

IMAGE AND VIDEO PROCESSING

ON XILINX ZYNQ ULTRASCALE+ MPSoC

A THESIS SUBMITTED TO

THE FACULTY OF ACHITECTURE AND ENGINEERING

OF

EPOKA UNIVERSITY

BY

KEVIN SELMANHASKO

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRONICS AND DIGITAL COMUNICATION ENGINEERING

February, 2024

i

Approval sheet of the Thesis

This is to certify that we have read this thesis entitled “Image and video processing on

Xilinx Zynq Ultrascale+ MPSoC” and that in our opinion it is fully adequate, in scope

and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Arban Uka

Head of Department

Date: February, 28, 2024

Examining Committee Members:

Dr. Florenc Skuka (Computer Engineering) ________________

Dr. Shkëlqim Hajrulla (Computer Engineering) ________________

Assoc. Prof. Dr. Arban Uka (Computer Engineering) ________________

ii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name Surname: Kevin Selmanhasko

 Signature: _________________

iii

ABSTRACT

IMAGE AND VIDEO PROCESSING

ON XILINX ZYNQ ULTRASCALE+ MPSoC

Selmanhasko, Kevin

M.Sc., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Arban Uka

Field-programmable gate arrays (FPGAs) have become a popular choice for high-

speed data transmission systems due to their high performance and flexibility. FPGA-

based systems are increasingly being used in various applications, such as radar, medical

imaging, autonomous driving, and quantum computing. Within this paper, a detailed

examination is presented, offering insights into FPGA-centric image and video

processing, accompanied by a thorough exploration of the associated design

considerations. The FPGA used in this thesis is the ZCU104. The advantages of FPGA-

based systems, including high-speed data processing, low latency, and reconfigurability

are discussed. The paper also emphasizes certain challenges and limitations associated

with the design of FPGA-based data transmission systems. To illustrate the practicality

of FPGA data processing, PYNQ has been used as it contains Open Computer Vision

Library (CV). The main focus has been implementation and comparison of different

methods used for image and video processing. In order to measure the performance of

these algorithms, several aspects have been taken into consideration such as accuracy or

frame rate. In addition, the limitations of this hardware have been discussed. The aim of

this thesis is analyzing the performance of these processing algorithms and what can be

done for future improvements. Overall FPGA are an excellent choice compared to the

traditional approaches.

Keywords: FPGA, PYNQ, Image Processing, Video Processing.

iv

ABSTRAKT

PROCESIMI I VIDEOVE DHE IMAZHEVE NE

 XILINX ZYNQ ULTRASCALE+ MPSoC

Selmanhasko, Kevin

M.Sc., Departamenti i Inxhinierisë Kompjuterike

Udheheqësi: Assoc. Prof. Dr. Arban Uka

Hardware-t e rikonfigurueshëm (FPGA) janë bërë një zgjedhje popullore për

sistemet e transmetimit të të dhënave me shpejtësi të lartë për shkak të performancës dhe

fleksibilitetit të tyre të lartë. FPGA-te po përdoren gjithnjë e më shumë në aplikacione të

ndryshme, si radarët, imazhet mjekësore, drejtimi autonom dhe llogaritja kuantike. Në

këtë teme shkencore paraqitet një shqyrtim i hollësishëm, duke ofruar perspektivë në

procesimin e imazheve dhe videove të përqendruar në FPGA. FPGA-ja e përdorur në këtë

teme është ZCU104. Jane diskutuar avantazhet e sistemeve bazuar në FPGA, duke

përfshirë procesimin e të dhënave me shpejtësi të lartë, vonesa të ulëta dhe

rikonfigurueshmëria. Jane theksuar gjithashtu disa sfida dhe kufizime të lidhura me

dizajnin e sistemeve të transmetimit të të dhënave bazuar në FPGA. Për të ilustruar

procesimin e të dhënave në FPGA, është përdorur PYNQ pasi përmban Open Computer

Vision Library (CV). Fokusi kryesor është te implementimi dhe krahasimi i metodeve të

ndryshme të përdorura për procesimin e imazheve dhe videove. Për të vlerësuar

performancën e këtyre algoritmave, janë marrë në konsideratë disa aspekte si saktësia ose

frekuenca vizuale. Gjithashtu janë diskutuar kufizimet e këtij hardueri. Qëllimi kryesor I

ketij punimi shkencor është analizimi i performancës së këtyre algoritmave të procesimit

dhe çfarë mund të ndërmerret për tu permirsuar ne te ardhmen. Në përgjithësi, FPGA-te

janë një zgjedhje shumë e mirë krahasuar me metodat tradicionale.

Fjalet kyçe: FPGA, PYNQ, Procesim Imazhesh, Procesim Videosh.

v

Dedicated to my family and friends!

vi

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Assoc. Prof. Dr. Arban Uka for the

help he has given me to write this thesis and for all his advices, encouragement and

support during all my years studying in this University. I sincerely appreciate the time

and effort he has spent to improve my experience during these years.

vii

TABLE OF CONTENTS

ABSTRACT .. iii

ABSTRAKT .. iv

ACKNOWLEDGMENTS ... vi

LIST OF TABLES .. ix

LIST OF FIGURES .. x

LIST OF ABBREVIATIONS .. xii

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 Field-Programmable Gate Arrays .. 1

1.2 Video Processing Pipelines .. 1

1.3 Video Processing on FPGAs .. 3

1.4 High-level Synthesis .. 4

1.5 Python Productivity for Zynq (PYNQ) .. 4

CHAPTER 2 ... 9

METHODS AND MATERIALS ... 9

2.1 Materials .. 9

2.1.1 Hardware Components ... 9

2.1.1.1 ZCU104 board – XILINX ZYNQ ULTRASCALE+ MPSoC EV 9

2.1.2 Software components .. 13

2.1.2.1 PYNQ 3.0 with VIVADO 2022.1 .. 13

2.1.2.2 PYNQ Overlays .. 14

viii

2.1.2.3 AXI DMA ... 18

2.1.2.4 AXI VIDEO DMA ... 20

2.1.2.5 Open Computer Vision (CV) .. 22

2.2 Methodology .. 23

2.2.1 Steps for connecting PYNQ to FPGA .. 23

2.2.2 Image Processing Filtering ... 24

2.2.3 2D Convolution .. 25

2.2.3.1 Sobel Filter ... 26

2.2.3.2 Laplacian Filter ... 27

2.2.3.4 Gaussian Filter .. 28

2.3.1 Steps for implementation of the custom overlay ... 30

RESULTS AND DISCUSSION ... 33

3.2 Results of the Real time video in the Jupyter Notebook .. 38

3.2.1 The Frame Rate Comparison: .. 38

3.2 Results from of Real-Time Video from USB camera and pre-saved Video) .. 39

3.2.1 USB Camera Input (1280x720) .. 39

3.2.2 Pre-saved video Input (768x576) ... 39

3.2.3 Power Consumption Comparison: .. 40

3.2.4 Data read from disk: ... 40

3.3 Results from the HLS IP C simulation for Gaussian Filter 5x5: 41

3.4 Results from the HLS IP C simulation for Sobel Filter: 42

CONCLUSION .. 44

REFERENCES ... 45

ix

LIST OF TABLES

Table 1. ZCU104 Resources [34] .. 12

Table 2. PYNQ Versions compatible with VIVADO .. 13

Table 3. Side to Side Comparison of Filters Implementation on Software 38

Table 4. Comparison of Hardware and Software with the input coming from the USB

Camera Input .. 39

Table 5. Comparison of Hardware and Software with the input coming from the

pre=saved video "vtest.mp4" .. 39

Table 6. Power Comparison 1240x720(Watts) .. 40

Table 7. Data read from disk during hardware implementation 41

x

LIST OF FIGURES

Figure 1. The PYNQ Framework .. 6

Figure 2. Xilinx ZYNQ Ultrascale+ Evaluation Kit components and tools [32] 9

Figure 3. A detailed picture of Zynq UltraScale+ MPSoC ZCU104 and its interfaces 11

Figure 4. ZCU104 High Level device Diagram .. 12

Figure 5. Connection of the peripherals in the Base Overlay of ZCU104 board 14

Figure 6. Base Overlay Block design in PYNQ 3.0 .. 16

Figure 7. Block design of Video on Base Overlay .. 16

Figure 8. Design of HDMI INPUT .. 17

Figure 9. Design of HDMI OUTPUT .. 17

Figure 10. The AXI interfaces on the AXI DMA Controller .. 18

Figure 11. An example of the AXI DMA connected in the PL of the Zynq MOSoC [38]

 .. 20

Figure 12. The AXI VDMA block diagram and AXI interfaces 21

Figure 13.The AXI VDMA video frame buffer example. ... 22

Figure 14. Illustration for processing of pixel through neighborhood operations [42] . 24

Figure 15. 2D Convolution of Image and Kernel Window [50] 26

Figure 16. The illustration of both sobel operators Gy and Gx for the detction of edges

in the horizontal and vertical direction respectively ... 27

Figure 17. The resulting image from MatLab of the complete Sobel filter as the

magnitude of the x and y direction gradients ... 27

Figure 18. The result from MatLab of the convolution of the image with the Gaussian

filter. [45] .. 29

Figure 19. The result from the Canny Filter(left) and Sobel Filter(right) Compared side-

by-side .. 29

file:///C:/Users/User/Downloads/Kevin_Selmanhasko_Thesis%20(2).docx%23_Toc162290247

xi

Figure 20. Implementation of the IP in the block design for ZCU104 32

Figure 21. Initialization of the HDMI input and HDMI output 33

Figure 22. Code cell for the real-time video displayed on the HD monitor 34

Figure 23. Real time display of Laptop screen on PYNQ ... 34

Figure 24. Real Time Edge Detection Using Laptop Screen as an input 35

Figure 25. Cell code for the real-time video with Laplacian Edge Detection 36

Figure 26. Cell code for the real-time video with Canny Edge Detection 37

Figure 27. Cell code for the real-time video with Sobel Edge Detection 37

Figure 28. Implementation of real time canny filter on USB CAMERA 38

Figure 29. The simulation results of the HLS IP (1280x720) image 42

Figure 30. Graphical representation of the device and placed logic resources 43

xii

LIST OF ABBREVIATIONS

ASIC

AXI

FPS

SRAM

CPU

GPU

HDL

IDE

MMIO

RTL

IPYHTON

OS

AR

RF

TCM4

MMU

API

PMBus

Application-Specific Integrated Circuits

Advanced eXtensible Interface

Frames Per Second

Static Random-Access Memory

Central Processing Unit

Graphics Processing Unit

Hardware Description Language

Integrated Development Enviroment

Memory Mapped INPUT/OUTPUT

Register Transfer Level

Interactive PYTHON

Operating System

Augmented Reality

Radio Frequency

Tightly Coupled Memory

Memory Management Unit

Application Programming Interface

Power Management Bus

CV Computer Vision

DMA Direct Memory Access

EV Embedded Vision

FPGA Field Programmable Gate Array

HD High-Definiton

HDMI High-Definition Multimedia Interface

HLS High Level Synthesis

IP Intellectual Property

MPSoc Multiprocessor System on a Chip

xiii

OpenCV Open-source Computer Vision

PL

DSP

Programmable Logic

Digital Signal Processing

PS Processing System

PYNQ Python Productivity on Zynq

RH Reconfigurable Hardware

SoC System on Chip

USB Universal Serial Bus

VDMA

LUT

FF

DSP

BRAM

SRL

Video Direct Memory Access

Look Up Table

Flip Flops

Digital Signal Processor

Block Random-Access Memory

Shift Register Logic

1

CHAPTER 1

INTRODUCTION

1.1 Field-Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGAs) are powerful integrated circuits that

offer unparalleled flexibility and performance in digital hardware design. Unlike

traditional application-specific integrated circuits (ASICs) that are fixed in functionality,

FPGAs can be reprogrammed and customized to perform a wide range of tasks [1]. They

consist of a matrix of configurable logic blocks and programmable interconnects,

allowing designers to create complex digital circuits by programming the

interconnections and functionality of these blocks [2]. This flexibility enables FPGAs to

be used in diverse applications, including digital signal processing, embedded systems,

high-speed communication, artificial intelligence, and more. High processing capability,

parallelism, low-latency, and real-time responsiveness have been provided by FPGA-s,

making them ideal for applications that require high-performance computing and

hardware acceleration [3] [4] [5]. With the advancement of development tools and

frameworks, FPGAs are becoming more accessible to designers, enabling them to

leverage the benefits of hardware customization without the need for ASIC design

expertise [6] [7] [8] [9] [10]. As a result, FPGAs continue to revolutionize the world of

digital design and offer endless possibilities for innovation and optimization in various

domains.

1.2 Video Processing Pipelines

Video processing is a form of digital signal processing (DSP) targeting video

frame data. Video processing techniques can be used to improve the image, isolate target

features, compress the video, or integrate intentional artificial features. Some examples

2

of video filters include grayscale, inversion, erosion, dilation, file compression, edge

detection, and superimposed text or images. A standard video application includes several

different filters implemented as sequential processing cores to produce the final processed

image. These processing cores can be pipelined together in different stages to process a

video frame from the raw input to the desired output. The pipeline improves throughput

by having each stage perform a different video filter on sequential elements at the same

time. Additional stages can be added to the pipeline while potentially maintaining the

throughput rate.

Video pipelines can be generated to operate on a new pixel of the video each clock

cycle and produce the processed video at a fixed latency. This pipelined processing allows

the system to handle the bandwidth of a live video feed. Custom video processing

pipelines can be tailored to meet the requirements of a specific application. For critical

systems like surveillance video, custom pre-processing of live video can help provide

better and quicker responses to any given situation. These pipelines can be used to

improve the color quality output of the CMOS/CCD image sensor [11]. Another example

shows smart video surveillance using a custom pipeline to improve the response time of

the system and be able to make critical choices [12]. Central Processing Units (CPUs),

Graphics Processing Units (GPUs), FPGAs, and custom application-specific integrated

circuits (ASICs) have been used to produce these high-performance and low-latency

video processing pipelines. One example of related work using video pipelines is stitching

together images from separate cameras to create a live panoramic view of an event. Using

a CPU and GPU, their pipeline provided live 7000×960pixel panorama images at 30

frames per second (fps). As video data bandwidth increases and more complex processing

is required, custom ASIC solutions can be used to provide the necessary processing

performance. This architecture operates on one pixel per clock cycle and generates a

number of different processing primitives to apply to the incoming video data. It can be

applied to a pipeline with CPU, GPU, and high-speed volatile memory to process live

video from a sensor of 720p resolution at 30 fps. When video pipelines are implemented

as software on CPUs and GPUs, they are limited by the given instruction set and the

memory latency. Implementing the pipeline in the custom hardware of an ASIC can

overcome these limitations and provide more efficient processing, but can lack

3

adaptability to change functionality. Though ASICs can be highly efficient, they require

a great deal of time to develop and test and are impractical to deploy in small quantity

applications due to their high costs. The research presented in this thesis illustrates that

FPGAs can serve as an intermediary solution, striking a balance between the flexibility

offered by software-driven general-purpose hardware (CPUs and GPUs) and the

performance achieved by expensive custom ASICs.

1.3 Video Processing on FPGAs

FPGAs can implement custom video processing pipelines using a vast quantity of

reprogrammable resources. SRAM-based FPGAs can be programmed repeatedly, an

unlimited number of times, to implement new processing pipelines. These pipelines are

defined in hardware description language (HDL) and take advantage of the Look-Up

Table (LUT), DSP, and BRAM resources available on FPGAs [13]. FPGAs provide a

powerful platform to implement complex video pipelines for custom applications. These

pipelines have been employed to incorporate video filters such as Harris Corner, Sobel,

Robert, Prewitt, and Laplacian filters on live video streams reaching 600×800 pixels at

60 Hz [14] [15]. Modern FPGAs could manage full 4k resolution at a 60fps rate while

processing multiple inputs into one output. A considerable number of researches have

applied FPGAs as pre-processors for CPUs or DSPs to implement the pipeline in a hybrid

system of both hardware and software. Nevertheless, developing these pipelines on

FPGAs can prove to be a difficult and time-consuming task. [16] FPGA programmers

may require complex vendor tools in developing and testing RTL designs. As the digital

design becomes more complex, the compilation and simulation times greatly increase. To

overcome this low design productivity, researchers have explored various methods to

rapidly deploy custom pipelines within an FPGA [17] [18] [19].

4

1.4 High-level Synthesis

FPGA vendors provide technologies to increase productivity with simple software

to FPGA implementation transfer using already existing software libraries for video

processing. Many of these technologies make use of high-level synthesis (HLS), which

defines an algorithm and then compiles it down to a level of digital circuitry using

software programming languages. An HLS design approach provides developers with a

simpler entry point, quicker development time with less code, and hardware acceleration

of software functions [20]. The Xilinx HLS tool defines how the hardware is implemented

using vendor-specific pragmas in C++ while taking latency, pipelining, and throughput

into account. As video processing pipelines are being developed, HLS enables quick

design and testing [21]. The implementation of video encoders, Sobel edge detection, and

other practical video processing operations up to 4k at 60 frames per second has been

demonstrated to be successful [22] [23] [24]. With examples of how to use it across its

devices, Xilinx has made the OpenCV library for software video processing available as

an HLS implementation under the name OpenCV [25] [26].

1.5 Python Productivity for Zynq (PYNQ)

PYNQ is a project developed by AMD that simplifies the utilization of Adaptive

Computing platforms. By leveraging the Python language and its libraries, designers can

take advantage of programmable logic and microprocessors to construct electronic

systems that are more advanced and captivating [27]. PYNQ is compatible with various

platforms, including Zynq, Zynq Ultrascale+, ZynqRFSoC, Alveo accelerator boards, and

AWS-F1. This compatibility enables the creation of high-performance applications that

exhibit exceptional capabilities. PYNQ is designed to cater to a diverse set of designers

and developers, including:

1. Software Developers: PYNQ allows software developers to leverage the capabilities

of Adaptive Computing platforms without the need to use ASIC-style design tools for

hardware development. They can utilize the software interface and framework

5

provided by PYNQ to harness the potential of platforms such as Zynq, Alveo, and

AWS-F1.

2. System Architects: PYNQ offers system architects an effortless software interface

and a framework that facilitates rapid prototyping and development of their designs

on Zynq, Alveo, and AWS-F1. This allows them to quickly iterate and test their ideas,

expediting the design process.

3. Hardware Designers: PYNQ caters to hardware designers who aim to maximize the

reach and usability of their designs. By utilizing PYNQ, they can provide a user-

friendly software interface and framework, enabling a wider audience to utilize their

designs effectively.

PYNQ addresses the complexity of co-design by providing a pre-configured

software stack, augmented by libraries of hardware and software components that can be

selectively reused, depending on the target application. Figure 2 illustrates the general

concept of the PYNQ framework and shows how the various PYNQ layers relate to those

of a typical Zynq-based embedded system [28].

Upper Layer (Applications): At the top of the PYNQ stack, user interaction is

facilitated by one or more Jupyter Notebooks. It is an open-source project that emerged

from academia, with its roots in data science, and a key aim of the project was to further

“reproducible science” [29]. Briefly, Project Jupyter facilitates scientific results to be

presented in a manner that enables readers to reproduce and validate the claims of the

authors, with reasonable effort [30]. It allows users to create interactive documents,

known as ‘notebooks’, which are served via a standard web browser. These notebooks

contain a variety of different content, including live executable code and visualizations,

as well as textual, graphical, and mathematical documentation. Considering them being

organized in cells makes the individual execution possible.

6

Figure 1. The PYNQ Framework

Originally known as IPython (Interactive Python) Notebooks and featuring only

Python programming, Jupyter Notebooks now support a variety of programming

languages [31]. More recently, Jupyter Labs has extended the concept to a complete web-

based Integrated Development Environment (IDE). Jupyter Notebooks are an integral

part of Jupyter Labs. A distinguishing feature of PYNQ is that its Jupyter Notebooks are

hosted on Zynq’s Arm processor (i.e., an embedded device), whereas the Jupyter project

was originally conceived for desktop and server computing. The notebooks reside on a

webserver on the Zynq PS, and the user accesses them from a standard web browser over

a network connection. An example of Jupyter Notebook is shown in Section 2.2.2.4

Within a PYNQ Jupyter Notebook, the developer creates their own custom functionality

by writing their own Python code and selectively reusing third-party code from the many

open-source Python libraries that are available. In addition they can add documentation

and visualization content to help others understand and use the design. [30]

7

Middle Layers (Software): The mid-layers of the PYNQ stack consist of Python

software, the Operating System (OS) and the low-level software drivers. In the upper

middle layer, the PYNQ framework includes Python libraries and APIs for interacting

with various elements of Zynq-based systems. For instance, there are Python APIs for

downloading overlays (bitstream files) to the Programmable Logic (PL), communicating

with GPIO resources, and handling interrupts generated in the PL. Additionally, there are

Python APIs for memory-mapped transfers (MMIO) and DMA transfers. One of the most

significant advantages of Zynq and Zynq MPSoC compared to other devices (or

combinations of devices) is the ability to quickly move large amounts of data between

CPU and PL, and vice versa. The use of PYNQ enables these transfers to be controlled

in a very straightforward fashion using Python code. In the lower middle layer, the PYNQ

framework includes a Linux-based OS, bootloaders to initiate system start-up, and a web

server to host Jupyter Notebooks. Hence, the design effort of developing common

software elements of an embedded system is removed, allowing new users to get started

quickly with Zynq making this is a key benefit of the PYNQ framework. The lower

middle layer includes a set of drivers for interacting with elements of the Zynq hardware

system [30].

Lower Layer (Hardware): The bottom layer of the stack represents a hardware

system design, which would normally be created in Vivado using Intellectual Property

(IP) integrator and associated design tools, and then generated to a bitstream (*.bit) file.

The bitstream file is transferred onto the memory card inserted into the target board. The

process of programming the hardware system onto the PL can then be initiated directly

from within a Jupyter Notebook (running on the PS), using a single line of code:

my_overlay = Overlay(“/path/to/your/overlay/file/bitstream.bit”)

In PYNQ, hardware system designs are often referred to as overlays. They have

been used in a manner analogous to software libraries, wherein a hardware system has

been developed for a particular application domain, but with an aspect of generality that

facilitates enhanced sharing and reuse. Details of hardware designs can be abstracted and

their functionality has been exposed in Python via an API, which enables a very software-

centric style of using PYNQ. As outlined in the section above, one of the objectives of

8

PYNQ is to enable designers without hardware expertise to develop applications in

software, based on pre-existing overlays. Furthermore, it helps hardware engineers create

designs that can be evaluated and used by software engineers. Although overlays are often

generalized designs, a more traditional hardware/software co-design approach could also

be taken, wherein highly customized hardware is developed for a specific use case. Here,

several advantages of the PYNQ framework can be leveraged, including the availability

of a ready-made software stack, the ease of interfacing with elements of the developed

hardware design and the potential to adapt and extend the software programming

environment. The set of available PYNQ IPs can be freely reused — this includes

interfacing blocks for DMA, audio, video, and I2C, and components from logic tools.

Considering all these reusable components, the term hardware libraries could be defined.

This is an umbrella term, and it refers to the set of IPs and overlays that are available as

part of the PYNQ framework for flexible reuse. Hardware libraries may be considered

analogous to software libraries. Certainly, additional hardware libraries can be created by

developers for their own use, or for sharing with others [30].

In summary, PYNQ aims to provide an accessible and efficient platform for

software developers, system architects, and hardware designers to harness the capabilities

of Adaptive Computing platforms, fostering rapid development and expanding the

usability of their designs.

9

CHAPTER 2

METHODS AND MATERIALS

2.1 Materials

2.1.1 Hardware Components

2.1.1.1 ZCU104 board – XILINX ZYNQ ULTRASCALE+ MPSoC EV

Figure 2. Xilinx ZYNQ Ultrascale+ Evaluation Kit components and tools [32]

The ZCU104 Evaluation Kit allows designers to quickly initiate projects for

embedded vision applications such as surveillance, Advanced Driver Assisted Systems

(ADAS), machine vision, Augmented Reality (AR), drones, and medical imaging. This

kit incorporates a Zynq™ UltraScale+™ MPSoC EV device with a video codec and

provides support for various common peripherals and interfaces tailored for embedded

vision use cases. The ZU7EV device is provided withs a quad-core ARM® Cortex™-

10

A53 applications processor, a dual-core Cortex-R5 real-time processor, a Mali™-400

MP2 graphics processing unit, a 4KP60 capable H.264/H.265 video codec, and 16nm

FinFET+ programmable logic [33].

Xilinx produces a range of System-on-Chips (SoCs) that combine the software

programmability of a processor with the hardware programmability of an FPGA. They

offer a diverse selection of boards to cater to customers in need of SoC platforms for

design, classified into three categories: cost-optimized, mid-range, and high-end. The

cost-optimized category includes devices like the Zynq-7000 series and Artix, providing

an economical solution for developers working on applications with less demand for

extensive software processing. These boards can be acquired with either single-core or

dual-core ARM Cortex-A9 processors. On the opposite end of the spectrum, the high-tier

category encompasses various versions of the Zynq UltraScale+ RFSoC board, featuring

options with Radio Frequency (RF) converters, SD-FEC cores, or a combination of both

[34].

The Zynq UltraScale+ MPSoC family comprises three distinct models: CG, EV,

and EG. In comparison to the CG variant, the EG variant enhances the dual application

processor setup by introducing a quad application processor and GPU. On the contrary,

the EV variant integrates the features of the EG variant while enhancing video codec

capabilities by incorporating both H.264 and H.265 standards. These devices are well-

suited for multimedia vision applications that require the processing of video streams or

a substantial number of frames. For the purposes of this thesis, the EV model is selected

as it excels in image and video processing. Figure 3 illustrates the physical layout of the

FPGA.

11

Figure 3. A detailed picture of Zynq UltraScale+ MPSoC ZCU104 and its interfaces

On the ZCU104's physical features, as shown in Figure 3, the FPGA has 464

General Purpose I/O (GPIO) pins for connecting other external devices, a Micro-

USB/JTAG port for programming, a Micro SD port for expandable memory and boot

options, dual HDMI 2.0 ports for input and output, a display port, a PHY tri-mode

Ethernet port, a USB 3.0 port, and a display port. A quad-core ARM Cortex-A53 CPU

with an Infineon Power Management Bus (PMBus), a floating-point unit, a Memory

Management Unit (MMU), a 32 KB instruction cache, and a 32 KB data cache makes up

the Application Processing Unit (APU) on the board [34].

12

 Table 1. ZCU104 Resources [34]

ZCU104 Resources

System Logic Cells(K) 504

Memory 38 MB

DSP Slices 1,728

Video Codec Unit 1

Maximum I/O Pins 464

“Each core of the dual-core ARM Cortex-A5 processor found in the Real-time

Processing Unit (RPU) has a vector floating-point unit, a Memory Protection Unit

(MPU), 128 KB of Tightly Coupled Memory (TCM), a 32 KB instruction cache, and a

32 KB data cache. Two-pixel processors, a geometry processor, an MMU, and a 64 KB

L2 cache were all part of the GPU on the board. Figure 4 below shows the high-level

device diagram for the ZCU104. The ZCU104 device, which is on the low end, has the

programmable logic features listed in Table 1 above” [34].

Figure 4. ZCU104 High Level device Diagram

13

Additional Components:

➢ Workstation

➢ Two HDMI Cables

➢ SD card at least 8GB

2.1.2 Software components

2.1.2.1 PYNQ 3.0 with VIVADO 2022.1

For the purpose of rebuilding the base overlay in VIVADO firstly the version of

the PYNQ should be compatible with the version of VIVADO which will be used. [35]

In this thesis PYNQ 3.0 is being used with overlays built in VIVADO 2022.1. On Table

2 there are all PYNQ versions with its corresponding VIVADO.

Table 2. PYNQ Versions compatible with VIVADO

VIVADO Version PYNQ Version

VIVADO 2022.1 Version 3.0

VIVADO 2020.1 Version 2.6

VIVADO 2019.1 Version 2.5

VIVADO 2018.3 Version 2.4

VIVADO 2018.2 Version 2.3

VIVADO 2017.4 Version 2.2

VIVADO 2017.4 Version 2.1

VIVADO 2016.1 Version 2.0

VIVADO 2015.4 Version 1.4

14

2.1.2.2 PYNQ Overlays

The Xilinx Zynq All Programmable devices combine a dual-core Arm Cortex-A9

processor known as Processing System (PS) with FPGA fabric known as Programmable

Logic (PL) in order to create a system-on-chip (SOC). Some dedicated peripherals such

as USB, UART, SPI, memory controllers are included in PS, but this subsystem can also

be enhanced by adding extra hardware intellectual property (IP) by using a PL Overlay.

PYNQ overlays play a very important role in the PYNQ framework especially for

this case with ZCU104 board. An overlay in PYNQ refers to a hardware design that is

implemented in the programmable logic (PL) section of the Zynq system-on-chip (SoC).

These overlays give a massive level of abstraction and provide users the ability to

accelerate their applications by leveraging the FPGA resources available on the ZCU104.

In order to create a PYNQ overlay the most common way is by using high-level

synthesis (HLS). This way makes it easier for the developers to design it in languages

like Python or C++ and to automatically generate the corresponding FPGA bitstream.

Figure 5. Connection of the peripherals in the Base Overlay of ZCU104 board

The overlays in PYNQ are highly customizable and can be tailored to specific

application requirements. They include dedicated hardware accelerators, custom IP cores,

or interfaces that enable efficient communication between the PL and the PS. By

15

offloading computationally intensive tasks to the overlay, users can achieve significant

performance improvements compared to running their applications solely on the

processing system.

PYNQ overlays also provide a software interface that allows developers to interact

with the hardware accelerators and other custom IP cores from the Python environment.

This interface, known as the PYNQ API, enables seamless integration of the overlay's

functionality into the software application stack, providing a unified programming model.

Additionally, the PYNQ ecosystem offers a range of pre-built overlays that target

specific domains or applications [36]. These overlays can be readily downloaded and used

as a starting point for building custom overlays, saving development time and effort.

Moreover, the PYNQ community actively contributes to the creation and sharing of

overlays, fostering collaboration and knowledge exchange.

In summary, PYNQ overlays in the context of the PYNQ 3.0 framework and the

ZCU104 platform provide a means to accelerate applications by leveraging FPGA

resources. They offer a higher level of abstraction, customizable design options, software

interfaces for seamless integration, and a thriving ecosystem of pre-built overlays. These

features empower developers to harness the power of programmable logic and achieve

enhanced performance for their applications.

16

Figure 6. Base Overlay Block design in PYNQ 3.0

Video Peripheral structure:

➢ HDMI IN

➢ HDMI OUT

➢ PHY CONTROLLER

➢ AXI VDMA

Figure 7. Block design of Video on Base Overlay

17

Both HDMI-s have a similar design as can be shown in Figure 5 and Figure 6. The

components are listed below:

➢ Color convert (HLS IP)

➢ Pixel pack (HLS IP)

➢ AXI4-Stream Subset Converter

➢ AXI4-Stream Register Slice

Figure 8. Design of HDMI INPUT

Figure 9. Design of HDMI OUTPUT

18

2.1.2.3 AXI DMA

Xilinx offers the AXI Direct Memory Access (DMA) IP Core to facilitate

communication between hardware accelerators in the PL and the main system memory

[37]. This AXI DMA enables high-bandwidth communication through the utilization of

AXI Memory-Mapped and AXI stream interfaces. Figure 10 presents a diagram

illustrating the primary input and output ports of the AXI DMA IP.

Figure 10. The AXI interfaces on the AXI DMA Controller

As depicted, the AXI DMA IP Core incorporates two data movers within its structure.

One data mover facilitates reading from system memory, as indicated by the orange

blocks, while the other handles writing data to system memory, represented by the green

blocks. Each channel functions independently and can be activated or deactivated during

the hardware system development phase. The process of reading from system memory

utilizes the AXI4-Stream Master interface, identified as Memory-Mapped to Stream

(MM2S). The AXI4 Control Stream (MM2S) interface provides the target IP Core with

supplementary application and control data. Similarly, the write DMA employs the AXI4-

Stream Slave interface for writing data to system memory, which may also be referred to

as Stream to Memory-Mapped (S2MM). The write DMA includes an additional interface,

19

AXI4 Status Stream (S2MM), to receive status updates and application data from the

target IP Core. The AXI4-Lite interface facilitates low-bandwidth communication with

the PS. The optional scatter/gather interface enables the DMA to retrieve preloaded

descriptors from system memory with minimal assistance from a processor core.

Subsequently, the DMA can self-configure for its target address, transaction length, and

other control parameters.

The Zynq MPSoC features an AXI DMA connection, illustrated in Figure 11 as

an example of its integration in the PL. This representation is just one of the numerous

system configurations possible with the Zynq MPSoC. The AXI DMA employs the AXI4

Memory-Mapped interface when interacting with the DDR Controller, utilizing the burst-

transfer capability of the AXI4 Memory-Mapped protocol. This protocol supports

efficient data transfers by incorporating an address and an access pattern specified by the

master, determining subsequent addresses for the following data.

Burst transfers within a single transaction are facilitated by the access pattern,

reducing the overhead and latency associated with data transfer. When transmitting data

to the target IP Core, the AXI DMA utilizes the AXI4-Stream interface, enabling burst

transfers of an unrestricted (infinite) size. In this protocol, no address channel is

necessary, as it is designed for a seamless flow of data directly between the source and

destination within the device.

In Figure 11, various connections are depicted, including the primary link between

the DMA and S_AXI_HP1_FPD port through the AXI interconnect. This serves as the

DMA's main pathway for reading and writing to the primary system memory. By linking

it to the PL's high-performance ports, a high-throughput route to the DDR controller is

established. Specifically, the first high-performance port (HP1_FPD) is utilized, having

an exclusive link to port 4 of the DDR controller. This configuration is illustrated as an

example of the AXI DMA connected in the Zynq MPSoC PL.

20

Figure 11. An example of the AXI DMA connected in the PL of the Zynq MOSoC [38]

The optional scatter/gather port is connected to S_AXI_HP0_FPD to fetch buffer

descriptors from main memory. The AXI4-Lite control and status interface links to

M_AXI_HPM0_FPD for communication with the Arm processors in the PS, enabling

Arm processors to configure the AXI DMA and obtain status information. During reads

from system memory, the DMA employs the AXI4 MM2S channel, also known as

Memory-Mapped to Stream, transferring data to the AXI4-Stream (MM2S) channel for

further transmission to the IP Core. Conversely, when writing to system memory, the

DMA controller utilizes the AXI4 S2MM channel for data transfer.

2.1.2.4 AXI VIDEO DMA

The AXI Video DMA, represented by the VDMA IP Core [39], facilitates high-

performance transfer of video frame data between DDR memory and the PL. Similar to

the AXI DMA, the VDMA features control and status logic, a data mover block, and

21

AXI4-Lite registers, as depicted in Figure 12. Additionally, a new component, the Line

Buffer, has been introduced. This asynchronous buffer serves as a temporary storage for

pixel data before it is written to the AXI4 Memory-Mapped interface or AXI4-Stream

interface.

Figure 12. The AXI VDMA block diagram and AXI interfaces

Similar to the AXI DMA, the VDMA IP Core offered by Xilinx supports two data

movers, designated for reading from and writing to system memory. Each data mover

follows the structure illustrated in Figure 12, featuring its own AXI4 Memory-Mapped

interface for communication with DDR memory and an AXI4-Stream interface for data

transfer onto the PL. The choice of the VDMA IP over the AXI DMA is motivated by its

optimization for efficient video data transfer between system memory and the PL [39].

The VDMA excels in performing DMA operations on video frame data,

facilitating asynchronous transfer of video frames on both read and write channels. This

capability proves beneficial in scenarios where the PL needs to buffer video data for

different clock domains or wait for the completion of another task. The VDMA can

handle up to 32 frame buffers across a 64-bit address space. An incorporated Data

Realignment Engine (DRE) enables unaligned access to memory, allowing frame buffers

to commence at any address in memory. Figure 12 displays the AXI VDMA block

diagram and AXI interfaces [40], including Registers, Control and Status, Data Mover,

Line Buffer, AXI4 Memory-Mapped, AXI4-Lite, and AXI4-Stream.

Illustrated in Figure 13 is an example of a frame buffer configuration in the Zynq

MPSoC device. This example involves buffering video frames from an incoming High-

22

Definition Multimedia Interface (HDMI) signal using the AXI VDMA IP Core. Once the

video frames are buffered, they are retrieved from system memory and written onto the

AXI-Stream (MM2S) channel.

Figure 13.The AXI VDMA video frame buffer example.

2.1.2.5 Open Computer Vision (CV)

A well-known open-source package called OpenCV (Open-Source Computer

Vision) offers a complete collection of tools and algorithms for computer vision and

image processing jobs. It provides a variety of features and modules to help programmers

manage several facets of computer vision applications, including image and video editing,

feature identification, object recognition, and machine learning integration [41]. With its

support for numerous programming languages, such as C++, Python, and Java, OpenCV

is available to a wide range of developers.

For researchers, engineers, and enthusiasts working on computer vision and image

analysis projects, OpenCV has emerged as the go-to option thanks to its broad collection

23

of features and interoperability with a wide range of platforms and operating systems. Its

adaptability, effectiveness, and usability have made it a crucial tool in a variety of

industries, including robots, augmented reality, surveillance, medical imaging, and more.

Some of its features in image processing are:

➢ Color Space Conversion: Facilitates the conversion between different color spaces.

➢ Image Filtering: Provides various linear and non-linear filtering techniques, including

blurring and sharpening.

➢ Geometric Image Transformations: Supports scaling, rotation, and affine and

perspective transformations.

➢ Morphological Operations: Includes operations like erosion, dilation, opening, and

closing that are particularly useful in image pre-processing.

➢ Histograms: Functions to compute and manipulate image histograms for tasks like

contrast stretching or histogram equalization.

➢ Feature Detection and Description

➢ Edge Detection: Implements algorithms like Sobel and Canny for detecting edges in

images.

➢ Contours: Provides functionality to detect and manipulate contours in binary images,

which is useful in shape analysis and object detection.

2.2 Methodology

2.2.1 Steps for connecting PYNQ to FPGA

➢ PYNQ image should be downloaded in the website. In this case PYNQ 3.0 is used.

➢ The switch should be set to the position to boot from SD Card.

➢ PYNQ image is flashed to a 128 Gb SD card using balenaEtcher application.

➢ SD Card is inserted into ZCU104.

24

➢ Board is connected to PC using LAN.

➢ Board should also be connected to PC with a Hdmi cable for video input.

➢ Another Hdmi cable can be connected to a HD monitor but this is not mandatory

since it can display the output on the Jupyter Notebook itself.

➢ The ZCU104 should be turned on.

➢ The static IP address of the FPGA is identified (192.168.2.99).

➢ Assign a static IP for the computer which should be in the same subnet as the

FPGA.

➢ Go to the browser and type the IP address (192.168.2.99).

➢ Now the Jupyter Notebook is opened containing demos.

2.2.2 Image Processing Filtering

Digital image processing employs various techniques, one of which involves

"sectioning" the image data. This segmentation technique, known as neighborhood

processing, determines the output pixel value not only from its own data but also from its

nearby neighbors. Illustration is shown in the Figure 14.

Figure 14. Illustration for processing of pixel through neighborhood operations [42]

25

2.2.3 2D Convolution

Convolution is a key process in signal and image processing, where it involves

combining two functions to produce a third function that reflects how one function

influences the other. Specifically, in image processing, spatial convolution is utilized,

which involves multiplying each pixel of the image with a value from a flipped kernel

mask. Subsequently, the sum of the pixel's immediate neighboring values is calculated to

determine the new pixel value. This process is fundamental to 2D convolution and is well-

explained by the following formula, which forms the basis of all 2D convolution

operations.

X[m, n] = ∑ ∑ 𝑥[𝑖, 𝑗] ∗ 𝑘[𝑚 − 1, 𝑛 − 𝑗]

∞

𝑖=−∞

∞

𝑗=−∞

where:

o X[m,n] is the output image

o x[I,J] is the input image

o k[m-1,n-1] is the flipped kernel

If the flipped kernel was not used instead the normal one, then this whole

operation would be referred to as spatial correlation and the output obtained by it would

have been rotated by 180°. Hence, the kernel is flipped first in order to obtain an accurate

result.

Equation 1

26

As highlighted in the figure above, the kernel slides collecting data for each pixel and its

immediate neighbors (if the kernel is 3x3 there are usually 8 neighbors to the input pixel)

and outputs the new pixel in the output image.

2.2.3.1 Sobel Filter

Sobel filter is relatively computationally inexpensive algorithm which uses two

window operates, one that detects the discontinuities in the horizontal direction and the

other in the vertical direction as shown below. The Sobel filter is a popular edge detection

algorithm used in image processing. [43] It is a type of discrete differentiation operator,

computing an approximation of the gradient of the image intensity function. The Sobel

filter emphasizes regions of high spatial frequency that correspond to edges. Typically, it

is used to find the approximate absolute gradient magnitude at each point in an input

grayscale image. The Sobel filter uses two 3x3 kernels, one estimating the gradient in the

x-direction (horizontal) and the other in the y-direction (vertical). These kernels are

convolved with the original image to calculate the gradient approximations. The kernels

are as follows:

➢ For the x-direction (Sobel_x):

➢ For the y-direction (Sobel_y):

In a closer look it can be noticed that if all the coefficients in a window are

summed up the value 0 is obtained, therefore meaning that in the areas within the image

𝐺𝑦 = [
−1 −2 −1
 0 0 0
 1 2 1

]

𝐺𝑥 = [
−1 0 1
−2 0 2
−1 0 1

]

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2

Figure 15. 2D Convolution of Image and Kernel Window [50]

Equation 2

27

that hold a persistent brightness intensity the response would be 0, as it can reflect from

the MatLab results below:

Figure 16. The illustration of both sobel operators Gy and Gx for the detction of edges

in the horizontal and vertical direction respectively

Figure 17. The resulting image from MatLab of the complete Sobel filter as the

magnitude of the x and y direction gradients

2.2.3.2 Laplacian Filter

The Laplacian is the 2nd derivative of an image and is given by the equation below:

𝐿(𝑥, 𝑦) =
𝜕2𝐼

𝜕𝑥2
+

𝜕2𝐼

𝜕𝑦2
 Equation 3

Equation 4

28

where I represent the pixel intensity value on the x and y coordinates. This filter can be

calculated using this commonly used kernel window below.

However just like in the Canny Filter we might need to apply a gaussian filter before,

because the kernel window is much sensitive to noise.

2.2.3.3 Canny Filter

The Canny Filter is rather a composed filter from the Gaussian then the magnitude

of two Sobel horizontal and vertical gradient opponents. The Gaussian filter smoothest

the input image so when the operators are applied only the general outlines within the

image are detected, making it easier for the machine to read information from the filtered

image through the located discontinuities in the pixel brightness intensity [44].

2.2.3.4 Gaussian Filter

The Gaussian filter is used to reduce noise from the image thus, creating a blurring

effect. The purpose of this operation on edge detection is to help the algorithm distinguish

only the main outlines of the higher resolution images and not read every small line of

discontinuity within the data as an edge. Especially needed in the developing of

autonomous cars applications for example.

[
−1 −1 −1
−1 8 −1
−1 −1 −1

]

1

159

[

2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2]

29

For an illustration of how this filter works the following image1 is processed in

MatLab in a convolution with the above kernel. The input image is converted from RGB

to grayscale beforehand in order to compute the 2D convolution.

Figure 18. The result from MatLab of the convolution of the image with the

Gaussian filter. [45]

To the result of the Gaussian filter convolution the horizontal and vertical

operators are separately applied thus obtaining two additional images that are added

together in accordance to the equation (2). Finally, the following Canny filtered image is

as follows:

Figure 19. The result from the Canny Filter(left) and Sobel Filter(right)

Compared side-by-side

1
The image shown below is that of the dwarf planet Ceres, the “unpredictable” orbit of which became the

cause of Gaussian approximation, and after that Gauss kept on developing his methods that are now

widely used in various mathematics computations, especially engineering. [45]

30

2.3.1 Steps for implementation of the custom overlay

A custom overlay to be controlled by PYNQ can be developed into two ways,

either by editing the existing Base Overlay provided by PYNQ for a specific type of

supported board or building one from scratch. In this project the second option is chosen.

The same logic as the above examples is followed throughout the designing process of

the IP [46]. First, just as it was done before with the grayscale and result images, the data

size for each image is allocated using the values of maximum width and height that is

expected from the input. Afterwards, each image declared is used to save every

transformation the input image goes through. In this case the input image edges need to

be located through the Canny filter, so we go through the aforementioned steps of the

Canny Filter. Steps for building a custom overlay are mentioned below [47] [48].

 Set Up HLS Project

➢ Install and open Xilinx Vivado HLS.

➢ Create a new HLS project and target it for the ZCU104 platform.

1. Write HLS Code for each filter

Two quite important steps in designing the IP are the interfaces and the declaration of the

TLAST port, the latter serves as signal from the IP of the last bit received. Without them

the IP cannot take or receive data from the DMA or PS. Therefore, it is fundamental to

declare them correctly.

#pragma HLS INTERFACE axis port=in

#pragma HLS INTERFACE axis port=out\

#pragma HLS INTERFACE s_axilite port=return bundle=CRTL_BUS

typedef hls::stream<ap_axiu<24,1,1,1>>IN;

typedef hls::stream<ap_axiu<24,1,1,1>>OUT;

Canny Algorithm implementation: Implement the steps of the Canny algorithm (Gaussian

blur, gradient calculation, non-maximum suppression, hysteresis thresholding). They

might need to be written in separate functions for each step and call them from your main

function.

31

2. Apply HLS Dataflow Optimization:

In HLS, the #pragma HLS DATAFLOW directive can be utilized to enable concurrent

execution of functions. This allows pipelining of operations, reducing latency. Algorithm

is decomposed into multiple functions or blocks that can run in parallel. The frame is

captured from the video stream (in the simulation only one image is used to test the IP).

[49] That frame is saved in image 0 and its color space is RGB. Additionally, the data

type is 24-bit (3 channels) as the cvt.h file suggests the type of the IN data is. The image

data of image 0 is converted to grayscale and saved to the destination image 1. The same

procedure is applied to the Gaussian filter too, where the kernel dimensions are taken 3x3

#pragma HLS dataflow

hls::AXIvideo2Mat(INPUT_STREAM, img_0);

hls::CvtColor<HLS_BGR3GRAY>(img_0, img_1);

hls::GaussianBlur<3,3>(img_1,img_2);

hls::Duplicate(img_2,img_2a,img_2b);

hls::Sobel<1,0,3>(img_2a,img_3);

hls::Sobel<0,1,3>(img_2b,img_4);

hls::Addweighted(img_4,0.5,img_3,0.5,0.0,img_5);

hls::CvtColor<HLS_GRAY2RGB>(img_5,img_6)

The image data then is duplicated so Sobel gradients in the x direction and y direction

respectively may be estimated. The gradient images are added together with the

AddWeighted function same as before. Only this time the functions are referenced from

the “hls_video.h/ hls/hls_video_imgproc.h” library. The image data is converted back

into the RBG colorspace and sent to stream.

3. Test and Simulate: HLS is used for design simulation. There must be a correct

behaviour with the test inputs. After HLS synthesis, RTL code is generated and can

analyze performance metrics.

4. Export HLS Design: RTL is generated by exporting the synthesized design

(VHDL/Verilog) along with the test bench, and an IP is created by packaging the

High-Level Synthesis (HLS) design for seamless integration into the Vivado IP

integrator.

32

5. Integrate into Vivado and PYNQ: The HLS-generated IP is imported into a Vivado

block design targeting the ZCU104 for Vivado Integration. The bitstream is

subsequently generated, and the hardware design, comprising HWH and BIT files, is

exported. A PYNQ overlay is then created using the exported files, and Python code

is authored to interface with the hardware in the context of PYNQ Overlay creation.

The implementation of the HLS IP is depicted within the block design.

Figure 20. Implementation of the IP in the block design for ZCU104

In the block design it should be made sure that there is no mismatch in the data

width or IP I/O interfaces and DMA slave and master, that’s why a Axi Width Converter

is used in order to convert the 24-bit wide data stream of the IP to a 32-bit wide data

stream at the DMA. Also, the S_AXI_HP0_FPD port is enabled so that the DMA catch

is flushed.

The next final steps are the design validation that should be done with no errors

and creating an HDL wrapper of the block design. Finally, choosing the option “generate

bitstream” a new custom overlay for the board is created.

33

CHAPTER 3

RESULTS AND DISCUSSION

3.1 Implementation of Real-Time Video through HDMI interface

(BASE OVERLAY)

This notebook is run on the “base overlay.bit”, and the cells are explained below. First,

aliases are created for both HDMI input and output, configuring them based on the format

required, which is RGB in this case. Additionally, both HDMI-s are initialized.

Figure 21. Initialization of the HDMI input and HDMI output

The next step would be to import the libraries of PIL Image in order to display the image

and time library from python to help measure the rate that the frame is passed through

HDMI input to output. This cell measures only the frame rate without applying any filters,

just to test the maximum real-time frame rate.

34

Figure 22. Code cell for the real-time video displayed on the HD monitor

Figure 23. Real time display of Laptop screen on PYNQ

35

Figure 24. Real Time Edge Detection Using Laptop Screen as an input

In the following cells implementation of the filter algorithms is made possible

through the OpenCV libraries. The code steps are almost similar cell-to-cell. Allocating

the space for the grayscale and the result image using the configurations of HDMI_IN in

order to ensure there is no mismatch of types. In this case the height and width are that of

the Laptop Monitor (1920x1080) and the type is uitn8, which stands for unsigned 8-bit

integer. Inside the loop the video live stream is treated as a stream of images, so each

frame is processed one by one by the code. As mentioned above, in order to compute the

2D convolution the input should be only one channel (grayscale) in order to use the

cvtColor() function to convert each frame to grayscale before starting the convolution.

The cvtColor() function has an argument format of:

cv2.cvtColor(source, code [, destination [, destinationCn]])

Where source represents the input image, code is the code of the color space we

wish to convert the image to and the destination image (allocated above) in brackets is

the number of channels, in this case being 1. The frame is then filtered with the filter

function accordingly:

➢ The Laplacian filter is similar to the color conversion function.

36

➢ The Canny filter function is also similar except the second and fourth arguments are

the value of the upper and lower threshold set for the filter.

➢ The Sobel filter is rather complex. First, the gradient is calculated along the x-axis

and afterwards the gradient along the y-axis. The way these two are differentiated

from each other are the values of the second than third arguments, respectively the

value of dx and dy.

 After the input frame is filtered the newframe function is called from the hdmi_out. The

filtered frame is converted back to RGB color space in order to be compatible when

written in the HDMI output channel, through the calling of the “writeframe()”function

Figure 25. Cell code for the real-time video with Laplacian Edge Detection

37

Figure 26. Cell code for the real-time video with Canny Edge Detection

Figure 27. Cell code for the real-time video with Sobel Edge Detection

38

Figure 28. Implementation of real time canny filter on USB CAMERA

3.2 Results of the Real time video in the Jupyter Notebook

3.2.1 The Frame Rate Comparison:

Table 3. Side to Side Comparison of Filters Implementation on Software

0

10

20

30

40

50

60

70

No Filter Laplacian Canny Sobel

Frame Rate

39

From the chart above it can clearly be seen that the highest frame per second

achieved is 60fps. And that is only achieved when no filter is applied. This frame rate is

decreased when filters like Canny, Sobel, and Laplacian are applied. This happens

because this is the maximum capacity of the software domain.

3.2 Results from of Real-Time Video from USB camera and pre-saved

Video)

3.2.1 USB Camera Input (1280x720)

Table 4. Comparison of Hardware and Software with the input coming from the USB

Camera Input

 SOFTWARE HARDWARE

DILATE 16.96 fps 79.04 fps

LIVE STREAM 7.905 fps 9.03 fps

3.2.2 Pre-saved video Input (768x576)

Table 5. Comparison of Hardware and Software with the input coming from the

pre=saved video "vtest.mp4"

 SOFTWARE HARDWARE

DILATE 34.8 fps 165.42 fps

LIVE STREAM 16.31 fps 18.6 fps

40

The empirical findings presented herein substantiate the assertion that

computational efficiency is notably enhanced when convolution occurs through the

Programmable Logic (PL) in comparison to exclusive programming utilization of the

processing system (PS) within the board. Furthermore, it is observed that at reduced

resolution rates, exemplified by the video saved, a heightened frame rate is achieved due

to the diminished size of the image data.

3.2.3 Power Consumption Comparison:

Table 6. Power Comparison 1240x720(Watts)

 SOFTWARE HARDWARE

DILATE 10.325 10.275

LIVE STREAM 10.325 10.290

These tables present a comparison of power consumption between the two

methods based on the average of measurements taken from three instances. The results

clearly indicate that hardware implementation is more energy-efficient than software

implementation, making it the preferable choice for image processing tasks.

3.2.4 Data read from disk:

This is a very important parameter because it affects how quickly video frames

can be processed, the strain on system’s memory and overall performance. The data read

from the disk for the for the two resolutions throughout the hardware implementation is

41

shown in the table below. As it can be seen the data read from disk grows with the

resolution of the video.

Table 7. Data read from disk during hardware implementation

 Data read from disc(bytes/s)

1280x720 2764800

768x576 1658880

3.3 Results from the HLS IP C simulation for Gaussian Filter 5x5:

 VERILOG

Slice 0

LUT 753

FF 221

DSP 12

URAM 0

 These results suggest that the design does not utilize any Block RAM (BRAM_18K) or

UltraRAM (URAM) resources. It employs 12 DSP slices, which are specialized hardware

units for complex arithmetic operations. The design uses 221 flip-flops (FF) for storing

42

state information and control logic. The majority of resources are LUTs (Lookup Tables),

with 753 LUTs utilized. LUTs are essential for implementing combinational and

sequential logic in FPGA designs. These resource utilization numbers provide insights

into the design's logic complexity, resource requirements, and potential areas for

optimization.

3.4 Results from the HLS IP C simulation for Sobel Filter:

Figure 29. The simulation results of the HLS IP (1280x720) image

43

Figure 30. Graphical representation of the device and placed logic resources

A graphical representation of the device and placed logic resources in FPGA design

provides a visual depiction of how various logic elements and resources are physically

arranged and utilized within the FPGA chip. This representation includes the device

structure, showing logic blocks, routing resources, I/O pins, clocking elements, memory

blocks like BRAM and URAM, DSP slices, and other specialized components specific to

the FPGA architecture. Within this representation, placed logic resources are visualized

based on their physical placement and utilization, such as LUTs, flip-flops, DSP slices,

BRAM, and URAM. Graphical elements like squares, rectangles, icons, or symbols are

used to represent these resources, often with color coding to indicate utilization levels.

This graphical view aids designers in understanding how their design is mapped onto the

FPGA chip, identifying resource allocation, optimizing utilization, and ensuring efficient

hardware implementation.

44

CHAPTER 4

CONCLUSION

In conclusion, this thesis has explored the ongoing evolution of technology, which

continually raises the bar for digital media processing in terms of quality and processing

speed. It has become evident that keeping up with this rapid evolution demands more than

just software enhancements; the real power lies in programmable hardware. Through our

utilization of the ZCU104 board equipped with the ZYNQ Ultrascale+ MPSoC EV, we

have unequivocally demonstrated that direct programming on the Programmable Logic

(PL) portion of the board, combined with executing computations through peripherals

and custom Integrated Circuits (ICs), surpasses the efficiency of implementing algorithms

solely through the processor. A substantial increase in performance, yielding a frame rate

up to 4.7 times higher, has been observed in hardware-based video processing compared

to software implementations despite having similar power consumption.

These findings not only present a compelling demonstration of the project but also

offer an intriguing glimpse into future possibilities. They suggest that with the appropriate

investment of effort, hardware will transcend its traditional role as a bottleneck in data

processing. Instead, it will emerge as a pivotal element in driving forward a more

advanced and efficient future in data processing.

45

REFERENCES

[1] https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html. [Online].

[2] [Online]. Available: https://www.xilinx.com/products/silicon-

devices/resources/programming-an-fpga-an-introduction-to-how-it-works.html.

[3] R. K. Prasad, P. V. Subbaiah and and S. S. Rao, "FPGA-based high-speed data transmission

system for space applications," International Journal of Satellite Communications and

Networking,, vol. 37, pp. 189-198, 2019.

[4] H. Kim, J. Kim and a. J. Lee, ""Design of a high-speed data transmission system based on

FPGA and Ethernet,"," IEEE Transactions on Industrial Informatics, vol. 11, pp. 416-423,

2015.

[5] L. W. a. Y. Z. C. Wang, " "Design and implementation of a high-speed data transmission

system based on FPGA,"," Journal of Networks, vol. 9, pp. 873-879, 2014.

[6] X. W. a. J. Zheng, "Design and implementation of a high-speed data transmission system

based on FPGA,," Journal of Computer and Communications, vol. 11, pp. 101-109, 2015.

[7] K. Murai and a. K. N. T. Ohnishi, ""High-speed data transmission using FPGA and optical

fiber,"," in Proceedings of the 9th International Conference on Advanced Communication

Technology (ICACT),, Pyeongchang, Korea,, 2017.

[8] H. C. a. H. Chen, ""Design and implementation of a high-speed data transmission system

using FPGA,"," in Proceedings of the 6th International Conference on Wireless

Communications and Signal Processing (WCSP), Hangzhou, China,, 2014.

[9] M. A. Hossain, S. A. Khan and and M. A. Rahman, "FPGA-based high-speed data

transmission system for digital communication," in Proceedings of the 5th International

Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 2018.

[10] A. J. R. a. J. J. Sanchez, "Design of a high-speed data transmission system based on FPGA

for IoT applications," in Proceedings of the 13th IEEE International Conference on

Wireless and Mobile Computing, Networking and Communications (WiMob),, Abu

Dhabi,UAE, 2017.

[11] Z. Yu, W. Wang Guang Yi and a. Y. S. Ying, "The image pipeline for color video surveil-

lance system," in 2010 5th IEEE Conference on Industrial Electronics and Applications,

2010.

46

[12] N.Sudha, "Enabling seamless video processing in smart surveillance cameras with multi-

core," in International Conference on Advanced Computing and Communications, 2015.

[13] A. E. Wilson and M. Wirthlin, "Reconfigurable Real-Time Video Pipelines on SRAM-based

FPGAs,," in 2019 International Conference on ReConFigurable Computing and FPGAs

(ReConFig), Cancun, Mexico, 2019.

[14] P. Greisen, S. Heinzle, M. Gross and A. Burg, "An FPGA-based processing pipeline for

high-definition stereo video," EURASIP Journal on Image and Video Processing,

2011/12/01.

[15] E. Onat, "FPGA implementation of real time video signal processing using Sobel, Robert,

Prewitt and Laplacian filters," in 2017 25th Signal Processing and Communications

Applications Conference (SIU), 2017.

[16] D. R. Menaka, D. R. Janarthanan and Dr. K. Deeba, " FPGA implementation of low power

and high speed image edge detection algorithm," Microprocessors and Microsystems,

vol. Volume 75, no. 0141-9331, 2020.

[17] X. Guo, X. Wei and Y. Liu, "An FPGA implementation of multi-channel video processing

and 4K real-time display system," in 2017 10th International Congress on Image and

Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Oct 2017.

[18] Y. Gong and F. Yu, "Design of high-speed real-time sensor image processing based on

FPGA and DDR3," in 2017 3rd IEEE International Conference on Computer and

Communications, 2017.

[19] G. a. C. Xijun, W. a. Qiang and W. Fu and Wei, "Design of high-speed real-time processing

platform faced on video tracking," in 2011 International Conference on Mechatronic

Science, Electric Engineering and Computer (MEC), 2011.

[20] Xilinx, "High Level Synthesis," February 2018. [Online]. Available:

https://www.{Xilinx}.com/support/ documentation/sw manuals/{Xilinx}2017 4/ug902-

{Vivado}-high-level-synthesis.pdf. [Accessed April 2023].

[21] A. E. Guzel, V. E. Levent, M. Tosun and M. A. Özkan, "Using high-level synthesis for rapid

design of video processing pipes," in 2016 IEEE East-West Design Test Symposium

(EWDTS), 2016.

[22] E. K. a. I. Hamzaoglu, "FPGA implementations of HEVC inverse DCT using high-level

synthesis," in 2015 Conference on Design and Architectures for Signal and Image

Processing (DASIP), 2015.

47

[23] W. Ahmad, J. Iqbal, M. Martina and G. Masera, "High level synthesis based FPGA

implementation of H.264/AVC sub-pixel luma interpolation filters," in 2016 European

Modelling Symposium (EMS), 2016.

[24] E. F. E. R. Roberto Millon, "A Comparative Study between HLS and HDL on SoC for Image

Processing Applications," Elektron, vol. 4, 2020.

[25] A. B. Amara, E. Pissaloux and M. Atri, "Sobel edge detection system design and

integration on an FPGA based HD video streaming architecture," in 2016 11th

International Design Test Symposium (IDT), Dec 2016.

[26] M. Kowalczyk, D. Przewlocka and and T. Krvjak, "Real-time implementation of contextual

image processing operations for 4k video stream in Zynq UltraScale+ MPSoC," in 2018

Conference on Design and Architectures for Signal and Image Processing (DASIP), 2018.

[27] PYNQ, "What is PYNQ?," 2022. [Online]. Available: http://www.pynq.io/. [Accessed 20

May 2022].

[28] C. Tănase, "Dynamic scheduler implementation used for load distribution between

hardware accelerators (RTL) and software tasks (CPU) in heterogeneous systems,"

Journal of Supercomputing, p. 10122–10139 , 13 March 2020.

[29] "Jupyter Webpages," [Online]. Available: https://jupyter.org/. [Accessed 27 May 2023].

[30] L. Crockett, D. Northcote, C. Ramsay, F. Robinson and B. Stewart, Exploring Zynq MPSoC

With Pynq and Machine Learning Applications, Xilinx, Umiversity of Strathclyde, 2019.

[31] H. Shen, Interactive Notebooks: Sharing the Code, vol. Vol. 515, Nature, 6th November

2014.

[32] Xilinx, "Xilinx Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit," Xilinx,Inc, [Online].

Available: https://www.xilinx.com/products/boards-and-kits/zcu104.html.

[33] I. Xilinx, "Zynq UltraScale+ MPSoC Overview: Advance Product Specification," november

2018 2018. [Online]. Available:

https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-

plus-overview.pdf.

[34] K. Stokke, "An FPGA-Based Hardware Accelerator For The Digital Image Correlation

Engine," 2018.

[35] Xilinx Revision, "PYNQ SD Card," 29 January 2021. [Online]. Available:

https://pynq.readthedocs.io/en/v2.6.1/index.html. [Accessed 27 May 2022].

48

[36] Xilinx Revision, "Base Overlay," January 2018. [Online]. Available:

https://pynq.readthedocs.io/en/v2.4/pynq_overlays/pynqz2/pynqz2_base_overlay.html.

[Accessed 29 May 2022].

[37] PYNQ, "The Jupyter Notebook” documentation page (“Browser Compatibility” section),"

[Online]. Available: https://jupyter-

notebook.readthedocs.io/en/latest/notebook.html#browser-compatibility.

[38] PYNQ, " “PYNQ Libraries” documentation page," [Online]. Available:

https://pynq.readthedocs.io/en/latest/pynq_libraries.html.

[39] "Python Package Library," [Online]. Available: https://pypi.org/.

[40] P. P. R. webpages, "How to Package Your Python Code," [Online]. Available:

https://python-packaging.readthedocs.io/en/latest/index.html.

[41] OpenCV, "Image Processing in OpenCV," [Online]. Available:

https://docs.opencv.org/4.x/d2/d96/tutorial_py_table_of_contents_imgproc.html.

[42] R. E. Rafael C. Gonzales, Digital Image, Upper Saddle River, New Jersey: Pearson

Education, Inc., 2008.

[43] H.-A. T. a. M. R. Z. a. Z. S. M. A. a. M. R. A. a. A. M. R. a. T. A. W. Abdullah, "FPGA-Based

Three Edge Detection Algorithms (Sobel, Prewitt and Roberts) Implementation for Image

Processing.," Przeglad Elektrotechniczny, vol. 2024, 2024.

[44] Z. Tan and J. S. Smith., "Real-time Canny Edge Detection on FPGAs using High-level

Synthesis," in 7th International Conference on Information Science and Control

Engineering (ICISCE), Changsha, China, 2020.

[45] NASA, "Ceres," 5 April 2018. [Online]. Available:

https://solarsystem.nasa.gov/resources/846/ceres-rotation-and-occator-

crater/?category=planets/dwarf-planets_ceres.

[46] J. Kalomiros, J. Vourvoulakis and S. Vologiannidis, "A Workflow for Designing Video

Processing Pipelines with PYNQ," in 11th IEEE International Conference on Intelligent

Data Acquisition and Advanced Computing Systems: Technology and Applications

(IDAACS), Cracow, Poland, 2021 .

[47] H. S. Lee and J. W. Jeon, " Accelerating Image Processing on FPGAs using HLS and PYNQ,"

2020 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia), 2020.

49

[48] H.-A. T. Abdullah, R. Z. Mahmood, S. M. A. Zber, R. A.Mohammed, M. R. Ahmed and A.

W. Talab, "Hardware implementation of Sobel edge detection system for blood cells

images-based field programmable gate array.," Indonesian Journal of Electrical

Engineering and Computer Science, 2022.

[49] M. Hagara, R. Stojanović, T. Bagala, P. Kubinec and O. Ondráček., "Grayscale image

formats for edge detection and for its FPGA implementation," Microprocessors and

Microsystems, vol. 75, no. 0141-9331, 2020.

[50] Apple Inc., "Blurring an Image," Apple Inc., 10 01 2021. [Online]. Available:

https://developer.apple.com/documentation/accelerate/blurring_an_image. [Accessed

21 05 2022].

