extraction. Some variants of 

CellSegNet also incorporate mechanisms like squeeze-and-excitation blocks or spatial 

attention modules to better capture the spatial dependencies and hierarchical features 

within the images (Ronneberger et al., 2015; Çiçek et al., 2016). 

Studies have shown that CellSegNet variants achieve superior performance in 

cell segmentation tasks compared to the traditional U-Net. Metrics such as the Dice 

coefficient, pixel accuracy, and Jaccard index have shown improvements, indicating 

more precise and reliable segmentation results. The incorporation of attention 

mechanisms, in particular, helps the network focus on relevant features and ignore 

background noise, which is crucial in biomedical images with high variability (Çiçek 

et al., 2016). 
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One of the primary challenges with CellSegNet is its scalability to large 

datasets or real-time applications due to increased model complexity. Moreover, the 

architecture might require extensive hyperparameter tuning and training data to 

generalize well across different types of cells and imaging conditions. Future research 

could focus on developing more lightweight variants or exploring transfer learning 

approaches to enhance generalizability (Ronneberger et al., 2015; Çiçek et al., 2016). 

 

 

2.9 Classification Task  

Deep learning models have revolutionized the field of cell classification and 

segmentation, particularly in the context of analyzing unstained brightfield images. 

Uka (2021) demonstrated that deep learning models trained on labeled fluorescence 

images could effectively classify cell types in unstained brightfield images based on 

their morphological features. This approach leverages the powerful feature extraction 

capabilities of deep neural networks (DNNs) to distinguish between different cell types 

without the need for traditional staining techniques, which can be time-consuming and 

costly. 

The use of DNNs in image segmentation has consistently outperformed traditional 

segmentation techniques. These models have shown substantial improvements in 

various evaluation metrics, including accuracy, precision, and recall (Uka, 2023). 

Traditional image segmentation methods often struggle with the variability and 

complexity of biological images, whereas DNNs can learn and adapt to these 

complexities through extensive training on large datasets. The deep learning models' 

ability to capture intricate patterns and features within the data contributes 

significantly to their superior performance. 

One of the significant challenges in classifying cells using deep learning is the lack 

of labeled datasets. Annotating large datasets for training can be labor-intensive and 

requires expert knowledge. To address this issue, Uka (2023) proposed a two-stage 
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unsupervised classification approach for cell health. The first phase of this method 

involves dividing the dataset into two primary groups: healthy and unhealthy cells. In 

the second phase, the healthy group is further subdivided into two smaller clusters, 

while the unhealthy group is divided into three distinct clusters. These clusters are 

defined according to the ISO standard for in vitro cytotoxicity evaluation, ensuring 

that the classification aligns with established health criteria. The K-means algorithm 

was employed for clustering, and the approach was validated using two different 

datasets, demonstrating its effectiveness in organizing cells into meaningful categories 

without the need for labeled data. 

Convolutional Neural Networks (CNNs) have also been prominently featured in 

image classification tasks due to their high accuracy and robustness. According to the 

study "Effect of Preprocessing on Performance of Neural Networks for Microscopy 

Image Classification," CNNs achieved an impressive accuracy of 99% when optimized 

with various preprocessing techniques. This underscores the importance of 

preprocessing in enhancing the performance of neural networks. Preprocessing steps 

such as normalization, augmentation, and noise reduction can significantly impact the 

model's ability to generalize from training data to unseen data, leading to better 

classification results. 

 

2.9.1 Supervised Learning – LeNet 

LeNet, one of the pioneering convolutional neural networks (CNNs) introduced 

by Yann LeCun and colleagues in the late 1980s, remains relevant in modern image 

classification tasks, particularly in the field of biomedical image analysis (LeCun et 

al., 1998). Its architecture, characterized by a series of convolutional and subsampling 

layers followed by fully connected layers, is well-suited for supervised learning 

applications, including the classification of cell images. In recent years, LeNet has 

been adapted and optimized for various cell image classification tasks, demonstrating 

its enduring effectiveness and flexibility. 
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In cell image classification, LeNet has been extensively utilized due to its ability 

to learn and generalize features from labeled datasets. A study by Shao et al. (2018) 

employed an enhanced version of LeNet to classify different types of cells in 

microscopy images. The model was trained on a dataset of stained cell images and 

successfully distinguished between various cell types based on their morphological 

features. This application highlighted LeNet's robustness in handling diverse cellular 

structures and its capability to perform accurate classification even with relatively 

simple architectures. 

Another significant application of LeNet in cell classification was presented by 

Wei et al. (2019), who used the architecture for the classification of live and dead cells 

in fluorescence microscopy images. The study demonstrated that LeNet, when trained 

on a well-labeled dataset, could achieve high classification accuracy, effectively 

differentiating live cells from dead ones. The simplicity of LeNet’s architecture 

allowed for efficient training and deployment, making it a practical choice for real-

time cell analysis in laboratory settings. 

Recent advancements have further refined LeNet's application in cell image 

classification. For instance, Lu et al. (2021) proposed a modified LeNet architecture 

for classifying cancerous and non-cancerous cells. The model incorporated additional 

layers and dropout mechanisms to enhance feature extraction and prevent overfitting. 

This approach resulted in improved classification accuracy and robustness, 

showcasing how LeNet can be adapted to meet the specific challenges of biomedical 

image classification. 

In the context of unsupervised learning, LeNet has also been applied as a feature 

extractor before clustering methods like K-Means. For example, Wang et al. (2022) 

used LeNet to extract features from cell images, which were then clustered using K-

Means to group similar cell types. This combination of supervised feature extraction 

and unsupervised clustering allowed for effective classification and grouping of cells, 

demonstrating the versatility of LeNet in different learning paradigms. 

A comprehensive review by Ching et al. (2018) also highlighted the use of CNN 

architectures, including LeNet, in various biomedical imaging tasks. The review 
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emphasized that LeNet’s architecture, despite its simplicity, continues to be effective 

for a wide range of classification tasks due to its ability to learn hierarchical feature 

representations from image data. This capability makes it particularly well-suited for 

tasks involving the classification of cell images, where subtle differences in 

morphology can be critical for accurate diagnosis and analysis. 

While LeNet is effective, it does have limitations, particularly when dealing with 

complex or high-dimensional datasets. Its relatively shallow architecture may not 

capture intricate features as effectively as deeper networks like ResNet or VGG. 

However, the simplicity and efficiency of LeNet make it a valuable tool for supervised 

learning in cell image classification, especially for applications where interpretability 

and computational efficiency are crucial. 

 

2.9.2 Unsupervised Learning - KMeans 

K-Means clustering is a foundational unsupervised learning algorithm that has 

been extensively used in various image classification tasks, including the classification 

of cell images. It works by partitioning data into K clusters based on feature 

similarities, which helps in identifying intrinsic patterns without the need for labeled 

datasets.  

In the field of biomedical imaging, K-Means has proven effective for segmenting 

and classifying cell images. A notable study by Yao et al. (2019) demonstrated the 

application of K-Means clustering for the classification of cell types in 

histopathological images. The researchers used K-Means to group similar cell nuclei 

based on their morphological features, which allowed for the differentiation between 

normal and abnormal cells. This approach facilitated accurate diagnosis and 

assessment of pathological conditions, showcasing K-Means' potential in medical 

diagnostics. 

K-Means has also been used in conjunction with feature extraction techniques to 

enhance the classification accuracy of cell images. For instance, Zhang et al. (2020) 

employed K-Means clustering to classify live and dead cells in fluorescence 
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microscopy images. The study involved extracting texture and intensity features from 

the cell images, which were then clustered using K-Means. This method achieved a 

high classification accuracy, effectively distinguishing live cells from dead ones, and 

demonstrating the algorithm's utility in biomedical applications where cell viability is 

a critical parameter. 

Further advancements in the application of K-Means for cell image classification 

include its integration with deep learning frameworks. Xie et al. (2021) proposed a 

hybrid approach that combined K-Means with a convolutional neural network (CNN) 

to classify cancerous and non-cancerous cells. In this method, features extracted by the 

CNN were clustered using K-Means to identify distinct cell types. This integration 

leveraged the strengths of both unsupervised clustering and deep learning, leading to 

significant improvements in classification performance. 

In a recent study, Li et al. (2022) utilized K-Means clustering for the 

classification of different cell stages in time-lapse microscopy images. The researchers 

used K-Means to cluster cell images based on their morphological changes over time, 

which enabled the identification of various stages of cell development. This approach 

provided valuable insights into cell dynamics and behavior, demonstrating the 

algorithm's versatility in handling dynamic image data. 

Additionally, the study by Uka et al. (2020) investigated the impact of 

preprocessing on the performance of neural networks for microscopy image 

classification, incorporating K-Means as a key component. The researchers 

demonstrated that effective preprocessing techniques, such as normalization and 

contrast enhancement, significantly improved the clustering results obtained by K-

Means, leading to better classification outcomes. This work underscores the 

importance of preprocessing in optimizing the performance of K-Means for 

unsupervised cell image classification tasks. 

Another significant contribution to the field comes from Yang et al. (2021), who 

applied K-Means clustering for the segmentation and classification of single-cell 

images. The study focused on identifying various subtypes of immune cells in complex 

tissue samples. By clustering cell images based on their morphological features, K-
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Means effectively classified different immune cell types, facilitating a deeper 

understanding of immune responses and disease mechanisms. 

Despite its advantages, K-Means has certain limitations, such as sensitivity to the 

initial selection of cluster centers and the requirement to specify the number of clusters 

(K) beforehand. It can also struggle with high-dimensional data or datasets with 

clusters of varying sizes and densities. However, its simplicity and effectiveness in 

uncovering underlying data structures make K-Means a valuable tool for unsupervised 

cell image classification across a range of biomedical application. 
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CHAPTER 3 

METHODOLOGY AND TESTS 

1.1 3.1 Dataset 

A549 is a commonly used human lung cancer cell that was originally obtained 

in 1972 from a male Caucasian patient who had lung adenocarcinoma. These cells 

share characteristics with the epithelial cells lining the lungs' alveoli, which are small 

air sacs where gas exchange takes place. Regarding the cell morphology, it consists of 

both (a) nucleus and (b) cytoplasm. One of the most important organelles in a cell is 

the nucleus. It serves a crucial role in controlling cellular functions and contains the 

genetic material (DNA) of the cell. The genetic instructions required for cell 

development, division, and function are found in the nucleus of A549 cells. The 

cytoplasm surrounds the nucleus and fills the cell’s interior. Numerous organelles, 

such as the endoplasmic reticulum, Golgi apparatus, mitochondria, and ribosomes, are 

found in the cytoplasm. The cytoplasm is where protein synthesis, cellular metabolism, 

and other vital processes occur. Crucial functions like protein synthesis, cell division, 

and response to external signals are carried out by A549 cell.  Proper cell activity is 

ensured by the interaction between the cytoplasm - which houses organelles and 

performs biochemical reactions - and the nucleus - which houses genetic information. 

Considering their origin and characteristics, A549 cells play a key role in drug 

development, lung cancer, and respiratory research. These cells are used by researchers 

to examine the biology of cancer, including how the disease develops, spreads, and 

reacts to different therapies. A549 cells are also used in toxicology research to assess 

the impact of environmental and inhaled chemicals on lung tissue.  

The images are acquired by a brightfield microscope, which means they are in 

grayscale. The size of an image is 1280x1024. The main dataset in this study consists 

of the A549 cell line, along with the implementation of two different biomaterials, 

resulting in two separate datasets: one incorporating biomaterial one and the other 

incorporating biomaterial two. Each dataset is organized into several folders:  
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- D1: Images acquired on Day 1,  

- D2: Images acquired on Day 2,  

- D2_BIOMATERIAL1_density: biomaterial one applied on Day 2 at a density 

of x µg,  

A similar structure is followed for biomaterial two. Since the images are 

acquired by a brightfield microscopy, they are quite challenging to analyze. One reason 

being the low contrast between the cell cytoplasm and background, which makes it 

difficult to distinguish.  

 

 

 

Dataset 

Dataset_1 Dataset_2 Dataset_3 

Biomaterial PAR30 PLL250 

Days 

D1 30 images 56 images D1 56 images 

D2 12 images 11 images D2 11 images 

D2_5ug 12 images 10 images D2_5ug 13 images 

D2_20ug 11 images 13 images D2_500ug 11 images 

D2_50ug 11 images 12 images   

Table 1: Representative Table of Datasets 
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Figure 5: Images from the datasets 

 

 

3.2 Annotation  

In the absence of ground truths within the dataset, two approaches were 

employed to facilitate the analysis of images, focusing on semantic segmentation to 

divide the cells from their background. The first approach involved utilizing threshold 

labeling/annotation techniques. However, this method gave suboptimal results when 

trying to distinguish between the cytoplasm and the background particularly when they 

exhibited similar intensity levels.  
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Figure 6: Threshold Annotation Technique 

 

In response to the limitations faced with threshold labeling, a second approach 

was adopted, which involved manual annotation. This approach required meticulous 

labeling of the cellular structures, and which was executed using the platform 

apeer.com. Despite being a manual process, the manual annotation approach gave 

more favorable outcomes compared to threshold labeling. However, it's worth noting 

that these annotations were conducted by a master student rather than a specialist in 

image annotation or cellular biology. Since this process was manual, it was quite time 

consuming. For this reason, different preprocessing steps and augmentation were 

implemented.  
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Figure 7: Manual Annotation Technique 

 

3.3 Preprocessing 

 Several preprocessing steps were implemented individually to address the low 

contrast of the images and enhance their overall quality. Each preprocessing technique 

was applied separately to the raw dataset. First, histogram normalization was 

performed to adjust the intensity distribution, thereby improving the contrast and 

making the features more distinguishable.  

      

Figure 8:  Original Image and Histogram Normalization 
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Second, Contrast Limited Adaptive Histogram Equalization (CLAHE) was 

applied to the raw dataset, which further enhanced the local contrast and provided 

better differentiation of cellular structures.  

      

(a) Original Image                                             (b) CLAHE 

Figure 9: Original Image and CLAHE 

Third, a Gaussian filter was utilized on the raw dataset to reduce image noise 

and smooth the image, aiding in the preservation of important details.  

      

(a) Original Image                                             (b) Gaussian Filter 

Figure 10 : Original Image and Gaussian Filter 
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Finally, a median filter was applied to the raw dataset to effectively remove 

any remaining noise and enhance the edges of the cellular features. 

      

Figure 11: Original Image and Median Filter 

3.3.2 Augmentation 

For data augmentation, three approaches were chosen in order to increase the 

dataset and the segmentation model's performance. The first approach involved 

cropping the original images from their size of 1024x1280 pixels to smaller sections 

of 256x256 pixels. In order to train segmentation models more quickly and allow the 

model to focus on more specific features within the images, cropping is utilized to 

lower the computational load on the model.  

      

Figure 12: Cropped and Manual Annotation 
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The second approach used Albumemtations stretch operator to generate 

additional images. Applying this operator to the original images and the corresponding 

ground truth annotations was done consistently. Variability is added by extending the 

images, which is supposed to improve the model's capacity for generalization of 

various cellular structure sizes and forms. 

      

      

Figure 13: Stretch Operator 

The third approach used the rotate and flip operator, rotating the images into 

three additional positions and flipping them horizontally and vertically. These 

transformations were applied to both the original images and their ground truths. Such 

operators do not add new information to the dataset (differently from stretch operator), 
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but when dealing with a small dataset they expose the model to different orientations 

and perspectives of the images. 

           

       

Figure 14: Flip and Rotate 

 

 

3.4 Segmentation Phase 

Semantic segmentation was the first phase of this study, to be performed after 

preprocessing, annotation, and augmentation. This task was to separate cellular 

features from the background. This goal was accomplished by applying a UNet model, 

which is well-known for doing well in semantic segmentation tasks. 

A description of the best Unet architecture in this study: 

Input layer: Takes input images of size 256x256 pixels with a single channel 

(grayscale). 
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Encoding path: Starts with a convolutional layer (conv2d_145) followed by 

batch normalization (batch_normalization_138) and dropout (dropout_69). Then, 

another convolutional layer (conv2d_146) followed by batch normalization 

(batch_normalization_139) and max pooling (max_pooling2d_31). This pattern 

repeats with increasing filter sizes and decreasing spatial dimensions through max 

pooling. This sequence creates a contracting path that extracts features at multiple 

levels of abstraction. 

Bottleneck: After several convolutional and pooling layers, the network 

reaches a bottleneck layer (conv2d_155) where the spatial dimensions are greatly 

reduced, but the depth (number of channels) is increased. 

Decoding path: Starts with transposed convolutional layers 

(conv2d_transpose_31, conv2d_transpose_32, etc.) which increase the spatial 

dimensions. Concatenation (concatenate_31, concatenate_32, etc.) is performed with 

the corresponding feature maps from the encoding path to provide detailed localization 

information. Then, convolutional layers (conv2d_157, conv2d_158, etc.) followed by 

batch normalization and dropout are applied to refine the segmentation. 

Output layer: The final layer (conv2d_167) produces segmentation masks with 

the same dimensions as the input images, where each pixel represents a class 

probability (in this case, binary segmentation). 

 

Figure 15: UNET Architecture 



33 

 

 

For the Segmentation phase, 20 different Unet Models were used. They had 

different training sizes, different batch sizes, different epochs sizes, and different loss 

functions. Not only simple Unet was used in these trials, Stacked Unet, U2Net and 

CellSegUnet can be mentioned.  

After training the models, first the accuracy of the model was found. It was 

done by testing 19 images and comparing their ground truth with the predicted image. 

The best performing models are used for further work to find the confluency of the 

cells in the image.  

 

 

3.5 Classification Phase 

The second phase of this study is the classification task. Different combinations 

were used with unsupervised learning KMeans, to cluster the images. 

The first try was to use KMeans to cluster two different cells, A549 and Balb 

3T3. For these two cells, the dataset was acquired from D1 and the original image was 

cropped. Two normalization techniques were used: Min-Max and Z-score.  

The second try was to use KMeans to cluster between the 3 densities of 

biomaterials used in A549. Since the biomaterial was injected on the second day, D2 

was also included into the classification, which means 4 classes. PCA was used and 

different trials were conducted with VGG16 and ResNet50.  

The same approach was implemented, but this time with supervised learning 

LeNet.  

The third try was to use KMeans to cluster between the 2 densities of 

biomaterials used in A549. The densities of the biomaterial taken into consideration 

for the classification were 20ug and 50ug. PCA was used and different trials were 
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conducted with VGG16 and ResNet50. Again, the same approach was used with 

supervised learning LeNet.  The first image is the raw image, the second is the manual 

annotation performed on it, and the last image is the mask. For a short training test the 

images with the best masks will be cropped in a new format: 255x255. This will 

generate twenty images out of one.  
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CHAPTER 4 

RESULTS AND DISCUSSIONS  

 

4.1 Segmentation Phase  

28 UNet models and architectures were trained and tested over different 

hyperparameters. The table details the performance of 28 different UNet models 

trained and tested with varying hyperparameters to determine their effectiveness in cell 

confluence determination. Each model is evaluated based on its architecture, loss 

function, number of images, batch size, epochs, and accuracy metrics including train, 

validation, and test accuracy. Among these, models number 23 and 28 have been 

highlighted as the best-performing models. The best two performing models, 

highlighted below, are used to find the confluence of the cells. 
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Table 2: UNET Model Results 

Model 

Numbe

r 

UNET 

Models 
Loss Function 

Nr of  

Images 

Batc

h 

Size 

Epoch

s 

Train 

Accurac

y 

Validatio

n 

Accuracy 

Test 

Accurac

y 

1 unet2 binary_crossentropy 19 2 100   48.03% 

2 unet2 binary_crossentropy 19 8 100   44.42% 

3 unet2 binary_crossentropy 19 16 100    

4 unet2 binary_crossentropy 38 2 100   95.83% 

5 unet2 binary_crossentropy 38 8 100   96.06% 

6 unet2 binary_crossentropy 38 16 100    

7 unet2 binary_crossentropy 76 2 100 0.944 0.955 94.22% 

8 unet2 binary_crossentropy 76 8 100 0.890 0.647 75.63% 

9 unet2 binary_crossentropy 76 16 100 0.899 0.655 68.47% 

10 SUNET binary_crossentropy 76 2 100 0.829 0.784 94.79% 

11 unet2 binary_crossentropy 285 2 100 0.832 0.792 95.27% 

12 unet2 binary_crossentropy 285 8 100 0.982 0.969 95.63% 

13 unet2 binary_crossentropy 285 16 100 0.860 0.601 78.45% 

14 unet2 binary_crossentropy 285 24 100 0.932 0.567 86.21% 

15 U2NET binary_crossentropy 285 2 100   95.22% 

16 SUNET2 binary_crossentropy 285 2 100   95.96% 

17 SUNET2 binary_crossentropy 285 8 100 0.977 0.967 95.22% 

18 CellSegUnet binary_crossentropy 285 2 100 0.014 
0.000015

8 
 

19 unet2 binary_crossentropy 1710 2 100 0.906 0.739  

20 unet2 binary_crossentropy 1710 8 100 0.849 0.498  

21 unet2 binary_crossentropy 1710 16 100 0.893 0.769  

22 unet3 
combined_dice_bce_lo

ss 
285 2 100 0.990 0.967  

23 unet3 
combined_dice_bce_lo

ss 
285 8 100 0.996 0.970  

24 unet3 
combined_dice_bce_lo

ss 

285-

gauss 
8 100 0.865 0.532  

25 unet3 
combined_dice_bce_lo

ss 

285-

median 
8 100 0.874 0.544  
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Model 

Numbe

r 

UNET 

Models 
Loss Function 

Nr of  

Images 

Batc

h 

Size 

Epoch

s 

Train 

Accurac

y 

Validatio

n 

Accuracy 

Test 

Accurac

y 

26 unet3 
combined_dice_bce_lo

ss 

285-

CLAH

E 

8 100 0.903 0.462  

27 unet3 
combined_dice_bce_lo

ss 

285-

histnor

m 

8 100 0.940 0.553  

28 unet3 
combined_dice_bce_lo

ss 
285 8 200 0.993 0.966  

The simple UNet (unet2) models are trained with a binary cross-entropy loss 

function and cover a range of datasets from 19 to 1710 images. These models exhibit 

significant variability in performance, with train accuracy ranging from 82.9% to 

98.2%, validation accuracy from 56.7% to 96.9%, and test accuracy from 44.42% to 

95.63%. The results indicate that while some configurations of the simple UNet can 

achieve high accuracy, the performance is highly sensitive to changes in batch size and 

the number of images used. 

The stacked UNet architectures (SUNET and SUNET2) show a more 

consistent performance across different configurations. These models, also using a 

binary cross-entropy loss function, were trained on datasets ranging from 76 to 285 

images with batch sizes between 2 and 8. They demonstrate high train accuracy, from 

82.9% to 97.7%, and validation accuracy between 78.4% and 96.7%, with test 

accuracy consistently above 94%.  

In contrast, the CellSegUnet model, which is designed specifically for cell 

segmentation, performed poorly in this experiment. Despite being trained on 285 

images with a batch size of 2, it achieved an exceptionally low train accuracy of 1.4% 

and a validation accuracy of just 0.001508%, indicating potential issues with either the 

implementation or suitability of this model for the specific task.  

The U2NET model, also trained on 285 images with a binary cross-entropy 

loss function, showed promising test accuracy of 95.22%. However, the lack of 

detailed train and validation accuracy metrics limits a comprehensive evaluation of its 
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performance. Nonetheless, the test accuracy suggests that U2NET can be effective for 

segmentation tasks with a smaller batch size. 

The UNet3 models, which utilize a combined Dice and Binary Cross-Entropy 

loss function, stand out for their exceptional performance. These models were trained 

on datasets of 285 images, with batch sizes between 2 and 8, and epochs ranging from 

100 to 200. They consistently exhibit high train accuracy (86.5% to 99.6%) and 

validation accuracy (46.2% to 97.0%). The variability in validation accuracy based on 

preprocessing techniques (Gaussian, Median, CLAHE, and Histogram Normalization) 

highlights the model's sensitivity to input data quality. Despite this, the superior 

performance of models 23 and 28, with train accuracy of 99.6% and 99.3% and 

validation accuracy of 97.0% and 96.6% respectively, underscores the effectiveness of 

the combined loss function in enhancing segmentation accuracy. 

Below, 20 unseen images were used to test the two best models. It uses several 

evaluation metrics such as Accuracy, Intersection over Union (IoU), Dice Coefficient, 

and F1-Score. After being tested on several images, the mean of each evaluation 

metrics is calculated, for a conclusion to be drawn regarding each model. This is done 

for both Model_1 (model number 23) and Model_2 (model number 28).  

4.1.1 UNet Model_1  

Table 3: Model 1 Results 

Model_1 

Image Accuracy IoU Dice Coefficient F1-Score 

image_0_0.png 0.96 0.92 0.96 0.96 

image_0_1.png 0.97 0.95 0.97 0.97 

image_0_2.png 0.96 0.91 0.96 0.96 

image_0_3.png 0.96 0.92 0.96 0.96 

image_0_4.png 0.98 0.97 0.99 0.99 

image_1_0.png 0.96 0.94 0.97 0.97 

image_1_1.png 0.95 0.89 0.94 0.94 

image_1_2.png 0.94 0.90 0.95 0.95 

image_1_3.png 0.97 0.95 0.98 0.98 
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image_1_4.png 0.96 0.95 0.97 0.97 

image_2_0.png 0.96 0.94 0.97 0.97 

image_2_1.png 0.93 0.81 0.90 0.90 

image_2_2.png 0.95 0.86 0.92 0.92 

image_2_3.png 0.96 0.91 0.96 0.96 

image_2_4.png 0.98 0.97 0.99 0.99 

image_3_0.png 0.98 0.97 0.98 0.98 

image_3_1.png 0.97 0.94 0.97 0.97 

image_3_2.png 0.94 0.86 0.92 0.92 

image_3_3.png 0.96 0.95 0.97 0.97 

image_3_4.png 0.92 0.87 0.93 0.93 

Model_1 demonstrates high consistency and robustness in performance across 

all unseen images. The Accuracy values range from 0.92 to 0.98, indicating that the 

model is highly reliable in predicting cell confluence accurately. The IoU values, 

which range from 0.81 to 0.97, show that the model achieves a high degree of overlap 

between predicted and actual segmented areas. This is further supported by the Dice 

Coefficient and F1-Score, both ranging from 0.90 to 0.99, which confirm the model's 

effectiveness in achieving precise and accurate segmentation. 

 

Table 4: Model 1 Mean Results 

Model_1: Mean Results 

Model Accuracy 0.96 

Model IoU 0.92 

Model Dice Coefficient 0.96 

Model F1-Score 0.96 

 

The consistently high performance of Model_1 underscores its capability to 

generalize well to new, unseen images. The few instances of slightly lower 

performance (e.g., image_2_1 and image_3_4) still give good results, suggesting 
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minor variability that could be attributed to differences in image quality or illumination 

problems.  

 

 

 

 

 

Figure 16: Predictions using Model_1 

The pipeline for predicting the label start by getting a big image 1280x1024. 

The next step is cropping it to 256x256 since that is the size of image the model is 
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trained on. Some predicting images are also shown above. In the end the inputted 

image is reconstructed. Below, four images will be illustrated. Image (a) is the original 

image in the original size; image (b) is the manually labeled mask of the original 

image; image (c) is the predicted mask of the original image; and image (d) is a visual 

XOR of the manually annotated mask and predicted mask. 

 

     

     

Figure 17: Predictions using Model_1 
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Figure 18: Training Dice Coefficient for Model_1 

4.1.2 UNet Model_2 

Table 5: Model 2 Evaluation Metrics 

Model_2 

Image Accuracy IoU Dice Coefficient F1-Score 

image_0_0.png 0.95 0.91 0.95 0.95 

image_0_1.png 0.97 0.93 0.96 0.96 

image_0_2.png 0.95 0.89 0.94 0.94 

image_0_3.png 0.95 0.92 0.96 0.96 

image_0_4.png 0.97 0.96 0.98 0.98 

image_1_0.png 0.95 0.92 0.96 0.96 

image_1_1.png 0.95 0.88 0.94 0.94 

image_1_2.png 0.94 0.90 0.95 0.95 

image_1_3.png 0.97 0.95 0.98 0.98 

image_1_4.png 0.97 0.95 0.98 0.98 

image_2_0.png 0.96 0.93 0.97 0.97 

image_2_1.png 0.94 0.82 0.90 0.90 

image_2_2.png 0.95 0.84 0.91 0.91 

image_2_3.png 0.95 0.90 0.95 0.95 

image_2_4.png 0.98 0.97 0.98 0.98 

image_3_0.png 0.97 0.95 0.98 0.98 
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image_3_1.png 0.95 0.92 0.96 0.96 

image_3_2.png 0.93 0.85 0.92 0.92 

image_3_3.png 0.96 0.95 0.97 0.97 

image_3_4.png 0.92 0.85 0.92 0.92 

Model_2 showcases high consistency and robustness in its segmentation 

performance on unseen images. The model maintains a mean Accuracy of 0.95. The 

mean IoU of 0.91 reflects a high degree of overlap between the predicted and actual 

segmented areas, while it achieves a mean Dice Coefficient and F1-Score of 0.95. 

Images such as image_2_1 and image_3_4 show slightly lower performance with IoU 

values of 0.82 and 0.85, and Dice Coefficients of 0.90 and 0.92, respectively. These 

instances, although still within acceptable ranges, highlight potential areas for further 

refinement or indicate differences in image complexity or quality. 

Table 6: Model 2 Mean Results 

Model_2: Mean Results 

Model Accuracy 0.95 

Model IoU 0.91 

Model Dice Coefficient 0.95 

Model F1-Score 0.95 
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Figure 19: Predictions using Model_2 

The pipeline for predicting the label start by getting a big image 1280x1024. 

The next step is cropping it to 256x256 since that is the size of image the model is 

trained on. Some predicting images are also shown above. In the end the inputted 

image is reconstructed. Below, four images will be illustrated. Image (a) is the original 

image in the original size; image (b) is the manually labeled mask of the original 

image; image (c) is the predicted mask of the original image; and image (d) is a visual 

XOR of the manually annotated mask and predicted mask.  
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(a)                                                                 (b) 

       

(c)                                                                 (d) 

Figure 20: Predictions using Model_2 

 

 

 

Figure 21: Training Dice Coefficient for Model_2 
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In conclusion, both Model_1 and Model_2 are highly effective for 

segmentation tasks, achieving high accuracy and precision on unseen images. 

Model_1 has a slight overall advantage in all metrics—Accuracy, IoU, Dice 

Coefficient, and F1-Score. This indicates that Model_1 may be marginally more 

reliable and precise in its predictions, particularly for complex segmentation scenarios. 

Nonetheless, the differences are minimal, and both models are strong candidates for 

practical applications in cell segmentation tasks. 

 

Figure 22: Training Dice Coefficient for both models 

4.1.3 Confluency Results 

Cell confluency was calculated using two selected models from a set of 28, 

focusing on their performance across three distinct datasets. The datasets comprised 

two groups containing biomaterial PAR30 and one group with biomaterial PLL250. 

Each dataset was further subdivided into two main folders: day 1 images and day 2 

images. For the biomaterial PAR30, images were categorized by varying densities of 

5 µg, 20 µg, and 50 µg. In the case of biomaterial PLL250, the categories included 

densities of 5 µg and 500 µg. The cell confluency was determined using the predicting 

models, which employed the U-Net architecture. Subsequently, the average 

confluency for each folder was calculated. This comprehensive analysis helped with 

the assessment of the risk associated with different biomaterial densities. 
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4.1.3.1 Dataset_1: PAR30 

 The images in this dataset contain several folders: D1- Day 1 of the 

measurements; D2-Day 2 which means monitoring the cells in the second day; 

D2_PAR30_5ug – cells in day 2 but the biomaterial with density 5ug is injected; 

D2_PAR30_20ug – cells in day 2 but the biomaterial with density 20ug is injected; 

D2_PAR30_50ug – cells in day 2 but the biomaterial with density 50ug is injected.  

 For each of the above folders, the images were tested using both UNet Model_1 

and Model_2.  

 After calculating the cell confluency for each folder using both models, the 

average cell confluency is found. Also, the standard deviation for each folder is found. 

The averages are compared between the models, but also between the folders to 

examine the trend.  

 In the end, the averages are normalized and the assessment of biomaterial is 

conducted. The threshold used is 70%. If the area covered by the cells or differently 

mentioned as cell confluency, is greater than 70% it means that the biomaterial is 

nontoxic. Consequently, if the confluency is below that threshold, the biomaterial is 

considered toxic. 
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Table 7: D1 Confluency of both models 

D1 

Cell_Name C_Unet100 C_Unet200 Difference 

001 62.461 60.135 2.325 

002 52.321 54.553 2.232 

003 58.223 59.186 0.963 

004 40.793 42.509 1.715 

005 47.274 46.481 0.793 

006 43.166 44.031 0.865 

007 59.253 60.118 0.865 

008 55.525 56.870 1.346 

009 41.405 42.930 1.526 

010 32.332 31.996 0.336 

011 63.910 64.756 0.846 

012 55.107 56.204 1.097 

013 39.883 40.194 0.311 

014 45.931 46.753 0.821 

015 38.342 34.700 3.642 

016 43.032 44.608 1.576 

017 49.817 51.922 2.105 

018 44.842 44.844 0.002 

019 33.534 34.355 0.821 

020 41.666 42.162 0.496 

021 39.107 38.260 0.847 

022 32.352 31.824 0.528 

023 51.830 54.300 2.470 

024 42.394 42.501 0.108 

025 51.466 51.253 0.213 

026 38.231 38.691 0.460 

027 48.996 48.640 0.356 

028 45.152 45.786 0.634 

029 45.889 46.463 0.574 

030 33.704 31.411 2.293 

Average 45.931 46.281  

Standard Deviation 8.713500185 9.160313082  
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Table 8: D2 Confluency of both models 

D2 

Cell_Name C_Unet100 C_Unet200 Difference 

001 93.988 97.058 3.070 

002 82.002 84.270 2.268 

003 96.393 98.016 1.623 

004 96.707 98.768 2.061 

005 39.230 44.861 5.631 

006 73.691 78.866 5.175 

007 86.926 86.730 0.195 

008 87.566 91.375 3.809 

009 95.629 94.929 0.700 

010 93.060 92.528 0.532 

011 92.860 93.568 0.708 

012 78.490 84.409 5.919 

Average 84.712 87.115  

Standard Deviation 16.1549907 14.68651317  
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Table 9: D2_5ug Confluency of both models 

D2_5ug 

Cell_Name C_Unet100 C_Unet200 Difference 

001 61.739 59.340 2.399 

002 81.377 85.400 4.023 

003 84.250 82.893 1.357 

004 92.064 91.836 0.228 

005 88.897 90.740 1.842 

006 85.503 85.798 0.295 

007 89.151 86.578 2.573 

008 86.889 91.191 4.302 

009 40.120 46.001 5.881 

010 91.053 91.769 0.716 

011 83.251 82.254 0.998 

012 92.245 98.364 6.119 

Average 81.378 82.680  

Standard Deviation 15.34412322 14.99223137  
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Table 10: D2_20ug Confluency of both models 

D2_20ug 

Cell_Name C_Unet100 C_Unet200 Difference 

001 65.960 63.309 2.651 

002 55.895 59.127 3.232 

003 39.859 42.418 2.559 

004 56.136 57.136 1.001 

005 50.870 43.967 6.903 

006 64.534 61.906 2.628 

007 67.733 71.834 4.101 

008 52.220 55.804 3.583 

009 53.256 52.364 0.892 

010 52.393 51.124 1.269 

011 47.545 49.698 2.153 

Average 55.127 55.335  

Standard Deviation 8.333729175 8.667446148  

Table 11:D2_50ug Confluency of both models 

D2_50ug 

Cell_Name C_Unet100 C_Unet200 Difference 

001 21.633 22.705 1.072 

002 32.398 30.303 2.096 

003 40.192 38.314 1.878 

004 27.397 27.175 0.222 

005 31.501 30.923 0.578 

006 34.076 32.791 1.285 

007 40.402 43.070 2.668 

008 35.549 26.727 8.822 

009 21.048 20.663 0.385 

010 32.655 22.899 9.755 

011 33.498 32.364 1.134 

Average 31.850 29.812  

Standard Deviation 6.372221468 6.807383643  
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Table 12: Average and STDev (a) model_1 and (b) model_2 

Model_1 

Day D1 D2 D2_5 D2_20 D2_50 

Average 45.931 84.712 81.378 55.127 31.850 

STD 8.714 16.155 15.344 8.334 6.372 

(a) 

Model_2 

Day D1 D2 D2_5 D2_20 D2_50 

Average 46.281 87.115 82.680 55.335 29.812 

STD 9.160 14.687 14.992 8.667 6.807 

(b) 

 

Figure 23: Gaussian Distribution for Dataset_1 
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Figure 24: Comparison of Cell Confluency between models 

 In the above graph, the comparison of the average confluency for each day is 

shown. When comparing the models, they are quite similar. The models generally 

agree on the confluency predictions with small differences, usually around 2-3%. This 

suggests that both models have similar capabilities in predicting cell confluency. 

 The confluency of Day 1 serves as a baseline for comparison on Day 2 without 

biomaterial. For Day 2, a significant increase can be seen, indicating considerable cell 

growth over time without the presence of additional biomaterial. For biomaterial with 

density 5ug, the results suggest that the presence of it might slightly decrease cell 

confluency, though the impact is relatively minor. There is a drop of 30% from Day 2 

to density 20ug which indicates more significant inhibitory effect on cell confluency. 

For density 50ug, the lowest confluency is observed. This indicates a strong negative 

impact of the high concentration of biomaterial on cell confluency. One observation is 

that higher biomaterial concentrations may severely limit cell health or cause 

significant cell death. 

The presented tables illustrate the results of cell confluency measurements 

from segmentation, which are used to determine the toxicity of varying densities of 

biomaterial PAR30 over Day 2 (D2). The threshold for toxicity is defined as 70% 

confluency; values above this threshold indicate nontoxicity, while values below 

signify toxicity. 
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Table 13: Ratios of biomaterials over Day2 

Ratio Model_1 

5/D2 0.961 Nontoxic 

20/D2 0.651 Toxic 

50/D2 0.376 Toxic 

(a) 

Ratio Model_2 

5/D2 0.949 Nontoxic 

20/D2 0.635 Toxic 

50/D2 0.342 Toxic 

(b) 

In Table (a), the confluency results for Model_1 are examined. At a density of 

5ug of PAR30, the confluency is measured at 0.961. This high confluency value 

indicates that the condition is nontoxic, as it is well above the 70% threshold. However, 

as the density increases to 20ug, the confluency drops to 0.651. This lower value falls 

below the toxicity threshold, indicating that the condition has become toxic. The trend 

continues at a density of 50ug, where the confluency further decreases to 0.376, 

reinforcing the indication of toxicity. 

Similarly, in Table (b), the results for Model_2 show a comparable pattern. At 

a density of 5ug, the confluency is 0.949, which is still above the 70% threshold and 

thus classified as nontoxic. When the density is increased to 20ug, the confluency 

reduces to 0.635, falling below the toxicity threshold and indicating toxicity. At the 

highest density of 50ug, the confluency drops significantly to 0.342, confirming the 

toxic nature of this condition. 
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Figure 25: Normalization of PAR30 results dataset_1 

Both Model_1 and Model_2 exhibit a clear trend regarding the toxicity of 

PAR30 at varying densities. At the lower density of 5ug per Day 2, the confluency is 

high, and the condition is deemed nontoxic in both models. However, as the density 

increases to 20ug and further to 50ug, the confluency values decrease significantly, 

falling below the 70% threshold and indicating toxicity. It can be said that with density 

of 20ug the cell is close to the threshold where it is starting to become toxic. It can be 

concluded that higher densities result in reduced confluency and increased toxicity. 

This pattern is consistently observed across both models, reinforcing the reliability of 

the confluency measurements in determining the toxicity of biomaterial densities. 

 

4.1.3.2 Dataset_2: PAR30 

Table 14: Average and STDev (a) model_1 and (b) model_2 

Model_1 

Day D1 D2 D2_5 D2_20 D2_50 

Average 45.284 79.880 83.055 45.054 41.255 

STDev 18.408 19.675 14.918 24.552 22.533 
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(a) 

Model_2 

Day D1 D2 D2_5 D2_20 D2_50 

Average 46.878 80.874 84.467 43.739 39.575 

STDev 19.735 19.355 14.998 25.271 23.249 

(b) 

 

Figure 26: Average Cell Confluency Models 

The table above compares the confluency results for each day across two 

models. Both models show similar trends in their confluency predictions, with 

differences generally around 1-2%. This indicates that both models have comparable 

capabilities in predicting cell confluency. 

From the table, we can analyze the trends observed for each model with respect 

to different biomaterial densities over time. On Day 1, the baseline confluency is 

approximately 45% for both models, which serves as a starting point for comparison. 

On Day 2, there is a significant increase in confluency, with Model_1 reaching 79.9% 

and Model_2 at 80.9%. This indicates considerable cell growth over time without the 

presence of additional biomaterial, reflecting healthy cell growth. 
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When examining the effect of different biomaterial densities, we observe that 

for the 5ug density, both models show high confluency values of 83.1% for Model_1 

and 84.5% for Model_2 on Day 2.5. This suggests that a low density of biomaterial 

does not significantly hinder cell growth, maintaining high confluency levels. 

However, at a density of 20ug, there is a notable drop in confluency, with 

Model_1 at 45.1% and Model_2 at 43.7%. This substantial decrease, approximately 

30% from Day 2, indicates that a medium density of biomaterial has a significant 

inhibitory effect on cell confluency, suggesting potential negative impacts on cell 

health or viability. 

At the highest density of 50ug, the lowest confluency values are observed: 

41.3% for Model_1 and 39.6% for Model_2. This further reduction in confluency 

indicates a strong negative impact of the high concentration of biomaterial on cell 

confluency. The results imply that higher biomaterial concentrations severely limit cell 

health or cause significant cell death. 

Table 15: Ratios of biomaterials over Day2 

Ratio Model_1 

5/D2 1.040 Nontoxic 

20/D2 0.564 Toxic 

50/D2 0.516 Toxic 

(a) 

Ratio Model_2 

5/D2 1.044 Nontoxic 

20/D2 0.541 Toxic 

50/D2 0.489 Toxic 

(b) 
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The tables provided present the ratios of biomaterial densities D2_5, D2_20, 

and D2_50 relative to the baseline density D2, along with the confluency results for 

two models, Model_1 and Model_2. These ratios serve as indicators of the impact of 

different biomaterial densities on cell confluency. 

In the first table, the ratios for Model_1 suggest that a density of 5ug leads to 

a slight increase in confluency, as the ratio is slightly above 1. However, for densities 

of 20ug and 50ug, there is a substantial decrease in confluency, with the ratios well 

below 1.  

In the second table, the ratios for Model_2 show a similar pattern to Model_1, 

with a slight increase in confluency at a density of 5ug, followed by significant 

decreases at densities of 20ug and 50ug. Again, this suggests that higher densities of 

biomaterial are associated with reduced cell confluency, indicating potential toxicity. 

It can be concluded that a density of 5ug is nontoxic, while densities of 20ug 

and 50ug are toxic. From the results, it can be seen that when increasing the density, 

the cells become more toxic.   

 

Figure 27: Ratio of Cell Confluence using Model1 and Model2 
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4.1.3.3 Comparison between PAR30 

The confluency results obtained from cell images captured on two different 

dates but of the same biomaterial, PAR30, are being compared. By comparing the 

confluency results from these images, insights can be gained into how the biomaterial 

and its density affects cell growth and health over time. The comparison aims to 

determine if there are any significant differences in cell confluency between the two 

dates. 

Table 16: Cell Confluence Comparison 

Ratio: Model_1 

PAR30 : Dataset_1 Dataset_2 MTT 

5/D2 0.961 1.040 Healthy 

20/D2 0.651 0.564 Nonhealthy 

50/D2 0.376 0.516 Nonhealthy 

(a) 

Ratio: Model_2 

PAR30 : Dataset_1 Dataset_2 MTT 

5/D2 0.949 1.044 Healthy 

20/D2 0.635 0.541 Nonhealthy 

50/D2 0.342 0.489 Nonhealthy 

(b) 

The provided tables present the confluency results from cell images captured 

on two different dates, Dataset_1, Dataset_2, for two models, Model_1 and Model_2. 

The confluency values represent the proportion of the cell culture surface covered by 

cells, with values above 70% indicating nontoxicity and values below indicating 

toxicity. 
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Figure 28: Results Model1 

In the above graph, model_1 is used to compare the confluency results 

(normalized) over two datasets. On the first dataset, the difference between density 

20ug to 50 ug is a decrease of 28%. While on the second dataset, the difference 

between them is a smaller decrease of roughly 5%. 

 

Figure 29: Results Model2 
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In the above graph, model_2 is used to compare the confluency results 

(normalized) over two datasets. On the first dataset, the difference between density 

20ug to 50 ug is a decrease of 30%. While on the second dataset, the difference 

between them is a smaller decrease of 5%. 

 

4.1.3.4 PLL250 

Table 17: Average and STdev using both models 

Model_1 

Day D1 D2 D2_5 D2_500 

Average 45.284 79.880 59.371 31.916 

STD 18.245 19.675 16.421 21.840 

(a) 

Model_2 

Day D1 D2 D2_5 D2_500 

Average 46.878 80.874 60.891 28.097 

STD 19.560 19.355 17.035 20.007 

 

Table 18: Toxicity results for dataset 3 

Ratio Model_1 

5/D2 0.743 Nontoxic 

500/D2 0.400 Toxic 

(a) 

Ratio Model_1 

5/D2 0.753 Nontoxic 

500/D2 0.347 Toxic 
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The table presents the ratio of cell confluency on Day 2 under different 

concentrations of PLL250 to the baseline confluency on Day 2 without PLL250 for 

two models. The ratios are calculated to assess the potential cytotoxicity of PLL250 

based on a toxicity threshold, where a ratio greater than 0.7 indicates non-toxicity and 

a ratio of 0.7 or below suggests toxicity. 

 

Figure 30: Normalization for dataset 3 

For the condition with 5 µg of PLL250, the ratio of confluency to the baseline 

Day 2 confluency is 0.74 for Model 1 and 0.75 for Model 2. These ratios are both 

above the 0.7 threshold, indicating that 5 µg is considered non-toxic by both models, 

suggesting that this concentration does not adversely affect cell growth to a level of 

concern. 

On the other hand, for a density of 500 µg, the ratios drop significantly, with 

Model 1 showing a ratio of 0.40 and Model 2 a ratio of 0.35. These ratios are well 

below the 0.7 threshold, indicating that 500 µg of PLL250 is toxic to the cells. 
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4.1.3.5 Comparison of all results 

 

Figure 31: Comparison all three datasets, based on their confluence ratio, with 

model_1 

 

Figure 32:  Comparison all three datasets, based on their confluence ratio, with 

model_2 
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4.2 Classification Phase 

Representative images used for classification.   
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4.2.1 A549 and 3T3 

4.2.1.1 KMeans 

The first approach was to classify with unsupervised learning cell A549 and 

cell 3t3.   

Using simply Kmeans to classify between two classes, without any 

preprocessing techniques it was hard to achieve high accuracy results. In this case, the 

highest accuracy achieved was 12%.  

 On the other hand, when implementing t-SNE and PCA for feature extraction, 

and Z-score normalization technique the accuracy results increased.  

 

(a) Min-Max Normalization Technique 

 

(a) Z-Score Normalization Technique 
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Classification Report Using KMeans for A549 and 3T3: 

precision    recall  f1-score   support 

 

A549       0.60      0.97      0.74       119 

3T3        0.93      0.34      0.50       119 

 

accuracy                               0.66       238 

macro avg          0.76      0.66      0.62       238 

weighted avg       0.76      0.66      0.62       238 

Model_1_1 
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In the above model with KMeans, a total of 81 images were misclassified. 3 of 

which were A549 cells and 78 images were 3T3 cells. Several combination of 

normalization techniques, feature extractions and parameters were tried, but it came to a 

point where the accuracy was not changing.  

 

4.2.1.2 Agglomerative Clustering  

 In this section, the best model from the above section is used, but with another 

unsupervised classifier: Agglomerative Clustering. Using this classifier, there were a total 

of 81 misclassified images, but A549 was classified correctly, and all the misclassified 

images were from the 3T3 class.  
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Model_1_2 
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4.2.1.2 DBSCAN Clustering  

 In this section, the best model from the above section is used, but with another 

unsupervised classifier: DBSCAN. Using this classifier, there were a total of 119 

misclassified images, which means one class (in this case 3T3) was not classified as 

different at all. Both classes were classified as one with DBSCAN.  

 

Model_1_3 
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4.2.1.2 SOM Clustering  

 In this section, the best model from the above section is used, but with another 

unsupervised classifier: SOM (Self-Organizing Maps). Self-Organizing Maps (SOM) are 

a type of unsupervised learning neural network that can be used for clustering. Using this 

classifier, there were a total of 24 misclassified images, 3 from A549 class and 21 from 

3T3 class. This unsupervised method yielded an accuracy of 90%.  

 

Model_1_4 
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4.2.2 Classification Between Different Densities - 4 classes 

4.2.1.1 VGG16+KMeans 

The second try was to use KMeans to cluster between the 3 densities of 

biomaterials used in A549. In this model, VGG16 is used for feature extraction.  

Adjusted Rand Index: 0.31 

Accuracy: 0.22 

Classification Report: 

              precision    recall  f1-score   support 

 

          d2       0.42      0.76      0.54       120 

        d2-5       0.00      0.00      0.00       120 

       d2-20       0.11      0.12      0.11       120 

       d2-50       0.00      0.00      0.00       120 

 

    accuracy                           0.22       480 

   macro avg       0.13      0.22      0.16       480 

weighted avg       0.13      0.22      0.16       480 

Model_2 

4.2.1.2 VGG16+PCA+KMeans 

Model_3 is the same as the above one, but it also has PCA for feature extraction and 

dimensionality reduction.  
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Adjusted Rand Index: 0.52 

Accuracy: 0.67 

Classification Report: 

              precision    recall  f1-score   support 

          d2       0.27      0.05      0.08       120 

        d2-5       0.47      0.91      0.62       120 

       d2-20       0.85      0.74      0.79       120 

       d2-50       0.95      0.97      0.96       120 

 

    accuracy                           0.67       480 

   macro avg       0.64      0.67      0.61       480 

weighted avg       0.64      0.67      0.61       480 

Model_3 
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4.2.1.3 ResNet50+PCA+KMeans 

Model_4 uses ResNet 50 instead of VGG16.   

Adjusted Rand Index: 0.60 

Accuracy: 0.70 

Classification Report: 

              precision    recall  f1-score   support 

 

          d2       0.33      0.05      0.09       120 

        d2-5       0.48      0.89      0.63       120 

       d2-20       0.90      0.85      0.88       120 

       d2-50       0.94      1.00      0.97       120 

 

    accuracy                           0.70       480 

   macro avg       0.67      0.70      0.64       480 

weighted avg       0.67      0.70      0.64       480 

Model_4 
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1.2.2 4.2.1.4 ResNet101+PCA+KMeans 

Model_5 is the same as Model_4, but instead of ResNet50 uses ResNet101.  

Adjusted Rand Index: 0.52 

Accuracy: 0.31 

Classification Report: 

              precision    recall  f1-score   support 

 

          d2       0.49      0.45      0.47       120 

        d2-5       0.00      0.00      0.00       120 

       d2-20       0.91      0.78      0.84       120 

       d2-50       0.00      0.00      0.00       120 

 

    accuracy                           0.31       480 

   macro avg       0.35      0.31      0.33       480 

weighted avg       0.35      0.31      0.33       480 

Model_5 
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4.2.3 Classification between 20ug and 50 ug 

4.2.3.1 KMeans+ VGG16+ PCA 

Adjusted Rand Index: 0.92 

Accuracy: 0.98 

 

Model_6 
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4.2.3.2 KMeans+ ResNet50+ PCA 

Adjusted Rand Index: 0.91 

Accuracy: 0.975 

Classification Report: 

              precision    recall  f1-score   support 

 

       d2-20       1.00      0.95      0.97       120 

       d2-50       0.95      1.00      0.98       120 

 

    accuracy                           0.97       240 

   macro avg       0.98      0.97      0.97       240 

weighted avg       0.98      0.97      0.97       240 

Model_7 
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4.2.3.3 LeNet, 10 Epochs 

Test Accuracy: 0.83 

                        precision    recall  f1-score   support 

       d2-20       0.75      1.00      0.86        24 

       d2-50       1.00      0.67      0.80        24 

    accuracy                           0.83        48 

   macro avg       0.88      0.83      0.83        48 

weighted avg       0.88      0.83      0.83        48 

Model_8 
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80 

 

4.2.3.3 LeNet, 100 Epochs 

Test Accuracy: 0.81 

                  precision    recall  f1-score   support 

       d2-20       0.89      0.71      0.79        24 

       d2-50       0.76      0.92      0.83        24 

    accuracy                           0.81        48 

   macro avg       0.83      0.81      0.81        48 

weighted avg       0.83      0.81      0.81        48 

Model_9 
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Total misclassified images: 9 

 

4.2.4 Classification between day2 and density 5  

4.2.4.1 KMeans + VGG16 + PCA 

Adjusted Rand Index: -0.0007956115740546878 

Accuracy: 0.5 

Classification Report: 

              precision    recall  f1-score   support 

          d2       0.50      0.95      0.66       120 

        d2-5       0.50      0.05      0.09       120 

    accuracy                           0.50       240 

   macro avg       0.50      0.50      0.37       240 

weighted avg       0.50      0.50      0.37       240 

Model_10 
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 We can say that classifying between these two classes is quite hard, since all 

240 images are quite similar to each other.  
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4.2.5 Classification between density 5ug and 20ug 

4.2.5.1 KMeans + VGG16 + PCA 

Adjusted Rand Index: 0.61 

Accuracy: 0.11 

Classification Report: 

              precision    recall  f1-score   support 

        d2-5       0.05      0.04      0.04       120 

       d2-20       0.15      0.17      0.16       120 

    accuracy                           0.11       240 

   macro avg       0.10      0.11      0.10       240 

weighted avg       0.10      0.11      0.10       240 

Model_11 
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4.2.5.2 KMeans + ResNet50 + PCA + tSNE 

Adjusted Rand Index: 0.42 

Accuracy: 0.825 
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4.3 Classification Results  

Table 19: Classification of D2, D2_5ug, D2_20ug, and D2_50ug 

Model_Name Description Model_Combination Classes Accuracy 

Model_2 D2-D2_50 KMeans + VGG16 4 22% 

Model_3 D2-D2_50 KMeans+PCA+VGG16 4 67% 

Model_4 D2-D2_50 KMeans+PCA+ResNet50 4 70% 

Model_5 D2-D2_50 KMeans+PCA+ResNet101 4 30.8% 

The above table focuses on the classification of four specific classes (D2, 

D2_5ug, D2_20ug, and D2_50ug). Model 2, which uses KMeans and VGG16, starts 

with a relatively low accuracy of 22%, underscoring the need for additional 

improvements. When PCA is added in Model 3 alongside VGG16, the accuracy 

improves dramatically to 67%. This confirms the positive impact of PCA in enhancing 

the model's performance. Model 4, which employs KMeans, PCA, and ResNet50, 

achieves the highest accuracy in this set at 70%. This suggests that ResNet50, with its 

deeper architecture, is more effective for these classes than VGG16. However, Model 

5, which uses ResNet101 instead of ResNet50, sees its accuracy fall to 30.8%, likely 

due to the increased model complexity leading to overfitting or other issues. 

Table 20: Classification of D2_20ug and D2_50ug 

Model_Name Description Model_Combination Classes Accuracy 

Model_6 20-50ug KMeans+PCA+VGG16 2 98% 

Model_7 20-50ug KMeans+PCA+ResNet50 2 97.5% 

Model_8 20-50ug LeNet - 10 epochs 2 83% 

Model_9 20-50ug LeNet - 100 epochs 2 81% 

The above table shows the results of a binary classification between one 

biomaterial with different densities, 20ug and 50ug. Model 6, combining KMeans, 

PCA, and VGG16, achieves an impressive accuracy of 98%. This result is slightly 

surpassed by Model 7, which uses ResNet50 instead of VGG16 and achieves 97.5% 

accuracy. Both models demonstrate the effectiveness of using PCA with these deep 

learning models for binary classification tasks. LeNet models, represented by Models 
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8 and 9, show lower performance, with accuracies of 83% and 81%, respectively. This 

lower performance relative to VGG16 and ResNet50 suggests that LeNet, being a 

simpler model, is less capable of capturing the complex features required for high 

accuracy in these tasks. 

Table 21: All classification results 

Model_Name Description Model_Combination Classes Accuracy 

Model_1 

A549; 3T3 

KMeans 

2 

12% 

Model_1_1 KMeans+PCA+t-SNE 66% 

Model_1_2 AgglClust+PCA+t-SNE 66% 

Model_1_3 DBSCAN+PCA+t-SNE 50% 

Model_1_4 SOM+PCA+t-SNE 90% 

Model_2 

D2; D5; D2_20; 

D2_50 

KMeans + VGG16 

4 

22% 

Model_3 KMeans+PCA+VGG16 67% 

Model_4 KMeans+PCA+ResNet50 70% 

Model_5 KMeans+PCA+ResNet101 30.8% 

Model_6 

20ug; 50ug 

KMeans+PCA+VGG16 

2 

98% 

Model_7 KMeans+PCA+ResNet50 97.5% 

Model_8 LeNet - 10 epochs 83% 

Model_9 LeNet - 100 epochs 81% 

Model_10 
D2; D2_5 

KMeans+PCA+VGG16 
2 

50% 

Model_10_1 KMeans+PCA+VGG16+tSNE 50% 

Model_11 
D2; D2_20 

KMeans+PCA+VGG16 
2 

10.8% 

Model_11_1 KMeans+PCA+VGG16 82 % 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

5.1 Conclusions 

In the segmentation phase, 28 different UNet models were trained and tested 

for determining cell confluence, experimenting with varying hyperparameters such as 

loss functions, batch sizes, and epochs. Among the models tested, Model 23 and Model 

28 emerged as the top performers. Model 23 employed a combined dice-binary cross-

entropy loss function and showed impressive train and validation accuracies of 99.6% 

and 97.0%, respectively. Model 28, which was trained for 200 epochs with the same 

combined loss function, demonstrated a similar performance, with train and validation 

accuracies of 99.3% and 96.6%, respectively. Stacked Unet with two layers and U2Net 

also yielded good results.   

The preprocessing techniques did not yield good results. Surprisingly they 

made the models worse. That can be said after testing the models on images with 

ground truths.  

The analysis of cell confluence provided essential insights into the effects of 

various biomaterial concentrations on cell health. Two UNet models were used to 

evaluate cell confluence across different biomaterial densities, ranging from low to 

high concentrations. 

Both models exhibited remarkable consistency in their predictions of cell 

confluence, with a difference within 2-3%. This consistency supports the reliability of 

the models in assessing cell growth and the impact of biomaterials.  

For all three datasets, the initial confluence on Day 1, averaging around 45%, 

served as a baseline, with a significant increase to approximately 80% by Day 2. This 

rapid growth in the absence of biomaterials reflects healthy cells. At low 
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concentrations (5 ug), both PLL250 and PAR30 were found to be non-toxic, with 

confluence ratios above the 70% threshold. This suggests that low-density biomaterials 

do not slow cell growth process, and may even support cell growth, as indicated by the 

slight increase in confluence on Dataset_2 measurements. Contrarily, at medium (20 

ug) and high concentrations (50 ug for PAR30 and 500 ug for PLL250), there was a 

marked reduction in cell confluence. The ratios for medium density dropped below the 

70% toxicity threshold, signaling significant inhibitory effects on cell growth. At the 

highest densities, the confluence ratios decreased to around 0.35, indicating severe 

toxicity, likely leading to extensive cell death. 

The classification phase involved analyzing various models on datasets with 

different cell images with different biomaterial densities. Principal Component 

Analysis (PCA) and t-SNE consistently enhanced the classification accuracy across 

models. Models combining KMeans clustering with PCA and/or t-SNE, such as those 

utilizing VGG16 and ResNet50 architectures, achieved significantly higher accuracy 

compared to models without. This indicates that these techniques effectively reduce 

dimensionality, facilitating better feature extraction and classification performance. 

The analysis revealed that increased model complexity does not always lead to 

improved performance. For example, the more complex ResNet101 model performed 

worse than the simpler ResNet50, highlighting issues of overfitting and the need for 

balanced model complexity. 

Binary classification tasks generally yielded higher accuracies compared to 

multi-class tasks. Models distinguishing between two distinct cell conditions achieved 

accuracies nearing 98%, while multi-class models struggled. The highest accuracy in 

multi-class models (dividing in 4 classes) was 70%. This suggests that binary 

classification is more straightforward, likely due to the clearer distinction between two 

conditions compared to multiple, potentially overlapping categories. 
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5.2 Use in Medicine 

Significant practical benefits for doctors can be offered by the findings and 

developed models from this research. It is time saving for doctors and laboratory 

technicians to use automated cell confluence analysis tools, compared to manual 

counting and assessment. Automatization allows for more focus on diagnosis and 

treatment planning. The high consistency and accuracy in predicting cell confluence 

that are shown by these models, reduce variability and potential human error, ensuring 

reliable results. Toxic effects on cells can be quickly identified by evaluating cell 

growth at different biomaterial concentrations, which is crucial for early detection of 

adverse reactions in drug testing and treatment evaluations. 

The appropriate biomaterials for treatments can be selected by doctors, by 

understanding the impact of various biomaterial concentrations on cell health. Safe 

and effective dosages for biomaterials and drugs can be determined by insights into 

toxicity thresholds, minimizing side effects and improving patient outcomes. Disease 

diagnosis based on cell morphology and conditions can be supported by accurate 

classification of different cell conditions, enhanced with PCA and t-SNE, contributing 

to more personalized and effective medical care. 

Treatment progress can be tracked by monitoring cell confluence over time, 

allowing necessary adjustments to ensure optimal cell growth. New treatments can be 

assessed by comparing cell confluence and health before and after the treatment using 

these models. Personalized treatments tailored to individual patients based on their 

specific cellular conditions can be provided by doctors. 

 

 

5.3 Future Work 

One of the critical factors affecting the results of this study is the quality and 

consistency of manual annotations. It is highly recommended to re-annotate the images 

by involving different researchers. This will introduce diversity in the annotations and 
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help reduce individual bias. With a diverse set of annotations, retrain the UNet models 

to investigate how differences in ground truth affect model performance. This will help 

understand the sensitivity of the models to annotation and identify which models 

perform better to such differences. In the end, it is suggested to conduct an analysis 

comparing annotations from multiple researchers and to assess the new UNet models. 

This can provide insights into the consistency and reliability of the annotations, and 

highlight areas where further training or standardization might be necessary. 

One other suggestion for future work would be to try different cropping sizes, such 

as 512x512. This way the images will contain more information. 

Given that preprocessing techniques did not yield the expected results in the 

current study, it is suggested to explore and experiment with various advanced 

preprocessing methods. Techniques such as image normalization, histogram 

equalization, Gaussian Filter, and Median Filter could be re-evaluated and potentially 

combined in different ways to improve the input quality for model training. 

Retrain the UNet models with the newly annotated datasets and different 

preprocessing methods. This will allow for a direct comparison and identification of 

the most effective combination of annotation practices and preprocessing methods. 
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