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ABSTRACT 

 

LOWER GRADE GLIOMA RADIOMIC FEATURE  

SEGMENTATION IN RELATION TO GENOMIC SUBTYPES 

 

Kota, Klea  

M. Sc., Department of Computer Engineering  

Supervisor: Assoc. Prof. Dr. Arban Uka 

 

Whether applied for clinical research or patient health risk assessment, 

our aim is to implement a brain tumor classification and segmentation 

approach, with a focus on extracting tumor shape and texture features and 

investigating potential associations with genomic subtypes. By using a 

combination of UNET with ResNeXt50 backbone architecture, we 

investigate the improvement of model performance on a basis of 

hyperparameter alteration, as well as determining statistically significant 

associations within lower grade gliomas. We achieved a Mean Dice accuracy 

of 95% with the UNET ResNeXt50 model in tumor segmentation and in 

terms of extracting radiomic features. Our strongest shape feature 

associations across all three types of tumors resulted between Bounding 

Ellipsoid Volume Ratio and RNASeqCluster (p<0.008), RPPACluster 

(p<0.002); Convexity Defects and CNCluster (p<0.001), COCCluster 

(p<0.04); Correlation and RPPACluster (p<0.03); Homogeneity and 

RNASeqCluster (p<0.001), MethylationCluster (p<0.0003), 

OncosignCluster (p<0.002); Energy and RPPACluster, MethylationCluster 

(p<0.001). Our ROC AUC scores, pointed out the best discriminative abilities 

found in BEVR, Equivalent Diameter, Contrast for CNCuster C3 and 

RPPACluster R4, as well as Extent and Convexity Defects for Methylation 

Cluster M1. 

 

Keywords: MRI, Glioma, UNET, Feature Pyramid Network, Radiomics, 

Genomic Subtypes, ResNeXt50, Significant Associations 
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ABSTRAKT 

 

SEGMENTIMI I TIPAREVE RADIOMIKE TË GLIOMAVE TË  

GRADËS SË ULËT NË LIDHJE ME NËNTIPET GJENETIKE 

 

Kota, Klea  

M. Sc., Departamenti i Inxhinierisë Kompjuterike  

Udhëheqësi: Assoc. Prof. Dr. Arban Uka 

 

Përveç aplikimit në kërkimet klinike ose për vlerësimin e 

rrezikshmërisë së pacientit, qëllimi ynë është të implementojmë një model 

klasifikimi dhe segmentimi të tumorit, me fokus tek përdorimi i tipareve 

radiomike të tumorit për të investiguar lidhjet e mundshme me nëntipet 

gjenetike. Duke kombinuar modelin UNET me arkitekturën mbështetëse 

ResNeXt50, nxjerrim në pah përmirësimin e performancës në bazë të 

modifikimeve mbi parametrat, si dhe përcaktimin e lidhjeve statistikore të 

rëndësishme në gliomat e gradës së ulët. Rezultatet arritën vlerën e saktësisë 

dhe performancës 95% me Mean Dice, si dhe lidhjet statistikore më të 

rëndësishme me tiparet gjeometrike u gjetën midis Bounding Ellipsoid 

Volume Ratio dhe RNASeqCluster (p<0.008), RPPACluster (p<0.002); 

Convexity Defects dhe CNCluster (p<0.001), COCCluster (p<0.04); 

Correlation dhe RPPACluster (p<0.03); Homogeneity dhe RNASeqCluster 

(p<0.001), MethylationCluster (p<0.0003), OncosignCluster (p<0.002); 

Energy dhe RPPACluster, MethylationCluster (p<0.001). Nëpërmjet 

rezultateve të ROC AUC vlerësuam se tiparet me aftësitë dalluese më të sakta 

janë BEVR, Equivalent Diameter, Contrast për CNCuster C3 dhe 

RPPACluster R4, si dhe Extent dhe Convexity Defects për Methylation 

Cluster M1. 

 

Fjalët kyçe: MRI, Glioma, UNET, Feature Pyramid Network, Tipare 

Radiomike, Nëntipe Gjenetike, ResNeXt50, Lidhje Statistikore 
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CHAPTER 1 

INTRODUCTION 

 

1.1  Complexity of Brain Tumor MRIs in Segmentation  

Radiogenomics, refers to the integration of radiological MRI imaging 

characteristics with genomic data, to enhance the understanding of brain tumor 

biology, progression and patterns. Within this field, the precise prediction, 

classification and segmentation of brain tumor MRIs presents a significantly complex 

challenge, specifically in the context of extracting tumor shape and texture features 

and identifying significant associations between the features in lower grade gliomas 

and genomic subtypes. We want to determine the range of using these associations for 

future implementation in tumor type and aggressiveness prediction based on their 

genomic composition, as well as prove the reliability of shape and texture features in 

predicting the molecular and epigenetic profile of gliomas. Therefore, addressing this 

relationship is essential for improving real world applications of such models into 

clinical diagnostics, patient treatment planning and survival rate assessment. Apart 

from that, with the implementation of highly accurate deep learning segmentation 

models, the possibility of gathering non-invasive biomarkers by avoiding biopsy 

procedures, is the ideal application of such radiogenomics studies. 

 

 

1.2  Advancing Genomic Analysis through Deep Learning 

The primary objective of this thesis is to implement a brain tumor shape and 

texture feature extraction model in terms of investigating statistically significant 

associations between imaging characteristics and genomic subtypes, as well as 

determining discriminative abilities. Specifically, we aim to highlight the significant 

associations and propose the possibility of integrating them into a non-invasive tumor 

type prediction and genomic analysis.  
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To achieve this objective, we will perform a comprehensive analysis of tumor 

classification and segmentation, while preparing for shape feature extraction and 

association. We raise two crucial hypotheses that align with what results we potentially 

want to gather and support from this study. The first hypothesis states that shape 

features are significantly associated with genomic subtypes as reliable imaging 

biomarkers for identifying molecular profiles in gliomas. The second hypothesis states 

that texture features are significantly associated with epigenetic clusters as reliable 

biomarkers in detecting epigenetic modifications in gliomas.  

The dataset contains brain tumor MRIs, mainly lower grade gliomas with the 

exception of a few grade III tumor cases, serving as a baseline for brain tumor 

morphology and genomic characteristics. By leveraging deep learning techniques and 

exploring the impact of UNET combined with different backbone architectures, 

primarily FPN and ResNeXt50, we bring forward an innovative method of diving 

further into the world of revolutionizing radiogenomics.   

 

 

1.3  Methodological Framework 

The scope of this thesis encompasses several key components. Firstly, a 

thorough and extensive review of existing literature is conducted to establish a baseline 

for the classification of brain tumors into respective types and grades based on their 

growth, cells and location. Next, we dive deeper into magnetic resonance imaging, 

with the application of medical imaging preprocessing and segmentation by utilizing 

CNNs, specifically pre-trained models, and investigating the integration of deep 

learning in radiomics as well as radiogenomics. Following, we implement a ResNet50 

model for brain tumor classification into positive and negative cases. Then, we apply 

UNET with FPN backbone and UNET with ResNeXt50 backbone, to segment the 

tumor region of interest, and highlight the preciseness of each technique. After 

segmentation, shape feature extraction is performed as we apply these features into 

determining any possibly significant associations between tumor shape and texture 

elements and tumor genomic clusters.  
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1.4  Organization of The Thesis 

This thesis is divided into 5 chapters and the organization of the chapters is 

done as follows:  

In Chapter 1, we have placed the problem statement about the complexity of 

brain tumor MRIs in the field of radiogenomics along with the thesis objective and 

scope of works to represent an overview of all of the necessary components of the 

thesis. Chapter 2, includes the literature review, starting from the introduction of 

medical imaging, brain tumors, magnetic imaging resonance, preprocessing and 

analysis techniques, along with integrating convolutional neural networks and transfer 

learning approaches.  

Chapter 3 consists of the methodology, from the materials by the TCIA LGG 

dataset of brain tumor MRIs with FLAIR segmentation masks, and the steps required 

to perform the tumor classification, segmentation and shape and texture feature 

extraction.  

In Chapter 4, we have included all of the experimental results following the 

modification of hyperparameters such as activation functions and pooling operations 

in tumor classification, testing out UNET with FPN and UNET with ResNeXt50 

backbones in tumor segmentation, and highlighting the statistically significant 

associations found between tumor imaging features and genomic subtypes.  

Lastly, in Chapter 5, the conclusions and recommendations for future research 

are stated. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Grades and Types of Brain Tumors 

Gliomas are simply defined as brain tumors defined by glial cells, which are 

specialized in nourishing and supporting neurons in the brain [1]. The way that 

gliomas, or in other words glial tumors, are divided is on the basis of their 

representative grade. There are generally four grades of tumors, depending on the 

appearance of the cells under investigation and clinical studying. Grade I and grade II 

gliomas are often found in pediatric cases of brain MRIs and belong to the low grade 

glioma category, compared to grade III and grade IV tumors, which are naturally more 

dangerous and at a higher grade of aggressiveness. One type of glial cells are 

astrocytes, which transport nutrients and also keep the nerve cells in place, 

oligodendrocytes, which provide myelin or also known as insulation to neurons, 

ependymal cells, which line the ventricles and lastly, microglia, which handles dead 

and useless neurons [8]. 

 

 

Figure 1. Glial Cells [TTSZ/ISTOCKPHOTO] 

 

https://www.istockphoto.com/vector/glial-cells-gm531120055-55046996
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Grade I gliomas, typically referred to as pilocytic gliomas, occur mostly in 

pediatric cases located in the cerebellum, and less commonly in adults. These tumors 

grow slowly and they appear bening, as in representing no maliciousness.  

Grade II, are referred to as low grade gliomas, and they are found usually in 

young adults of age groups 20 to 50 years old, and cover the cerebral hemispheres of 

the brain. Grade III gliomas, often defined as anaplastic gliomas, are of a higher case 

of aggressiveness and they invade brain tissue at a closer and faster rate. Lastly, Grade 

IV tumors or glioblastoma multiforme (GBM), is the most aggressive and dangerous 

case out of all, with the ability of spreading quickly and taking over other parts of the 

brain [8]. Apart from only the grade gliomas belong to, they are also categorized by 

location, aggressiveness and according to their most common kind of glial cell, into 

astrocytomas, oligodendrogliomas and oligoastrocytomas. Starting with astrocytomas, 

they originate from a growth of cells in the spinal cord or the brain and these types of 

tumors are based on types of cells called astrocytes [6]. 

 

 

Figure 2. Grade II Astrocytoma and Glioblastoma [9] 

 

Astrocytes are responsible for providing connection throughout the nerve cells 

as well and supporting them in the brain and spinal cord areas. Naturally, astrocytomas 

also depend on the location where they develop and so this way, they can affect and 

cause changes in patients regarding their personality, and even other symptoms such 

as headaches and nausea, whereas if the tumor develops in the spinal cord, it can cause 

disability issues.  

 

 

https://www.aans.org/Patients/Neurosurgical-Conditions-and-Treatments/Astrocytoma-Tumors
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Some astrocytomas experience slower growth and therefore show no cancerous 

signs, as grade I pilocytic astrocytomas and grade II astrocytomas, being defined as 

benign which are most likely while most common astrocytomas grow pretty quickly 

and transform into cancerous cells as malignant astrocytomas [8]. 

Oligoastrocytomas are another type of tumors, which affect both astrocytes and 

oligodendrocytes as two different types of glial cells. Just like astrocytomas, 

oligoastrocytomas can also be graded on a lower scale as grade I and II, but they can 

also turn into grade III and IV tumors, called anaplastic oligoastrocytomas. 

Oligoastrocytomas often develop in the cerebrum area of the brain and as the tumor 

keeps growing and causes pressure, it can begin to show symptoms such as headaches 

and seizures. These types of gliomas are less common compared to pure astrocytomas 

and are categorized or classified based on which glial cell they affect the most, or 

which one of them, the astrocytes or oligodendrocytes are predominant.  

 

 
 

Figure 3. Oligoastrocytoma Types of Tumors [10] 

 

Lastly, there is the case of oligodendrogliomas, which originate from such glial 

cells called oligodendrocytes. Oligodendrocytes create a white mass of substance, 

defined as myelin and enables signals to travel across the nerves quicker.These types 

of tumors are usually found in the frontal lobe area of the cerebrum, in white matter 

and the cortex of the brain as an outer layer, however, there are rarer cases of them 

appearing in the spinal cord as well [4].  

 

 

 

https://radiopaedia.org/cases/4654
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Figure 4. Oligodendroglioma Types of Tumors [11] 

 

When attempting to diagnose oligodendrogliomas, professionals typically look 

at two genetic alterations which are IDH mutation and changes in the chromosomes of 

the tumor cells. Compared to the other two types of gliomas defined above, high-grade 

oligodendrogliomas, or anaplastic oligodendrogliomas tend to be more visibly 

noticeable even in brain MRIs, as they showcase not only the presence of well-defined 

borders, but also some swelling around the area.  

With a touch of enhancement and the help of deep learning models, the tumor 

can appear more highlighted with enhanced contrast [6]. The prognosis and treatment 

of astrocytomas, oligoastrocytomas and oligodendrogliomas depends on various 

elements of the tumors such as the grade of growth, aggressiveness, molecular 

characteristics and location [8]. Treatment planning includes the possibility of 

radiation therapy, surgery, chemotherapy, therefore a deeper and further understanding 

in the biology of these types of tumors can enable a better and safer prediction 

prognosis of the tumor in terms of its future growth.  

 

 

 

 

 

 

 

https://www.cancer.gov/rare-brain-spine-tumor/tumors/oligodendroglioma
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2.2 Radiogenomics and Radiomics in Gliomas 

Radiomics is the field of applying statistical techniques into generating 

quantitative features from clinical medical imaging, with the main goal of enhancing 

the accuracy of predictive prognosis and diagnosis. Mainly the classification tasks 

derived from the information radiomics provides with, would be benign or malignant 

while, in terms of prognosis, the survival rate is studied and analyzed.  

This process includes the steps of image acquisition, preprocessing, identifying 

regions of interest (ROI), segmentation, feature extraction and lastly, building 

predictive models upon the insights gathered [13].  

 

 

 

Figure 5. Image Phenotyping 

 

The implementation of deep learning models into the radiomics pipeline proves 

incredibly useful in segmenting the ROIs with more attention to detail and efficiently, 

compared to manual segmentation, while still also presenting a few limitations as with 

any artificial intelligence model as it evolves and undergoes upgrades due to incoming 

technological advancements.  

https://doi.org/10.1007/s00261-021-03254-x
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Radiogenomics refers to the field of integrating radiological imaging 

characteristics with genomic data to provide better understanding into the biology of 

brain tumors. Radiogenomics serves for providing clearer imaging biomarkers which 

simplify the process of predicting genetic alterations, patient outcomes, and even 

molecular subtypes [6]. These elements combined with the future and advancement of 

technology in deep learning models, provide the possibility of setting up predictive 

systems of LGG characteristics based on their genomic subtypes, such as tumor 

survival, response to different forms of suggested treatments and progression.  

The radiogenomics pipeline, differently from radiomics, consists of steps such 

as feature extraction, biopsy and RNA sequencing, analysis and association 

identification and evaluation. The field of radiogenomics provides a non-invasive way 

of identifying significant associations of tumor radiomic features with the genetic 

markers of the tumor. By finding such associations for tumors corresponding to 

specific genotypes. 

Gliomas are typically classified based on their histological features such as cell 

morphology. Recent studies have proved the increased possibility of classifying 

gliomas into their specific histological types based on what distinct molecular subtypes 

they carry [4]. Certain imaging characteristics extracted from brain MRIs such as 

tumor location, texture and shape features indicate patterns which are associated with 

specific genomic subtypes and alterations. Several advanced imaging techniques have 

been commonly used for extracting imaging features from gliomas, such as diffusion-

weighted imaging (DWI), perfusion-weighted imaging (PWI) and radiomic analysis 

[14]. The integration of genomic data with imaging features using deep learning 

models and bioinformatics techniques provides a promising approach of generating 

advanced results in predicting not only patient outcomes, but also molecular subtypes, 

alterations and even glioma types.  
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These radiogenomic models are a non-invasive method of biomarker 

development and tumor characterization based on its high accuracy from using 

preoperative MRI data [2]. 

In the context of lower grade gliomas, radiogenomics have been able to identify 

several imaging features which are associated with certain molecular subtypes of 

LGGs. Ribonucleic acid (RNA) sequencing data integrated with radiological features, 

provides information into gene expression patterns.  

Copy number data (CNCluster), involves clusters of LGGs based on the copy 

number variation, which indicates data about genomic instability and alterations in 

chromosomes. Reverse-phase protein array (RPPACluster) involves clusters of LGGs 

based on information which handles protein expression patterns as well as signaling 

pathways. Next, cluster of clusters (COCCluster) analysis provides insights into clonal 

heterogeneity and tumor evolution by investigating co-occurrence and even 

exclusivity patterns in genetic alterations [1].  

MethylationCluster is oftentimes used as a reference point for studying the 

isocitrate dehydrogenase (IDH) mutation status. IDH can be defined as a crucial 

marker associated with clinical and distinct biological features which are helpful in 

classifying LGGs. Finally, the miRNACluster looks into the microRNA expression 

patterns and gathers data regarding post-transcriptional regulation [13]. 

 

2.3 Brain Magnetic Resonance Imaging 

Magnetic Resonance Imaging, also known as MRI, is one of the most crucial 

technological advancements to emerge as a pivotal tool in neuroscience and clinical 

diagnostics. A brain MRI scan is the procedure of producing very clear and concise 

images of the structure inside a patient’s head, specifically the brain area. The way it 

works is by using powerful magnetic tools and radio waves to generate images of the 

brain and the surrounding areas of interest. The inner process behind brain MRI 

depends on the communication between the hydrogen nuclei which contain important 

magnetic features and the overall surrounding magnetic field [5].  
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Figure 6. Brain MRI T1 and T2 Weighted [7] 

 

Key concepts in brain MRI modality are T1 and T2, defined as longitudinal 

relational time and transverse relaxation time respectively.  

Patients are placed within the MRI scanner, where they are introduced to the 

radiofrequency pulses that emit throughout the entire region of interest until all of the 

necessary angles are covered and the images collected from the process can be 

reconstructed to reflect the structure and underlying properties across different tissues. 

Fourier transform is used to transform these frequencies and signals into intensity 

levels, and in doing so, also translating these signals into corresponding images for 

each specific angle [3].   

Relaxation time is referred to as the timescales connected to the return of 

hydrogen protons to their balanced state. These processes are essential to brain MRI 

because they enable the generation of contrast in images. Just as we mentioned before, 

T1 indicates how rapidly these protons align again with the magnetic field after they 

experience initial disturbance [7]. Depending on the tissue which is being analyzed, 

the T1 values change according to the contributed contrast such as the case of T1-

weighted images. On the other hand, T2 represents the decomposition of the signal 

after the frequency of the radio waves has been turned off. Before we analyze MRI 

images, it is important to preprocess them for a better and clearer understanding of the 

region of interest being studied [7].  

 

 

 

http://dx.doi.org/10.24996/ijs.2020.61.11.31
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2.3.1 Brain Tumor Segmentation 

To go further into detail, MRI preprocessing techniques play a crucial role in 

advancing the quality of the region of interest in the MRI scan which needs to be 

highlighted. These techniques span across several other steps such as correcting 

artifacts, missing data, standardizing and normalizing and extracting meaningful 

features and complex patterns found in the raw images [3]. However, it is necessary to 

focus on these three essential components mentioned above known as segmentation, 

filtering and spatial normalization. Starting with segmentation, defined as the process 

of separating a distinct region of interest from the other areas represented in the MRI.  

This technique enables a clearer and precise vision of the highlighted object, 

making sure that the boundaries are set up correctly and not spanning across any other 

tissues and the overall area of the object is computed successfully. As seen in the figure 

displayed above, the segmentation process shows an identical label of the brain tumor 

corresponding to the original image of the MRI. 

 

 

 

 

Figure 7. Brain Tumor MRI Segmentation  

 

Medical Image Segmentation is a particularly essential task in clinical practice 

for patient treatment and further research investigation on what insights can be 

provided regarding the state of anatomical structures and pathological regions [1].  The 

nature of medical shapes is complex enough, with multi-layered data and intricate 

features that require a much more delicate and thorough investigation when performing 

any sort of patient treatment or clinical research. 
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Efficient analysis runs into challenges regarding the close proximity of 

anatomical parts of the human body, making it almost too difficult for these regions to 

be studied and viewed separately. Image segmentation offers a deeper dive into each 

of the regions of interest, dividing them from the rest of the structures bunched up 

together, and bringing each area closer to examination. Not only does this process 

make room for a more effective study, but also provides more details into any 

abnormalities found in the specific regions and even labeling them for future purposes 

[5]. Traditional methods and algorithms have paved the way for incredible 

understanding into this field of study with the upcoming technological advancements 

of deep learning.  

A larger amount of neural network architectures and models have simplified 

the process of segmentation, by also aiming to decrease the potential errors and issues 

that traditional techniques come across due to their lack of enhancement [1].  By 

integrating a considerable amount of neural network architectures into the process of 

three-dimensional segmentation of patient MRI and CT scans, the possibilities of 

improvements in accuracy metrics as well as efficiency and speed in detection and 

implementation can be perceived as quite promising.  

 

 

Figure 8. Original Mask and Predicted Mask 

 

Just as the main idea of 2D image segmentation is to locate an object of interest 

and highlight these objects as part of the same class, the data gathered from 3D 

modalities such as Magnetic Resonance Imagining (MRI) and Computed Tomography 

(CT), is also labeled to point out certain regions of interests within the human body.  
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Image segmentation as a whole, is a naturally challenging task because of the 

complexity and large dataset dimensions on top of the diversity explored throughout 

different anatomical structure patterns.  

The way image segmentation works is by utilizing a concept known as surface 

determination, which in other words refers to the accuracy representation of a 

boundary which divides one region from another. The goal is to look into any 

abnormalities located in these regions of interest and labeling them for diagnosis and 

monitoring purposes [14]. Another common technique is filtering, which focuses on 

enhancing image quality as well as denoising MRI images for further investigation 

[12]. The present noise in MRI images is common due to several components such as 

the hardware possibly malfunctioning, patients moving within the scanner when they 

are supposed to be staying still to not interrupt the process. Some common filtering 

methods include Gaussian smoothing and median filtering. All of these filters are built 

differently to withstand the characteristics of the noise while also preserving crucial 

information from the images. 

 

 

Figure 9. Brain MRI Denoised and Noisy [12] 

 

Gaussian smoothing is a linear method of minimizing the components with the 

highest frequency noise while also keeping low-frequency images intact.  

The way it works is by computing the weighted average to every single pixel 

in an image and then using the size of the kernel to determine the amount of smoothing 

to be applied [12].   

 

 

https://doi.org/10.1002/ima.22225
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Next, there is also a median filter, which, different from the gaussian, is actually 

a nonlinear filter that works by altering the pixels with the median value of the pixels 

which are nearest around the area. These techniques are crucial in working with large 

datasets and models that require lots of computational space, by reducing them into 

smaller bits to work with and also preserving the quality and most crucial elements of 

images. 

 

2.3.2 Tumor Shape and Texture Features 

Accurate determination of brain tumor boundaries is an essential element in 

treatment planning, patient diagnosis and disease progression. Brain tumor 

segmentation enables a thorough analysis and view of the tumor texture, intensity and 

shape. To monitor the way a tumor behaves and transforms over a specified period of 

time, several shape features have been introduced in regards to their ability of 

recognizing certain growth and stability patterns and using them to generate enough 

information about the geometric characteristics [13].  

Angular Standard Deviation (ASD) is defined as a shape feature that measures 

the possible irregularities in tumor boundaries. It determines any deviation of tumor 

boundaries from a smooth curve and helps in identifying whether the tumor shape is 

more likely to be spherical and smooth or irregular and harsh [1]. Naturally, ASD has 

a close correlation to Margin Fluctuation (MF), which is another important shape 

feature that measures the variability in tumor margins. In other words, high MF values 

indicate irregular tumor margins while the opposite stands for smooth and well-defined 

margins. Eccentricity establishes how stretched out or elongated a tumor shape is and 

in the same logic, the lower the eccentricity values, the more spherical and round it 

appears.  

Depending on the type of brain tumor presented, the shape features change 

drastically according to its characteristics. In the case of lower grade gliomas, which 

include mainly grade II and grade III, the shape features typically distinguish them 

from higher grade gliomas [2]. 
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Figure 10. Brain Tumor Segmentation Features [13] 

 

Next, the bounding ellipsoid volume ratio (BEVR) feature is characteristically 

known in studying lower grade gliomas for its ability of defining the amount of the 

tumor to the volume of the minimum bounding ellipsoid [38]. Their ability to grow 

slower and have less aggressive behavior compared to other types of tumors, insinuates 

that ASD is lower and showcases less irregularities in boundary angles, while MF is 

smooth and well-defined in correspondence. Normally, the eccentricity of lower grade 

gliomas is often generated in lower values as well, by stating a more spherical shape 

unlike higher grade gliomas which prove to be more elongated [14]. 

Solidity is another essential shape feature regarding brain tumor MRIs that 

describes the compactness of the tumor shape. In other words, this feature helps 

quantify the solidity of the region by measuring the area and determining the presence 

of any irregularities or holes in the shape. This value is calculated by taking the ratio 

of the tumor area to the total convex hull, which stands for the smallest convex or 

rounded shape that encapsulates the entire region. If the solidity is of high values, this 

means that the tumor shape is most likely very solid and there are less possible 

irregularities present, while a low solidity value indicates the possibility of holes and 

missing regions within the tumor shape, presenting abnormalities that need to be 

further studied.  

 

https://doi.org/10.3389%2Ffonc.2020.567736
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 Figure 11. Brain Tumor MRI Radiogenomics [14] 

 

Extent is another feature worth mentioning that describes the distribution of the 

tumor within a bounding box, and this extent of the region helps in identifying and 

quantifying the coverage or spread of the tumor shape within the MRI image. The 

calculations are measured as the ratio of the tumor area to the total bounding box part 

which bounds the tumor, and naturally, the higher the values of the extent, the area of 

the bounding box is more occupied by the shape, compared to lower values which 

determine that the tumor occupies only small portions within the image, and in so 

presenting a localized tumor. 

Moving on, equivalent diameter provides information regarding the size of the 

rumor region. It calculates the diameter of a circle with the same area of the tumor 

region and logically indicates if the tumor is bigger in size or not. This feature is helpful 

in determining different sizes of tumors across patients and comparing such sizes for 

later diagnosis and treatment usage.  

Perimeter is another shape characteristic, which focuses on any irregularities or 

complexity of the tumor boundaries. Larger perimeter values suggest that the region 

has irregular and more complex boundaries, while smaller perimeter values indicate 

smoother tumor boundaries. 

 

https://www.nature.com/articles/s41416-021-01387-w
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                                  Figure 12. Genomic Characterizations [22] 

 

 This feature is extremely useful in providing valuable information about the 

contours of the tumor region, which becomes useful in characterizing and 

differentiating tumor morphology, progression and growth.  

Just as the perimeter value, convexity defects also offer more valuable insights 

into studying the shape and matter of tumor boundaries, specifically in terms of the 

amount of indentations and concavities present. Lastly, aspect ratio deals with the 

elongation of the tumor region. This feature determines the ratio of the width to the 

height of the bounding box that encapsulates the shape, so in other terms, it dives 

deeper into the geometry details of the tumor region.  

Apart from brain tumor MRI shape features, there are also texture features, 

derived from the gray-level co-occurrence matrix, also known as GLCM, which 

defines contrast, energy, correlation and homogeneity.  

These features are crucial for determining the textural properties of brain tumor 

MRIs. Starting off with contrast, as the intensity between a certain pixel and its 

respective neighbor across an entire image. With higher contrast values, a higher 

degree of variation can be identified over the image, which suggests a more 

heterogeneous texture and overall defines irregular tumor boundaries, while lower 

contrast values indicate a more homogenous pattern with smoother regions of pixel 

intensities.  

 

https://www.nature.com/articles/ng.2764
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The formula of contrast below defines P(i,j) as the normalized value of GLCM 

at the pair (i,j) which are pixels. N stands for the number of gray levels [22]. 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  𝛴𝑖=0
𝑁−1 𝛴𝑗=0

𝑁−1(𝑖 − 𝑗)2𝑃(𝑖, 𝑗)  

 

Correlation, another texture feature which measures the probability occurrence 

of a specified pair of pixels. This element defines the linear dependency of gray levels 

in neighboring pixels, by indicating repetitive or regular patterns when high values 

between gray levels of neighboring pixels are identified, and random or complex 

patterns when low correlation values are stated. The formula states 𝜇𝑥 , 𝜇𝑦 as the means 

while 𝜎𝑥 , 𝜎𝑦 are the standard deviation of marginal distributions of P(i,j). 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  
𝛴𝑖=0

𝑁−1𝛴𝑗=0
𝑁−1(𝑖 ∗ 𝑗 ∗ 𝑃(𝑖, 𝑗))  −  𝜇𝑥  𝜇𝑦

𝜎𝑥 𝜎𝑦
 

 

 

Energy, also known as ASM which stands for Angular Second Moment, 

measures the total of squared elements and it defines the textural uniformity, so in 

other words, high energy values indicate textural uniformity with less variations in 

gray levels, while low energy values indicate more complex patterns with more gray 

level variations [37]. 

 

𝐸𝑛𝑒𝑟𝑔𝑦 = 𝛴𝑖=0
𝑁−1 𝛴𝑗=0

𝑁−1𝑃(𝑖, 𝑗)2  

 

 

Lastly, for texture features, homogeneity, which is the measure of the closeness 

of the distribution of elements in the GLCM to the GLCM diagonal, by defining how 

similar the values of pixels are to their respective neighbors.  
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The higher the homogeneity values are, the more similar the pixels are to their 

neighbors which suggests a smoother texture, possibly representing more benign 

tumor characteristics, while lower homogeneity values, mean less similarity between 

the pixels and their neighbors, leading to irregular patterns, possibly representing more 

aggressive and malignant tumors.  

 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  𝛴𝑖=0
𝑁−1 𝛴𝑗=0

𝑁−1  
𝑃 (𝑖, 𝑗)

1 + | 𝑖 −  𝑗 |
  

 

Radiogenomic analysis is a highly emerging field of study in the approach of 

integrating genomic data with radiological imaging features [22]. This is a crucial 

process of uncovering possible relations between imaging features from lower grade 

gliomas (LGGs) and molecular characteristics. Molecular classification of LGGs is 

still a fresh and rising area which needs enough time to find sufficient evidence in 

proving such dynamics, however, with the correlation between molecular subtypes and 

imaging characteristics is a step forward into providing additional validation to this 

method [4]. Imaging features captured from brain tumor MRI segmentation enable a 

less invasive technique of gathering necessary information to proceed with further 

genomic analysis. Several studies have shown great promise in the field, such as 

presenting significant results of associating angular standard deviation with genomic 

subtypes.  

ASD was found to be closely related with RNASeq cluster of p<0.0002, cluster 

of cluster subtypes of p<0.0002 and copy number cluster of p<0.001 [4]. Another study 

makes a point in finding the strongest association between bounding ellipsoid volume 

ratio and RNASeq cluster with p<0.0002, as well as an association with margin 

fluctuation with p<0.005 [1].  

 

2.4  CNNs in Medical Image Analysis 

CNNs are a type of network that consist of convolutional layers, pooling layers 

and fully connected layers. Convolution is the operation of conducting a dot product 

between two matrices and in doing so, extracting meaningful features and information 

from images by preserving a high level quality [15].  
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Figure 13. CNN Architecture [15] 

 

CNNs typically contain multiple convolutional layers which are stacked against 

each other, capturing different kinds of features from an input image starting from 

edges, textures, patterns and all the way up to the highest level quality.  

Right after, the convolutional layers are done processing and capturing from 

the input images, the pooling layers are the following stage [15]. These layers are 

responsible for reducing the spatial dimensions of the generated feature maps which 

are commonly collected from the convolutional layers. These feature maps can be 

saved and later on reused for other tasks, which helps a great deal in training a model 

from prior experience.  

Pooling operations come in two types, which are average pooling and 

maximum pooling. Maximum pooling works by getting the largest value from the part 

of the image which the kernel contains, while average pooling aims to calculate the 

average of all values from the same region. This is not only a beneficial process in 

reducing spatial dimensions, but also computational power needed for processing all 

of the necessary data. Lastly, the fully connected layer in CNNs ties everything 

together.  

 

 

 

 

 

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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This final layer takes care of the nonlinear representations of the high quality 

features from the input image. They need to learn these representations in order to 

flatten the shape of the features so that they can be transferred to the fully connected 

layer. CNNs have played an incredible role in medical image analysis as powerful tools 

for revolutionizing patient diagnosis, treatment and abnormality detection. The 

presence of multiple convolution layers, enable neural network models to showcase 

competitive results in tasks such as classification, prediction and segmentation. Over 

the recent years CNNs have been adapted to current advancements in technology, to 

bring forward another way of skillfully integrating deep learning with the medical 

field.  

 

2.4.1 Pre-trained CNN Architectures 

It is important to notice that over time, deep learning CNN architectures gained 

a lot of enhancement and improvements in increasing the amount of layers to learn 

complex and difficult patterns and being able to learn and represent features easily 

[15].  However, all of these advancements come with their own difficulties, such as in 

the case of adding more layers to a model, which leads to the challenge commonly 

called the vanishing gradient [34].  

 

 

Figure 14. ResNet Architecture 

 

Naturally, as we add more layers, the vanishing gradient makes it harder to train 

the architecture as well as impacts the accuracy of the model by making it more prone 

to fluctuating and slowly decreasing.One of the best performing CNN architectures 

regarding the issue of the vanishing gradient proves to be ResNet [27]. 

 

  

https://commons.wikimedia.org/wiki/File:ResNet50.png
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This model tends to introduce its own features and ways of helping diminish 

the impact of vanishing gradients by preserving the state of accuracy throughout the 

entire training and testing process. ResNet, also referred to as Residual Network, is 

one of the popularly known models for fixing this challenge and the solution it 

proposes is skip connections. ResNet introduces skip connections between these 

layers, or also known as identity connections. This feature enables bypassing training 

for a few layers and directly linking to the output. Building on ResNet, another 

valuable model architecture is introduced, known as ResNeXt50 [16].  

 

 

Figure 15. ResNeXt Architecture [16] 

 

This model adds o a cardinality parameter to the typical residual learning 

framework of ResNet. This parameter enables better feature representation learning as 

well as performance enhancement depending on the task at hand and dataset 

characteristics. With 50 layers, the model manages a proper balance between model 

size and depth, which prioritizes tasks that deal with limited computational resources. 

Apart from the typical residual blocks, what they each contain is parallel paths or also 

defined as cardinality. UNET is a crucial model in the realm of medical image 

segmentation, with a fairly simple and understandable architecture consisting 

primarily of an encoder and a decoder [5].  

 

 

 

https://medium.com/@atakanerdogan305/resnext-a-new-paradigm-in-image-processing-ee40425aea1f
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The name follows after the shape of the model architecture forming a U letter, 

connecting the encoder parts of the model for downsampling to the decoder parts of 

the model for upsampling by utilizing skip connections to make it an even smoother 

process of capturing complex features and patterns provided by the input data and 

transferring it over to the output data.  

UNET has been a great architecture for addressing specific challenges within 

the medical imaging analysis world such as the limited datasets of annotated images, 

while leveraging and maintaining speed and efficiency [35]. 

 

 

 

                            Figure 16. UNET Architecture [5] 

 

The combination of UNET with different backbones allows for an integration 

of two state-of-the-art deep learning architectures for segmentation tasks. UNET with 

ResNext50 backbone is commonly preferred, where the backbone is  typically selected 

based on its ability to enhance feature extraction, allowing the network to capture 

necessary data from input images. Another popular combination is UNET with Feature 

Pyramid Network (FPN), adding a top-down pathway along with lateral connections, 

which consist of upsampling layers that gradually enhance the spatial resolution and 

connect feature maps at different scales [17]. 

 

 

https://doi.org/10.48550/arXiv.1505.04597
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FPN introduces a more precise object localization system by providing multi-

scale feature maps that focus on capturing details highlighted at different levels of 

quality. To determine which models are the best fit for a specific task at hand, it’s 

important to try them based on the characteristics and features they provide. 

 In medical image analysis, specifically in terms of classification of patient age 

groups based on brain MRI scans, detection of tumor and segmentation of tumor, the 

right way to proceed is with deeper architectures that are capable of capturing 

information from the brain MRIs without leaving too much space for errors as it can 

potentially serve to real world clinical diagnosis and patient treatment research.  

 

    

 

Figure 17. UNET with FPN architecture [17] 

 

 

 

 

 

 

 

 

 

 

http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf
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2.4.2 Hyperparameter Modification 

One of the most essential processes in neural networks is the segregation of 

information into two categories divided as such: useful and non-useful. This way, the 

neural network isn’t inclined to spend as much time on non-useful data, and focus on 

the useful information instead. Activation functions come into the picture for this exact 

reason. An activation function has the role of deciding whether a neuron in the neural 

network architecture should be enabled or not, in the sense of processing the 

information that these neurons carry [28]. 

By using a few operations, these functions are able to predict whether the data 

the neurons are sharing is valuable enough to pass onto the next part of the process. 

They manage to derive an output from a set of input fields which have been served to 

the layers earlier on. These layers can also be referred to as nodes [19].   

The main types of Non-Linear Activation Functions to focus on regarding our 

study are Sigmoid, Tanh, ReLU and its different derivatives such as Leaky and 

Parametric ReLU and ELU.  

 

 

Figure 18. ReLU Activation Function [18] 

 

 

𝑅𝑒𝐿𝑈 =  𝑚𝑎𝑥(0, 𝑥) 

 

 

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
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Sigmoid and tanh functions are mostly utilized in cases where the model is 

required to fit the output values into a specific range, specifically in multi-class and 

binary classification tasks. ReLU, is just as known for its efficiency in simplifying and 

smoothing out any computational steps along with providing solutions to the vanishing 

gradient challenge that many neural network models face, by enabling a quicker 

convergence during the training process. 

 

 

              

 

Figure 19. Leaky ReLU Activation Function [19] 

 

𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 =  𝑚𝑎𝑥(0.1𝑥, 𝑥) 

 

Leaky ReLU is a popular activation function commonly applied with the 

purpose of addressing the limitations that ReLU faces in neural networks. It introduces 

the concept of a negative slope which helps in maintaining a smoother information 

flow during the training and process as well as after [19]. This activation function finds 

its origin from the dying ReLU problem which in theory for any input value always 

tends to generate the same output value. The way Leaky ReLU solves this challenge 

is by using its non-zero gradient domain, which allows a negative output for a negative 

input value.  

 

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0233-0
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Figure 20. ELU Activation Function [20] 

 

𝐸𝐿𝑈 =  {
𝑎(𝑒𝑥 − 1),     𝑥<0 
𝑥,                    𝑥≥0

 

 

Sigmoid is widely used for its capability in predicting the probability of a task 

as an output. This is one of the earliest activation functions used in neural networks, 

and with great historical value as well as practicality. The sigmoid function implements 

a smooth version of mapping input data incredibly close to one or zero.  

However, due to its non-symmetricity, it is often less preferred compared to the 

tanh activation function which is centered around zero and ranges from  -1 to 1, 

something that sigmoid lacks, specifically in terms of neural networks being able to 

learn better when activations are centered around zero. This is precisely why 

normalization methods are applied, to standardize the data before sending it towards 

the neural network [20]. Sigmoid remains largely useful in binary classification, and 

we can often find it placed at the last layer of neural networks, due to its efficiency in 

finding a number between one and zero while still keeping the training process as 

smooth as possible. 

 

https://www.mdpi.com/2079-9292/10/6/738
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Figure 21. Sigmoid Activation Function [23] 

 

 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 =  𝜎(𝑥) 
1

1 + 𝑒−𝑥
 

 

Another important element found useful in CNNs is pooling, specifically 

pooling operations. Pooling operations are defined as placing over each channel map 

a 2D filter and they are commonly found stacked against convolution layers. Then, 

these layers are implemented to reduce dimensionality of feature maps and therefore, 

decrease the overall computational steps in a network, saving time and space [29]. 

There are a few types of pooling layers, where the focus is on Max Pooling and 

Average Pooling. Firstly, Max Pooling is the process of extracting the largest element 

from the area of a feature map, and so in simpler words, after applying a max pooling 

operation, the feature map would contain only the most prominent features of the 

previous map, or the maximum features.  

 

 

 

 

 

 

 

https://www.geeksforgeeks.org/activation-functions-neural-networks/
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Figure 22. Max Pooling Operation Map [24] 

 

On the other hand, another commonly applied pooling operation is Average 

Pooling. Differently from Max Pooling, Average Pooling handles and computes the 

average of the elements in a feature map, according to the determined filter. The feature 

map would contain the average of the features and then present them in the new feature 

map after the operation has been conducted [29].  

 

    
 

Figure 23. Average Pooling Operation Map [24] 

 

 

 

 

 

 

 

 

 

 

 

https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/
https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/
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2.4.3 Evaluation Metrics and Performance Analysis 

A longer training period allows the model to carefully go through all of its 

parameters and adjust them accordingly, tune them to their best behavior coordinated 

with the specific characteristics that the neural network requires, capture complex 

patterns, represent features clearly as well as find a convergence point which insinuates 

stability within the training process. During the training part of the implementation, 

the main goal is to focus on minimizing the error rate and ensure a smooth model 

generalization on new data. Just as increasing the number of epochs can lead to a well 

trained model, and decreasing the number of epochs avoids the possibility of any huge 

errors, there exists a balance between the two which needs to be maintained, also 

known as the bias-variance tradeoff which means facing challenges such as overfitting 

and underfitting.  

Overfitting, also referred to as the case of high variance, happens when the 

model fits exactly the way it’s supposed to with the training data but it has a very 

limited generalization. On the other hand, underfitting, also referred to as the case of 

high bias, happens when it’s suspected that the model didn’t learn and capture enough 

information about the data. This is why it’s crucial to find an ideal number of epochs 

for the training set, which can’t be done on its own before any results have been 

collected. Running the model and studying the learning curve graphs including loss or 

error graphs for the accuracy metrics across a number of epochs helps us compare 

between the different cases of how the model reacts to a high and low number of 

epochs. This is particularly beneficial because of the nature of segmentation challenges 

where the precise identification of areas of interest holds important value and requires 

deep understanding of the information.  

As the model iteratively passes through a specified number of epochs, it adapts 

to the complex and highly sensitive regions of interests varying in shapes, patterns, 

intensities and therefore leading to a more thorough segmentation process [30]. A few 

medical cases possess rather unique qualities which are easily missed unless the model 

has been tuned to read through and capture the data across a considerable amount of 

epochs. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝐹𝑁 +  𝑇𝑁 +  𝐹𝑃
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Various experiments need to be carried out with a different number of epochs 

from the lowest to the largest values, as well as checking on the segmentation accuracy 

consistently by employing evaluation metrics such as the Dice score which is 

efficiently used to evaluate similarities between predicted masks and ground truth 

masks, Classification Report with precision, recall, F1 and support scores and lastly, a 

confusion matrix as well to monitor the amount of correctly estimated segmentation 

masks and any errors made along the way. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

 

  𝐹1 =  2 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 
 

To determine the accuracy of our model, we also investigate the impact that 

false positives and false negatives have on the results. False positives happen when a 

model predicts the presence of a certain class, but the ground truth (real annotation) 

does not contain that class. In the context of our task, which is the segmentation of 

brain tumor, a false positive means the model incorrectly identifies an area as a tumor 

region when there is no tumor present [30]. This can lead to overestimation of the 

tumor extent. On the other hand, false negatives  happen when a model fails to predict 

the presence of a certain class that is actually present in the ground truth. In our case, 

a false negative would mean the model misses a tumor region that is present in the 

actual scan. This can result in an underestimation of the tumor extent. 

 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒  =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
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𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝐹𝑃

𝑇𝑃 + 𝐹𝑃
 

 

In our case, experimenting with the threshold values in medical imaging 

segmentation, specifically three-dimensional, produced different types of results 

which pointed out the trade-off between precision and recall. 

Another significant evaluation metric that plays an important role in medical 

imaging analysis is the Dice Loss. This loss function finds common use in medical 

image segmentation as it serves the ideal purpose of precisely measuring the 

similarities, or in our case, the dissimilarities between two sets represented as the 

network predicted segmentation masks and the ground truth masks [3]. Its origin stems 

from the Sørensen-Dice coefficient and aims to enhance the overlap between these sets 

of masks. Mathematically, the Dice loss function can be defined as the formula below, 

which calculates its value as twice the intersection of the original masks and predicted 

masks divided by the sum of pixels in both of these masks.  

 

𝐷 =  
2 ∑𝑁

𝑖  𝑝𝑖 𝑔𝑖

∑𝑁
𝑖  𝑝𝑖

2  +  ∑𝑁
𝑖  𝑔𝑖

2 

 

 

Based on this formula, the Dice loss value attempts to generate a more robust 

result by focusing on the overlap in question rather than the actual pixel counts.  

The Intersection Over Union (IoU) score on the other hand, is more commonly 

seen and used in the wide area of machine learning, deep learning and even more 

specifically with challenges such as segmentation and object detection. This metric 

particularly deals with the overlap between the predicted segmentation labels and the 

ground truth labels, by providing a score of how well the model is able to identify 

regions of interest in an image. In the context of medical image segmentation, IoU 

defines a measure of how well the model depicts the exact boundaries of objects in the 

image, such as in our case, the tumor boundaries found in brain MRIs.  

 

𝐼𝑜𝑈 =  
𝑇𝑃

(𝑇𝑃 +  𝐹𝑃 +  𝐹𝑁)
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Lastly, in the context of finding meaningful and significant associations 

between brain tumor imaging characteristics, or shape features and genomic subtypes, 

the two most common statistical methods chosen are Fisher’s Test and Bonferroni 

correction. Fisher’s test, or also known as Fisher’s exact test, checks the statistical 

significance found in the analysis of contingency tables [1]. In our case, with brain 

tumor MRI shape features and genomic subtypes, this test is useful for determining 

whether any strong associations actually exist between these elements or not [2]. By 

applying this method, the main idea is to investigate the possibility of specific tumor 

shape features being somehow correlated to certain genomic subtypes, or if they prove 

to be independent.  Based on the formula provided below, the Fisher’s Test provides 

the p-value results as a result of the calculations between the values in a contingency 

table, which are represented by a, b, c and d, providing the row and column margins 

totals, as the value n stands for sample size [31]. 

 

𝑝 =  
(𝑎 +  𝑏)! (𝑐 + 𝑑)! (𝑎 + 𝑐)! (𝑏 + 𝑑)!

𝑎! 𝑏! 𝑐! 𝑑! 𝑛!
 

 

  
 

 Figure 24. P-Value Calculation [14] 

 

Naturally when dealing with large datasets of complex medical images, such as 

lower grade gliomas, and with the presence of multiple shape features and genomic 

subtypes, there is a possibility of running into false-positives due to the number of 

comparisons. To take care of this issue, another method is implemented, known as 
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Bonferroni correction, which adjusts and balances out the level of significance 

regarding the individual tests based on the amount of comparisons. 

 This technique reassures that the results gathered from the significant 

associations found between shape features and genomic subtypes aren’t merely chance 

findings, where the 𝛼 stands for the original p-value and n stands for the number of 

tests performed.  

 

𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖 − 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑝 𝑣𝑎𝑙𝑢𝑒 =  
𝛼

𝑛
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CHAPTER 3 

METHODOLOGY 

 

 

3.1 Materials 

The dataset chosen for this task is provided by The Cancer Imaging Archive 

(TCIA), containing brain tumor MRI images along with the manual FLAIR tumor 

segmentation masks. The brain MRIs correspond to 110 patients included in The 

Cancer Genome Atlas (TCGA) from the lower grade glioma collection. The MRI slices 

are combined for 3 modalities into a RGB image. The CSV file contains information 

about the patients such as ID, Gender, Age, Race as well as tumor characteristics such 

as RNASeqCluster, CNCluster, COCCluster, miRNACluster, MethylationCluster, 

RPPACluster, Oncosign Cluster genomic subtypes. Other than that, the CSV file 

provides other essential data about the tumors such as their histological type being 

Astrocytomas, Oligoastrocytomas and Oligodendrogliomas, including Grade II and 

Grade III division. This dataset is quite large, and contains a lot of information about 

the patients, leading us to believe that it might need much more preprocessing to 

stabilize.  

 

 
 

 Figure 25. Brain Tumor Positive and Negative Labels 



37 

Dataset Training Validation Testing 

Brain Tumor  

MRI TCIA 

70% 10% 20% 

 

Table 1. Images for Each Step 

 

 

The training, validation and testing ratios vary depending on the dataset, so for 

our case the sets are 70%, 10% and 20%. Upon dividing the sets, a few conditions are 

applied into the implementation to filter out the images appropriate to our task, 

including diagnosis equal to 1, for the tumor positive MRI scans and histological type, 

to investigate the variability between the three different types of lower grade gliomas 

provided in the data.  

Another important element to consider are the dimensions of the input images. 

By considering a random tensor [1, 3, 128, 128] generated into our model, we can 

break down the details. The value 1 stands for the batch size, where in this case only 

one image is in the batch. The value 3 refers to the RGB channels Red, Green and Blue 

being each of the channels. The image dimensions are 128 in width and 128 in height, 

but we have also experimented with dimensions of 256 in width and 256 in height. 

 

 
 

 Figure 26. TCIA Ground Truth Segmentation Masks 
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3.2 Methods 

In this study, we have followed a quantitative approach of implementing a three 

part process leading to the main challenge we decide to investigate. Firstly, we use the 

first dataset as mentioned above by TCIA, to load a pre-trained ResNet50 model to 

perform brain tumor MRI classification, detecting whether the provided MRI scans 

showcase tumor structures or not.  

The ResNet50 model architecture in our case consists of an average pooling 

layer which helps in reducing the spatial dimensions of the input, a flatten layer, two 

fully connected dense layers with ReLU activation functions as well as dropout 

regularization to prevent overfitting, and lastly, a final dense layer which outputs the 

probabilities for the classes and uses a softmax activation function. 

Then with the same dataset by TCIA, we load two kinds of UNET model 

architectures to segment the tumor region from the brain MRIs, while also comparing 

the predicted tumor labels to the ground truth labels and noticing how well and 

concisely the model was able to capture the tumor area and boundaries, separating it 

from the other brain structures. The models being tested are UNET with ResNext50 

backbone and UNET with Feature Pyramid Network backbone. The main reason why 

we use all three of these architectures is to compare between characteristics, 

hyperparameters and evaluation metrics to point out which is likely to produce the 

most ideal results.  

 

 

Task Method 

Brain Tumor Classification ResNet50 

Brain Tumor Segmentation, 

Association of Shape Features  

and Genomic Subtypes 

UNET with FPN,  

UNET with  

ResNeXt50 

 

Table 2. Tasks and Methods 
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3.3 Set Up Environment 

All of the necessary Python libraries are imported and prepared for the tasks, 

starting with os, numpy, pandas, matplotlib, seaborn, cv2, skimage and tensorflow. 

The last library, commonly known as tensorflow, is responsible for loading all of the 

details concerning the neural network models, the layers, optimizers, regularization 

techniques and pooling operations.  

Apart from the libraries, we also load the TCIA dataset, by reading from the 

provided CSV file and displaying all of the content regarding participants and brain 

structures. We make sure to remove any unnecessary information from the dataset, 

such as any patients that identify with Unknown information and focus on displaying 

the patient IDs, the respective brain MRI images, FLAIR segmentation masks and 

genomic subtypes.  

 

 

Python Library Version 

python 3.7.6 

matplotlib 3.1.3 

scikit-image 0.16.2 

scikit-learn 0.23.2 

numpy 1.18.1 

pandas 1.0.1 

seaborn 0.10.0 

opencv 4.2.0 

tensorflow 2.3.1 

albumentations 0.4.5 

 

  Table 3. Python Library Version 
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3.4 Data Preprocessing and Augmentation 

Firstly, we apply preprocessing filters such as the median filter and gaussian 

filter to the data, to smooth out and reduce any possible noise in the images.Then, we 

also apply data augmentation techniques. We chose to do this to properly prepare the 

dataset by removing any columns that don’t contain age values, and secondly, to add 

more variety to the dataset by increasing the number of training images and 

furthermore, help in improving the model performance. Albumentations is the library 

we used to apply data augmentation for deep learning models, by using transformations 

such as horizontal and vertical flips, stretching, cropping and more, known more 

commonly for its speed and efficiency.  

 

3.5 Evaluation Metrics 

The evaluation metrics chosen for the classification task are imported from the 

scikit-learn python library, the accuracy classification score which computes subset 

accuracy and determines how well the set of predictions perfectly match the true labels, 

along with  the confusion matrix, which displays the predicted values, true values and 

any misclassifications made during the process. The classification report indicates how 

well the model performs regarding the precision, recall and F1-score between the 

specified labels. Meanwhile, the evaluation metrics chosen for the segmentation task 

are the Dice loss function, Binary Cross Entropy  and the IoU score. The shape feature 

and genomic subtype association is evaluated on the basis of Fisher’s Test with 

Bonferroni Correction. 

 

Task Evaluation Metrics 

Brain Tumor Classification Overall Accuracy, Confusion Matrix, 

Classification Report 

Brain Tumor Segmentation Dice Loss 

Association of Shape Features  

and Genomic Subtypes 

Fisher’s Test,  

Bonferroni Correction, ROC AUC 

 

  Table 4. Evaluation Metrics for Tasks 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

 

4.1 Brain Tumor Classification 

The change of activation function is made, while keeping the output layer as 

the same Softmax function in every case. This is to ensure some stability in binary 

classification probability. The table below showcases the most ideal results we got 

from the tests. 

 

 

Experiments Accuracy 

ReLU  0.97 

Sigmoid 0.93 

ELU 0.83 

Leaky ReLU 0.96 

 

 Table 5. Classification Activation Functions and Average Pooling 

 

 

 

 

Experiments Accuracy 

ReLU  0.94 

Sigmoid 0.90 

ELU 0.81 

Leaky ReLU 0.93 

 

     Table 6. Classification Activation Functions and Max Pooling 
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After running the necessary tests of the tumor detection and classification task 

by combining different activation functions with average and max pooling operations, 

we take a look at the best performing case and the worst performing case. The best 

case scenario resulted in having ReLU function in hidden layers, Softmax in output 

layer and an Average Pooling operation, while the worst case resulted in having ELU 

function in hidden layers, Softmax in output layer and Max Pooling operation. 

 

  

                         Figure 27. Best Case Confusion Matrix 
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                        Figure 28. Worst Case Confusion Matrix 

 

As we can see from the confusion matrices displayed above, the difference 

between the amount of misclassifications is incredibly large. The worst case scenario 

with the ELU function, shows 17 cases that actually don’t contain brain tumor 

misclassified as tumor positive, and then 90 tumor positive cases misclassified as not 

having a brain tumor. The best case scenario shows great improvement, by reducing 

the number of misclassifications by a large amount and only leaving a few cases to 

work with. In this context, only 3 tumor positive scans are misclassified as not having 

a brain tumor and then 10 tumor negative scans misclassified as having a  tumor.  
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4.2 Brain Tumor Segmentation 

We test out three different kinds of UNET architectures for the tumor 

segmentation process, aiming to see which one of them performs the best, under which 

circumstances,  with the help of which hyperparameters and with which evaluation 

metrics. The methods we chose to employ are the combination of UNET model with 

two different backbone architectures such as Feature Pyramid Network (FPN) and 

ResNeXt50.  

 

 

 

Model  

Architecture  

Encoder Decoder Final Layer 

UNET + 

ResNeXt50 

ResNeXt50  

blocks, ReLU 

Transposed 

convolutions, 3x3 

convolutions, 

ReLU 

1x1 convolutional 

layer to map features, 

Sigmoid function  

UNET +  

FPN 

ResNet34, 3x3 

convolutions, 

ReLU,  FPN 

Transposed 

convolutions, 3x3 

convolutions, 

ReLU 

1x1 convolutional 

layer to map features, 

Sigmoid function 

 

Table 7. Types of UNET Model Architectures 

 

 

 

Depending on each UNET model architecture, we test out the impact that 

different activation functions combined with pooling operations have on the tumor 

segmentation performance.  

We train each of the models for a number of 100 epochs, with Adam optimizer 

and record the significance that each of the earlier mentioned hyperparameters have 

on the evaluation metrics. All of the models have a Sigmoid activation function in their 

output layers, which helps in producing the final segmentation masks. Depending on 

the activation functions and pooling operations used in the hidden layers, we are able 

to construct a table reviewing and displaying our results, along with highlighting the 

best performing case.  
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The best performing case is then used to display its respective accuracy and loss 

graphs as well as the prediction and ground truth tumor segmentation masks.  

 

 

Model Activation 

Function + Max 

Pooling 

Accuracy 

Dice 

Activation 

Function + 

Average Pooling 

Accuracy 

Dice 

 

UNET + 

 FPN 

ReLU 0.87 ReLU 0.73 

Leaky ReLU 0.75 Leaky ReLU 0.71 

Sigmoid 0.71 Sigmoid 0.72 

ELU 0.74 ELU 0.70 

 

Table 8. UNET FPN Activation Functions and Pooling 

 

 

 

Model Activation 

Function + 

Max Pooling 

Accuracy 

Dice 

Activation 

Function + 

Average Pooling 

Accuracy 

Dice 

 

UNET + 

ResNeXt50 

ReLU 0.95 ReLU 0.92 

Leaky ReLU 0.94 Leaky ReLU 0.87 

Sigmoid 0.91 Sigmoid 0.83 

ELU 0.90 ELU 0.88 

 

Table 9. UNET ResNeXt50 Activation Functions and Pooling 
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The main evaluation metric as well as the best performing for monitoring model 

performance and accuracy is the Mean Dice as we can see displayed in the table above 

as well. It managed to maintain coherency, stability and gradually improved across the 

number of epochs for both training and validation. 

 

 

 
 

Figure 29. Brain Tumor Original MRI and Mask 

 

 

 
 

Figure 30. UNET ResNeXt50 Prediction Mask 

 

 

 

 



47 

 For the UNET ResNext50 model, the training and validation process lasted up 

to 2 hours and 15 minutes. As for the UNET FPN model, the training and validation 

process lasted up to 17 minutes. The differences in the architectures reflect on the 

ability of the model to learn and pick up complex features as smoothly and effectively 

as possible. 

 The UNET ResNext50 model, differently from the other models, consists of 

upsampling and transposed convolution operations instead of pooling operations to 

recover spatial details. In this case, we firstly modify the activation functions and then 

we alter the ResNext50 base model part of the structure within UNET, to apply the 

pooling operations based on our task. The Sequential blocks themselves contain Max 

Pooling, which we experiment with, as well as changing it to Average Pooling. From 

the modifications, we get the highest result from ReLU with Max Pooling of Mean 

IoU 0.95 while in general, all of the combinations of activation functions with Max 

Pooling perform better compared to the Average Pooling instance.  

On the other hand, with the UNET FPN model, we attempted modifying not 

only activation functions, but also pooling operations between Max Pooling and 

Average Pooling, seeing as the architecture allowed for such alterations with no errors. 

We achieved the highest accuracy of 0.87 with ReLU and Max Pooling, while all of 

the other combinations decreased in performance. We notice an overall increase in 

accuracy specifically with the activation functions and Max Pooling operation, 

compared to Average Pooling. 
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4.3 Association of Radiomic Features and Genomic Subtypes 

After the brain tumor segmentation process is carried out successfully, we 

extract shape and texture features which are considered to play a significant role in 

discovering associations with lower grade glioma radiogenomics. The texture features 

we extracted are Contrast, Correlation, Energy and Homogeneity. Meanwhile, the 

shape features we extracted are Angular Standard Deviation, Eccentricity, Bounding 

Ellipsoid Volume Ratio, Margin Fluctuation, Solidity, Extent, Equivalent Diameter, 

Perimeter, Convexity Defects and Aspect Ratio to investigate the possible associations 

between these radiomic features and RNASeqCluster, CNCluster, RPPACluster, 

COCCluster, MethylationCluster, miRNACluster and OncosignCluster while also 

aiming for p-value < 0.05 which is the threshold of statistically significant 

associations.To test out the hypothesis, we used UNET with ResNeXt50 backbone, 

ReLU activation function and Max Pooling operation since it is the best performing 

case out of all the other combinations between activation functions, pooling operations 

and different UNET backbones.  

The UNET with FPN backbone didn’t perform poorly, however, it was 

relatively lower and less competent in extracting the radiomic features as smoothly 

and clearly as the ResNeXt50 backbone. This last one proves to be an obvious choice 

of a segmentation tool due to its implementation of multiple parallel transformation 

paths through which the input image is processed, also known as cardinality. This 

feature makes it easier for the network to separate the input data into several parts from 

the pieces with the less important information to the pieces with the most crucial 

information, by ensuring flexibility within the model without extra computational 

space. 
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Tumor 

Shape + 

Texture 

Features 

P-Values 

RNA 

Seq 

 

CN 

 

RPPA 

 

COC 

 

Methylation mi 

RNA 

Onco

sign 

Eccentricity 1 1 1 1 1 1 1 

Angular 

Standard 

Deviation 

0.814 0.801 1 0.888 1 1 1 

Bounding 

Ellipsoid 

Volume 

Ratio 

1 1 0.037 1 0.624 0.761 0.431 

Margin 

Fluctuation 

0.904 1 1 1 1 1 1 

Solidity 1 1 1 1 1 1 1 

Extent 1 1 1 1 1 0.761 1 

Equivalent 

Diameter 

1 1 0.569 1 0.624 0.761 0.431 

Perimeter 1 1 1 0.804 1 1 1 

Convexity 

Defects 

1 0.113 1 0.035 1 0.448 1 

Aspect Ratio 1 1 1 1 1 1 1 

Contrast 1 1 0.001 1 1 1 1 

Correlation 1 1 0.026 1 0.04 1 1 

Energy 1 1 0.001 1 1 1 1 

Homogeneity 1 1 0.001 1 1 1 1 

 

Table 10. Associations for Astrocytoma Histological Type 
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Tumor 

Shape + 

Texture 

Features 

P-Values 

RNA 

Seq 

 

CN 

 

RPPA 

 

COC 

 

Methylation mi 

RNA 

Oncosign 

Eccentricity 1 1 1 1 1 1 1 

Angular 

Standard 

Deviation 

0.814 0.801 1 0.888 1 1 1 

Bounding 

Ellipsoid 

Volume Ratio 

1 1 0.037 1 1 1 1 

Margin 

Fluctuation 

1 1 1 1 1 1 1 

Solidity 1 1 0.795 1 1 1 1 

Extent 1 1 1 1 1 1 1 

Equivalent 

Diameter 
0.001 1 1 1 1 1 1 

Perimeter 1 1 1 1 1 1 1 

Convexity 

Defects 

1 0.016 1 0.016 1 1 1 

Aspect Ratio 1 1 1 1 1 1 1 

Contrast 1 1 1 1 1 1 1 

Correlation 1 1 1 1 1 1 1 

Energy 0.010 1 1 1 1 1 1 

Homogeneity 0.001 1 1 1 1 1 1 

 

Table 11. Associations for Oligoastrocytoma Histological Type 
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Tumor  

Shape + 

Texture  

Features 

P-Values 

RNA 

Seq 

 

CN 

 

RPPA 

 

COC 

 

Methylation mi 

RNA 

Oncosign 

Eccentricity 0.0006 1 0.044 1 1 1 0.292 

Angular 

Standard 

Deviation 

0.002 1 1 1 0.277 1 1 

Bounding 

Ellipsoid 

Volume Ratio 

0.008 1 0.002 1 0.026 1 0.213 

Margin 

Fluctuation 

1 1 1 1 1 1 1 

Solidity 1 1 1 1 1 1 1 

Extent 0.596 1 1 1 1 0.193 1 

Equivalent 

Diameter 
0.018 0.460 1 1 0.026 1 0.292 

Perimeter 1 1 1 1 1 0.193 1 

Convexity 

Defects 
0.018 1 1 0.242 1 1 1 

Aspect Ratio 0.018 0.069 1 0.113 1 1 1 

Contrast 1 1 1 1 1 1 1 

Correlation 0.027 1 1 1 0.010 0.043 1 

Energy 1 1 1 1 0.001 1 1 

Homogeneity 1 0.016 1 1 0.0003 1 0.002 

 

Table 12. Associations for Oligodendroglioma Histological Type  

 

 

As we can see from the table of results, the UNET ResNext50 model achieved 

considerable significant results in associating Angular Standard Deviation, 

Eccentricity, Equivalent Diameter, Convexity Defects, Bounding Ellipsoid Volume 

Ratio and Aspect Ratio with the genomic subtypes. 
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 For Astrocytoma histological types, we notice the strongest associations 

between Bounding Ellipsoid Volume Ratio and RPPACluster (p=0.037) as well as 

Convexity Defects and COCCluster (p=0.035).  

For Oligoastrocytoma histological types, the strongest associations with shape 

features were found between Bounding Ellipsoid Volume Ratio and RNASeqCluster 

(p=0.001), Equivalent Diameter and RNASeqCluster (p=0.001), Convexity Defects 

and CNCluster (p=0.016) and lastly, between Convexity Defects and COCCluster 

(p=0.016). Meanwhile, with texture features the strongest associations were found 

between Energy and RNASeqCluster (p=0.01) as well as Homogeneity and 

RNASeqCluster (p=0.001). 

Lastly, for Oligodendroglioma histological types, the strongest associations 

with shape features were between Eccentricity and RNASeqCluster (p=0.0006), 

Eccentricity and RPPACluster (p=0.044), Angular Standard Deviation and 

RNASeqCluster (p=0.002), Bounding Ellipsoid Volume Ratio and RNASeqCluster 

(p=0.008), Bounding Ellipsoid Volume Ratio and CNCluster (p=0.002), Bounding 

Ellipsoid Volume Ratio and MethylationCluster (p=0.026), Equivalent Diameter and 

RNASeqCluster (p=0.018), Equivalent Diameter and MethylationCluster (p=0.026), 

Convexity Defects and RNASeqCluster (p=0.018) as well as Aspect Ratio and 

RNASeqCluster (p=0.018).  

The strongest associations with texture features were found between 

Correlation and RNASeqCluster (p=0.027), Correlation and MethylationCluster 

(p=0.01), Correlation and miRNACluster (p=0.043), Energy and MethylationCluster 

(p=0.001), Homogeneity and CNCluster (p=0.016), Homogeneity and 

MethylationCluster (p=0.0003) and lastly, between Homogeneity and 

OncosignCluster (p=0.002). 
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Figure 31. Shape & Cluster Distribution for Astrocytoma 

 

The histograms are useful in terms of determining which combination of shape 

features and genomic clusters are more common across specific histological types of 

tumors.  

So in the first case above, we notice that the largest number of astrocytomas of 

CNCluster subtype share the same characteristic of 1.8 ASD value indicating 

irregularly shaped boundaries, while the largest number of astrocytomas of 

RPPACluster share the 0.9 eccentricity value and 0 margin fluctuation, insinuating that 

astrocytomas of this subtype display very regular and defined boundaries and an 

elongated shape.While the largest number of astrocytomas of RNASeqCluster subtype 

share 0 BEVR value and 0.9 solidity value, showcasing a very compact and densely 

packed tumor region.  
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Figure 32. Texture & Cluster Distribution for Astrocytoma 

 

This histogram showcases the relationship between texture features and tumor 

genomic clusters, in the case of astrocytomas. We record the largest number of 

astrocytomas of RPPACluster subtype exhibiting low contrast values, meaning that 

there aren’t any diverse intensities present, while astrocytomas of RNASeqCluster 

share 0.9 correlation value, indicating higher linear dependency between gray-levels. 

The correlation value in this case represents a repetitive or predictable pattern of 

intensities, which reflects consistent textures. The largest part of astrocytomas of 

CNCluster share 1.0 energy value and 1.0 homogeneity value, which suggest a high 

level of ideal uniformity.  
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Figure 33. Shape & Cluster Distribution for Oligoastrocytoma 

 

The histograms for oligoastrocytomas showcase the highest peaks of 

RNASeqCluster subtype with 1.8 ASD value indicating irregular shape of boundaries 

as well as 0.9 solidity value, for a compact and very densely packed tumor region. The 

largest number of astrocytomas of COCCluster subtype showcase 0 BEVR value, 0 

margin fluctuation value and 1.0 eccentricity value, reflecting a very compact, well-

defined and elongated shape of tumor.  
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Figure 34. Texture & Cluster Distribution for Oligoastrocytoma 

 

For oligoastrocytomas, the histogram identifies the highest peaks of 

RNASeqCluster subtype with 0 contrast value, 1.0 energy value and 1.0 homogeneity 

value, all representing a highly uniform and consistent texture pattern, just as well as 

the largest number of astrocytomas of COCCluster subtype, reaching a 0.96 value of 

correlation, translating into a very consistent and highly predictable texture pattern. 
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Figure 35. Shape & Cluster Distribution for Oligodendroglioma 

 

The histograms for oligodendrogliomas suggest that the highest peaks for 

CNCluster subtypes share characteristics of 1.8 ASD, 0.9 eccentricity and 0.6 extent 

values, which contribute into reflecting an irregular and elongated tumor shape. There 

are high peaks among oligodendrogliomas of RPPACluster subtypes as well, with 0 

MF value, indicating perfectly defined boundaries, as well as among 

oligodendrogliomas of COCCluster subtype with 0.8 solidity value, defining a very 

compact tumor shape.  
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Figure 36. Texture & Cluster Distribution for Oligodendroglioma 

 

Lastly, the texture feature histogram for oligodendrogliomas, shows the most 

common association, as well as the highest peaks found with RPPACluster and 

contrast, indicating uniform texture with no variations, CNCluster and 

RNASeqCluster and homogeneity for a smooth tumor pattern, RPPACluster and 

energy for a maximal uniformity in the texture and CNCluster and correlation for 

highly predictable textures in the tumor images.  

All of these findings suggest that the highest peaks of shape feature values 

across the three different histological types of tumors are associated with specific 

genomic clusters, which helps us identify unique characteristics belonging to each type 

of tumor.  

We only considered the ROC AUC results above 0.7 to ensure maximum 

robustness. In the case of CNCluster, the shape features of BEVR, Margin Fluctuation, 

Solidity, Equivalent Diameter and the texture features Contrast and Correlation result 

highly in their discriminative abilities of distinguishing C3 from other clusters. For 

RPPACluster, the same shape features and texture features perform highly in 

distinguishing R4 from other clusters.  
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For MethylationCluster M1, Extent and Convexity Defects discriminate M1 

from other clusters and lastly, for miRNACluster, Angular Standard Deviation 

performed relatively well in discriminating M3.  

 

Genomic Subtype  Radiomic Feature ROC AUC 

 

 

 

 

CNCluster C3 

Bounding Ellipsoid Volume Ratio 0.87 

Margin Fluctuation 0.76 

Solidity 0.76 

Equivalent Diameter 0.87 

Contrast 0.89 

Correlation 0.77 

 

 

 

 

RPPACluster R4 

Bounding Ellipsoid Volume Ratio 0.87 

Margin Fluctuation 0.76 

Solidity 0.76 

Equivalent Diameter 0.87 

Contrast 0.89 

Correlation 0.77 

 

MethylationCluster M1 

Extent 0.97 

Convexity Defects 0.85 

miRNACluster M3 Angular Standard Deviation 0.74 

 

Table 13. Best Distinguished Cases of ROC AUC Scores for Clusters 
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4.4 Discussion 

In the pursuit of analyzing and enhancing medical imaging data related to brain 

pathology, we created a cohesive framework of brain tumor classification, 

segmentation and association between tumor shape and texture features and genomic 

subtypes. Following the case of brain tumor classification and segmentation, the 

models performed relatively well as we tested out the possibility of modifying 

hyperparameter values such as activation functions and pooling operations to improve 

task accuracy. Our findings indicate that ReLU activation function and Average 

Pooling operation exhibited a slightly better performance with accuracy of 97.79% in 

tumor classification, compared to previous studies where the classification accuracy 

resulted in 97.5% [36]. We notice a coherence between Average Pooling performing 

the best across all cases of tumor classification, while Max Pooling performed the best 

across all cases of tumor segmentation.  

Between UNET with FPN backbone and UNET with ResNeXt50 backbone, 

FPN performed less accurately. UNET with ResNeXt50 gave us the best case accuracy 

results with ReLU activation function and Max Pooling, compared to a previous study 

by Mateusz Buda et al., where the model segmentation accuracy reached a value Mean 

Dice of 82% [1]. In another study conducted by Bjoerne H. Menze et al, they 

determined Dice scores within the range of 74%-85% concerning the segmentation of 

different tumor regions, but no algorithms they tested proved to be significant enough 

in segmenting all regions accurately. Even though our model doesn’t go into specific 

tumor regions, we mention its precise generalized localization ability with a Mean Dice 

of 95%,  highlighting a clear improvement in our model [3]. 

We can conclude in identifying Average Pooling as the most ideal operation 

across binary classification tasks, as it focuses on generating the average value of the 

feature maps while providing a general overview of the image context which is what 

the classification process needs in order to make a decision between classes. In the 

case of tumor segmentation, Max Pooling is the right choice due to its ability to 

preserve fine details and edges, highlighting the most important features across an 

image and this way making it smoother for the model to segment tumor boundaries as 

accurately as possible. This result is also supported by previous studies which have 

gathered higher tumor segmentation results while using Max Pooling, and even ReLU 
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activation function just as in our case, further on proving the efficiency and capability 

of this combination [1]. 

In terms of statistically significant associations between tumor shape features 

and genomic subtypes, our findings indicate the strongest associations between 

RNASeqCluster and Bounding Ellipsoid Volume Ratio (p < 0.009), RPPACluster and 

Bounding Ellipsoid Volume Ratio (p<0.04), RNASeqCluster and Angular Standard 

Deviation (p<0.002), CNCluster and Bounding Ellipsoid Volume Ratio  (p<0.002) 

which have been supported by other researchers as well [2].  

We also gathered new results in terms of significant associations with shape 

features between Eccentricity and RNASeqCluster (p<0.0006) and RPPACluster 

(p<0.05); Convexity Defects and COCCluster (p<0.04), CNCluster (p<0.02), 

COCCluster (p<0.02) and RNASeqCluster (p<0.02); Equivalent Diameter and 

RNASeqCluster (p<0.001) and MethylationCluster (p<0.03). In terms of texture 

features, we found significant associations between Energy and RNASeqCluster 

(p<0.01) and MethylationCluster (p<0.0001), Homogeneity and RNASeqCluster 

(p<0.001), CNCluster (p<0.02), MethylationCluster (p<0.0003) and OncosignCluster 

(p<0.002), Correlation and RNASeqCluster (p<0.03), MethylationCluster (p<0.01) 

and miRNASeqCluster (p<0.04). 

Apart from only identifying statistically significant associations, we applied 

histograms of shape and texture feature and genomic cluster distribution across the 

three histological types and gained clarity into investigating these relationships even 

further. Our findings prove that astrocytomas, oligoastrocytomas and 

oligodendrogliomas exhibit unique shape and texture characteristics of angular 

standard deviation, margin fluctuation, eccentricity, solidity, extent, contrast, energy, 

correlation and homogeneity. The highest peaks of shape features across 

oligodendrogliomas were observed in CNCluster and RPPACluster. Astrocytomas 

displayed similar shape characteristics across all genomic clusters. On the other hand, 

oligoastrocytomas shared shape features with both oligodendrogliomas and 

astrocytomas and were primarily clustered in the RNASeqCluster, CNCluster and 

COCCluster. The results suggest that for each histological type there are strong 

associations with the particular genomic clusters RNASeqCluster, COCCluster, 

RPPACluster and CNCluster that indicate these types of tumors to experience similar 

characteristics in terms of moderately irregular boundaries, regular margins without 

significant fluctuations.  
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However, the distinctions between them are found in astrocytomas of such 

clusters appearing moderately elongated, moderately irregularly shapes and occupying 

only a portion of the MRI image in relation to the space it could potentially fill, while 

oligoastrocytomas appeared highly stretched out and elongated as well as taking up all 

of the space of the MRI image, and lastly, oligodendrogliomas appeared highly 

elongated and stretched out as well.  

For the histograms representing the distribution across texture features, the 

results indicate that all three histological types demonstrate uniform and smooth 

textures, with no variations, homogenous and extremely regular patterns.  

With the help of deep learning models, such as UNET ResNeXt50 in our case, 

we notice a great enhancement of using imaging characteristics, such as brain tumor 

MRIs to build predictive models for tumor subtypes.  

By utilizing such models, we look into a future of gathering information about 

tumor behavior, growth and shape in a non-invasive way of identifying patient 

prognosis, and even providing treatment options. In other words, by using a highly 

accurate and precise predictive model we could narrow down the aggressiveness of a 

tumor based on its relationships between shape features and genomic subtypes, and 

provide the patient with appropriate treatment according to what they need at that stage 

of the tumor development. Accurate segmentation of the tumor leads to a clearer 

representation and extraction of its shape features, making it easier to find significant 

associations with genomic clusters, as well as classifying and predicting tumor types 

based on the similarities shared across multiple MRIs and the segmented masks.  

Our results in determining the highest ROC AUC scores in terms of which 

radiomic features represent the best discriminative abilities of specific clusters, we 

state new highly performing insights into Bounding Ellipsoid Volume Ratio, Margin 

Fluctuation, Solidity, Equivalent Diameter, Contrast and Correlation for distinguishing 

CNCluster C3 and RPPACluster R4, Extent and Convexity Defects for distinguishing 

MethylationCluster M1 compared to other studies in which angular standard deviation 

was the most discriminative of RNASeqCluster R2 cluster [1].  

The closer to 1 the ROC AUC value is, the more discriminative that feature is 

of a specific genomic cluster, indicating a highly confident result instead of it being by 

random chance.  
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 All of these findings grouped together indicate the consideration and 

exploration of potential biomarkers with future supporting evidence, into not only 

differentiating the biological differences between tumor types, but also providing 

robust features that aid clinicians in making more accurate diagnoses, determining 

appropriate patient treatment plans, survival prediction as well as ideally minimize the 

need for invasive procedures such as biopsies. 
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CHAPTER 5 

CONCLUSIONS 

 

5.1 Conclusions 

In conclusion, we demonstrated that a highly accurate and well performing deep 

learning brain tumor MRI segmentation model with UNET ResNeXt50 architecture is 

capable of precisely segmenting the tumors in such a way that the extracted shape and 

texture features were found to carry significant associations with genomic subtypes. 

We specifically point out that from three histological types of tumors such as 

astrocytoma, oligoastrocytoma and oligodendroglioma, this last one indicated the most 

significant associations between tumor imaging characteristics and various clusters, 

making this type possibly easier to decipher in the applications of neural networks to 

the prediction of tumor type, shape, behavior and progression solely based on its 

relation to genomic subtypes.  

In the case of identifying the most statistically significant associations to 

genomic subtypes, the most highly performing shape features resulted to be BEVR, 

Eccentricity, Equivalent Diameter and Convexity Defects. In terms of tumor texture, 

we determine the most significant features to be Homogeneity, Energy and Correlation 

which are consistently found across multiple histological types and genomic clusters 

with the lowest p-values. Additionally, when considering ROC AUC discriminative 

scores, our insights state powerful discriminative abilities of specific clusters within 

features such as BEVR, Extent, Contrast, Convexity Defects and Equivalent Diameter 

as well.  Among all the gathered results, we highlight Bounding Ellipsoid Volume 

Ratio, Convexity Defects and Equivalent Diameter to display both statistical impact in 

reflecting the important associations to genomic subtypes and discriminative impact 

in differentiating between classes, for future predictive model application.  

These imaging characteristics can be considered potential biomarkers which 

can serve as a base for further applications of patient prognosis, health risk assessment 

as well as treatment planning by showcasing consistent, highly accurate results which 

lead to a future implementation of utilizing MRI imaging features to generate enough 
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valuable information about the tumor’s growth, shape and aggressiveness without 

needing to endure invasive procedures. 

 

5.2 Recommendations for future research  

For future work, besides tumor shape and GLCM texture features, we plan on 

investigating whether there are any possible significant associations between genomic 

subtypes and tumor location features, statistical measures of mean and skewness, as 

well as expanding on other types of texture features such as run-length features  and 

wavelet-based features. Further on, we implement factor analysis according to the 

significant associations found within shape and texture features, investigating if one or 

two features are removed for a specific genomic subtype, how the relationship with 

the other features would transform.  
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APPENDICES 

 

APPENDIX A 

Snippets from the data.csv file that contains the brain tumor genomic subtype 

information about the patients is displayed below: 
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APPENDIX B 

ResNet50 tumor classification model summary is displayed below: 
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UNET with FPN tumor segmentation model summary is displayed below: 
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UNET with ResNeXt50 segmentation model summary is displayed below: 

 

 


