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ABSTRACT 

 

IMAGE AND VIDEO PROCESSING  

ON XILINX ZYNQ ULTRASCALE+ MPSoC 

 

Selmanhasko, Kevin  

M.Sc., Department of Computer Engineering 

Supervisor: Assoc. Prof. Dr. Arban Uka 

 

Field-programmable gate arrays (FPGAs) have become a popular choice for high-

speed data transmission systems due to their high performance and flexibility. FPGA-

based systems are increasingly being used in various applications, such as radar, medical 

imaging, autonomous driving, and quantum computing. Within this paper, a detailed 

examination is presented, offering insights into FPGA-centric image and video 

processing, accompanied by a thorough exploration of the associated design 

considerations. The FPGA used in this thesis is the ZCU104. The advantages of FPGA-

based systems, including high-speed data processing, low latency, and reconfigurability 

are discussed. The paper also emphasizes certain challenges and limitations associated 

with the design of FPGA-based data transmission systems. To illustrate the practicality 

of FPGA data processing, PYNQ has been used as it contains Open Computer Vision 

Library (CV). The main focus has been implementation and comparison of different 

methods used for image and video processing. In order to measure the performance of 

these algorithms, several aspects have been taken into consideration such as accuracy or 

frame rate. In addition, the limitations of this hardware have been discussed. The aim of 

this thesis is analyzing the performance of these processing algorithms and what can be 

done for future improvements. Overall FPGA are an excellent choice compared to the 

traditional approaches. 

 

Keywords: FPGA, PYNQ, Image Processing, Video Processing. 
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ABSTRAKT 

 

PROCESIMI I VIDEOVE DHE IMAZHEVE NE 

 XILINX ZYNQ ULTRASCALE+ MPSoC 

 

Selmanhasko, Kevin 

M.Sc., Departamenti i Inxhinierisë Kompjuterike 

Udheheqësi: Assoc. Prof. Dr. Arban Uka 

 

Hardware-t e rikonfigurueshëm (FPGA) janë bërë një zgjedhje popullore për 

sistemet e transmetimit të të dhënave me shpejtësi të lartë për shkak të performancës dhe 

fleksibilitetit të tyre të lartë. FPGA-te po përdoren gjithnjë e më shumë në aplikacione të 

ndryshme, si radarët, imazhet mjekësore, drejtimi autonom dhe llogaritja kuantike. Në 

këtë teme shkencore paraqitet një shqyrtim i hollësishëm, duke ofruar perspektivë në 

procesimin e imazheve dhe videove të përqendruar në FPGA. FPGA-ja e përdorur në këtë 

teme është ZCU104. Jane diskutuar avantazhet e sistemeve bazuar në FPGA, duke 

përfshirë procesimin e të dhënave me shpejtësi të lartë, vonesa të ulëta dhe 

rikonfigurueshmëria. Jane theksuar gjithashtu disa sfida dhe kufizime të lidhura me 

dizajnin e sistemeve të transmetimit të të dhënave bazuar në FPGA. Për të ilustruar 

procesimin e të dhënave në FPGA, është përdorur PYNQ pasi përmban Open Computer 

Vision Library (CV). Fokusi kryesor është te implementimi dhe krahasimi i metodeve të 

ndryshme të përdorura për procesimin e imazheve dhe videove. Për të vlerësuar 

performancën e këtyre algoritmave, janë marrë në konsideratë disa aspekte si saktësia ose 

frekuenca vizuale. Gjithashtu janë diskutuar kufizimet e këtij hardueri. Qëllimi kryesor I 

ketij punimi shkencor është analizimi i performancës së këtyre algoritmave të procesimit 

dhe çfarë mund të ndërmerret për tu permirsuar ne te ardhmen. Në përgjithësi, FPGA-te 

janë një zgjedhje shumë e mirë krahasuar me metodat tradicionale. 

 

Fjalet kyçe: FPGA, PYNQ, Procesim Imazhesh, Procesim Videosh. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Field-Programmable Gate Arrays 

Field-Programmable Gate Arrays (FPGAs) are powerful integrated circuits that 

offer unparalleled flexibility and performance in digital hardware design. Unlike 

traditional application-specific integrated circuits (ASICs) that are fixed in functionality, 

FPGAs can be reprogrammed and customized to perform a wide range of tasks [1]. They 

consist of a matrix of configurable logic blocks and programmable interconnects, 

allowing designers to create complex digital circuits by programming the 

interconnections and functionality of these blocks [2]. This flexibility enables FPGAs to 

be used in diverse applications, including digital signal processing, embedded systems, 

high-speed communication, artificial intelligence, and more. High processing capability, 

parallelism, low-latency, and real-time responsiveness have been provided by FPGA-s, 

making them ideal for applications that require high-performance computing and 

hardware acceleration [3] [4] [5]. With the advancement of development tools and 

frameworks, FPGAs are becoming more accessible to designers, enabling them to 

leverage the benefits of hardware customization without the need for ASIC design 

expertise [6] [7] [8] [9] [10]. As a result, FPGAs continue to revolutionize the world of 

digital design and offer endless possibilities for innovation and optimization in various 

domains. 

 

 

1.2  Video Processing Pipelines  

Video processing is a form of digital signal processing (DSP) targeting video 

frame data. Video processing techniques can be used to improve the image, isolate target 

features, compress the video, or integrate intentional artificial features. Some examples 
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of video filters include grayscale, inversion, erosion, dilation, file compression, edge 

detection, and superimposed text or images. A standard video application includes several 

different filters implemented as sequential processing cores to produce the final processed 

image. These processing cores can be pipelined together in different stages to process a 

video frame from the raw input to the desired output. The pipeline improves throughput 

by having each stage perform a different video filter on sequential elements at the same 

time. Additional stages can be added to the pipeline while potentially maintaining the 

throughput rate.  

Video pipelines can be generated to operate on a new pixel of the video each clock 

cycle and produce the processed video at a fixed latency. This pipelined processing allows 

the system to handle the bandwidth of a live video feed. Custom video processing 

pipelines can be tailored to meet the requirements of a specific application. For critical 

systems like surveillance video, custom pre-processing of live video can help provide 

better and quicker responses to any given situation. These pipelines can be used to 

improve the color quality output of the CMOS/CCD image sensor [11]. Another example 

shows smart video surveillance using a custom pipeline to improve the response time of 

the system and be able to make critical choices [12]. Central Processing Units (CPUs), 

Graphics Processing Units (GPUs), FPGAs, and custom application-specific integrated 

circuits (ASICs) have been used to produce these high-performance and low-latency 

video processing pipelines. One example of related work using video pipelines is stitching 

together images from separate cameras to create a live panoramic view of an event. Using 

a CPU and GPU, their pipeline provided live 7000×960pixel panorama images at 30 

frames per second (fps). As video data bandwidth increases and more complex processing 

is required, custom ASIC solutions can be used to provide the necessary processing 

performance. This architecture operates on one pixel per clock cycle and generates a 

number of different processing primitives to apply to the incoming video data. It can be 

applied to a pipeline with CPU, GPU, and high-speed volatile memory to process live 

video from a sensor of 720p resolution at 30 fps. When video pipelines are implemented 

as software on CPUs and GPUs, they are limited by the given instruction set and the 

memory latency. Implementing the pipeline in the custom hardware of an ASIC can 

overcome these limitations and provide more efficient processing, but can lack 
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adaptability to change functionality. Though ASICs can be highly efficient, they require 

a great deal of time to develop and test and are impractical to deploy in small quantity 

applications due to their high costs. The research presented in this thesis illustrates that 

FPGAs can serve as an intermediary solution, striking a balance between the flexibility 

offered by software-driven general-purpose hardware (CPUs and GPUs) and the 

performance achieved by expensive custom ASICs. 

 

 

1.3  Video Processing on FPGAs 

FPGAs can implement custom video processing pipelines using a vast quantity of 

reprogrammable resources. SRAM-based FPGAs can be programmed repeatedly, an 

unlimited number of times, to implement new processing pipelines. These pipelines are 

defined in hardware description language (HDL) and take advantage of the Look-Up 

Table (LUT), DSP, and BRAM resources available on FPGAs [13]. FPGAs provide a 

powerful platform to implement complex video pipelines for custom applications. These 

pipelines have been employed to incorporate video filters such as Harris Corner, Sobel, 

Robert, Prewitt, and Laplacian filters on live video streams reaching 600×800 pixels at 

60 Hz [14] [15]. Modern FPGAs could manage full 4k resolution at a 60fps rate while 

processing multiple inputs into one output. A considerable number of researches have 

applied FPGAs as pre-processors for CPUs or DSPs to implement the pipeline in a hybrid 

system of both hardware and software. Nevertheless, developing these pipelines on 

FPGAs can prove to be a difficult and time-consuming task. [16] FPGA programmers 

may require complex vendor tools in developing and testing RTL designs. As the digital 

design becomes more complex, the compilation and simulation times greatly increase. To 

overcome this low design productivity, researchers have explored various methods to 

rapidly deploy custom pipelines within an FPGA [17] [18] [19]. 
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1.4  High-level Synthesis  

FPGA vendors provide technologies to increase productivity with simple software 

to FPGA implementation transfer using already existing software libraries for video 

processing. Many of these technologies make use of high-level synthesis (HLS), which 

defines an algorithm and then compiles it down to a level of digital circuitry using 

software programming languages. An HLS design approach provides developers with a 

simpler entry point, quicker development time with less code, and hardware acceleration 

of software functions [20]. The Xilinx HLS tool defines how the hardware is implemented 

using vendor-specific pragmas in C++ while taking latency, pipelining, and throughput 

into account. As video processing pipelines are being developed, HLS enables quick 

design and testing [21]. The implementation of video encoders, Sobel edge detection, and 

other practical video processing operations up to 4k at 60 frames per second has been 

demonstrated to be successful [22] [23] [24]. With examples of how to use it across its 

devices, Xilinx has made the OpenCV library for software video processing available as 

an HLS implementation under the name OpenCV [25] [26]. 

 

1.5  Python Productivity for Zynq (PYNQ) 

PYNQ is a project developed by AMD that simplifies the utilization of Adaptive 

Computing platforms. By leveraging the Python language and its libraries, designers can 

take advantage of programmable logic and microprocessors to construct electronic 

systems that are more advanced and captivating [27]. PYNQ is compatible with various 

platforms, including Zynq, Zynq Ultrascale+, ZynqRFSoC, Alveo accelerator boards, and 

AWS-F1. This compatibility enables the creation of high-performance applications that 

exhibit exceptional capabilities. PYNQ is designed to cater to a diverse set of designers 

and developers, including: 

1. Software Developers: PYNQ allows software developers to leverage the capabilities 

of Adaptive Computing platforms without the need to use ASIC-style design tools for 

hardware development. They can utilize the software interface and framework 



5 

 

provided by PYNQ to harness the potential of platforms such as Zynq, Alveo, and 

AWS-F1. 

2. System Architects: PYNQ offers system architects an effortless software interface 

and a framework that facilitates rapid prototyping and development of their designs 

on Zynq, Alveo, and AWS-F1. This allows them to quickly iterate and test their ideas, 

expediting the design process. 

3. Hardware Designers: PYNQ caters to hardware designers who aim to maximize the 

reach and usability of their designs. By utilizing PYNQ, they can provide a user-

friendly software interface and framework, enabling a wider audience to utilize their 

designs effectively. 

PYNQ addresses the complexity of co-design by providing a pre-configured 

software stack, augmented by libraries of hardware and software components that can be 

selectively reused, depending on the target application. Figure 2 illustrates the general 

concept of the PYNQ framework and shows how the various PYNQ layers relate to those 

of a typical Zynq-based embedded system [28].  

Upper Layer (Applications): At the top of the PYNQ stack, user interaction is 

facilitated by one or more Jupyter Notebooks. It is an open-source project that emerged 

from academia, with its roots in data science, and a key aim of the project was to further 

“reproducible science” [29]. Briefly, Project Jupyter facilitates scientific results to be 

presented in a manner that enables readers to reproduce and validate the claims of the 

authors, with reasonable effort [30]. It allows users to create interactive documents, 

known as ‘notebooks’, which are served via a standard web browser. These notebooks 

contain a variety of different content, including live executable code and visualizations, 

as well as textual, graphical, and mathematical documentation. Considering them being 

organized in cells makes the individual execution possible. 
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Figure 1. The PYNQ Framework 

 

Originally known as IPython (Interactive Python) Notebooks and featuring only 

Python programming, Jupyter Notebooks now support a variety of programming 

languages [31]. More recently, Jupyter Labs has extended the concept to a complete web-

based Integrated Development Environment (IDE). Jupyter Notebooks are an integral 

part of Jupyter Labs. A distinguishing feature of PYNQ is that its Jupyter Notebooks are 

hosted on Zynq’s Arm processor (i.e., an embedded device), whereas the Jupyter project 

was originally conceived for desktop and server computing. The notebooks reside on a 

webserver on the Zynq PS, and the user accesses them from a standard web browser over 

a network connection. An example of Jupyter Notebook is shown in Section 2.2.2.4 

Within a PYNQ Jupyter Notebook, the developer creates their own custom functionality 

by writing their own Python code and selectively reusing third-party code from the many 

open-source Python libraries that are available. In addition they can add documentation 

and visualization content to help others understand and use the design. [30] 
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Middle Layers (Software): The mid-layers of the PYNQ stack consist of Python 

software, the Operating System (OS) and the low-level software drivers. In the upper 

middle layer, the PYNQ framework includes Python libraries and APIs for interacting 

with various elements of Zynq-based systems. For instance, there are Python APIs for 

downloading overlays (bitstream files) to the Programmable Logic (PL), communicating 

with GPIO resources, and handling interrupts generated in the PL. Additionally, there are 

Python APIs for memory-mapped transfers (MMIO) and DMA transfers. One of the most 

significant advantages of Zynq and Zynq MPSoC compared to other devices (or 

combinations of devices) is the ability to quickly move large amounts of data between 

CPU and PL, and vice versa. The use of PYNQ enables these transfers to be controlled 

in a very straightforward fashion using Python code. In the lower middle layer, the PYNQ 

framework includes a Linux-based OS, bootloaders to initiate system start-up, and a web 

server to host Jupyter Notebooks. Hence, the design effort of developing common 

software elements of an embedded system is removed, allowing new users to get started 

quickly with Zynq making this is a key benefit of the PYNQ framework. The lower 

middle layer includes a set of drivers for interacting with elements of the Zynq hardware 

system [30]. 

Lower Layer (Hardware): The bottom layer of the stack represents a hardware 

system design, which would normally be created in Vivado using Intellectual Property 

(IP) integrator and associated design tools, and then generated to a bitstream (*.bit) file. 

The bitstream file is transferred onto the memory card inserted into the target board. The 

process of programming the hardware system onto the PL can then be initiated directly 

from within a Jupyter Notebook (running on the PS), using a single line of code: 

my_overlay = Overlay(“/path/to/your/overlay/file/bitstream.bit”) 

In PYNQ, hardware system designs are often referred to as overlays. They have 

been used in a manner analogous to software libraries, wherein a hardware system has 

been developed for a particular application domain, but with an aspect of generality that 

facilitates enhanced sharing and reuse. Details of hardware designs can be abstracted and 

their functionality has been exposed in Python via an API, which enables a very software-

centric style of using PYNQ. As outlined in the section above, one of the objectives of 
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PYNQ is to enable designers without hardware expertise to develop applications in 

software, based on pre-existing overlays. Furthermore, it helps hardware engineers create 

designs that can be evaluated and used by software engineers. Although overlays are often 

generalized designs, a more traditional hardware/software co-design approach could also 

be taken, wherein highly customized hardware is developed for a specific use case. Here, 

several advantages of the PYNQ framework can be leveraged, including the availability 

of a ready-made software stack, the ease of interfacing with elements of the developed 

hardware design and the potential to adapt and extend the software programming 

environment. The set of available PYNQ IPs can be freely reused — this includes 

interfacing blocks for DMA, audio, video, and I2C, and components from logic tools. 

Considering all these reusable components, the term hardware libraries could be defined. 

This is an umbrella term, and it refers to the set of IPs and overlays that are available as 

part of the PYNQ framework for flexible reuse. Hardware libraries may be considered 

analogous to software libraries. Certainly, additional hardware libraries can be created by 

developers for their own use, or for sharing with others [30]. 

In summary, PYNQ aims to provide an accessible and efficient platform for 

software developers, system architects, and hardware designers to harness the capabilities 

of Adaptive Computing platforms, fostering rapid development and expanding the 

usability of their designs. 

 

 

 

 

 

 

 

 

 



9 

 

CHAPTER 2 

 

METHODS AND MATERIALS 

 

2.1  Materials 
 

2.1.1 Hardware Components 
 

2.1.1.1  ZCU104 board – XILINX ZYNQ ULTRASCALE+ MPSoC EV 

 

 

Figure 2. Xilinx ZYNQ Ultrascale+ Evaluation Kit components and tools [32] 

The ZCU104 Evaluation Kit allows designers to quickly initiate projects for 

embedded vision applications such as surveillance, Advanced Driver Assisted Systems 

(ADAS), machine vision, Augmented Reality (AR), drones, and medical imaging. This 

kit incorporates a Zynq™ UltraScale+™ MPSoC EV device with a video codec and 

provides support for various common peripherals and interfaces tailored for embedded 

vision use cases. The ZU7EV device is provided withs a quad-core ARM® Cortex™-
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A53 applications processor, a dual-core Cortex-R5 real-time processor, a Mali™-400 

MP2 graphics processing unit, a 4KP60 capable H.264/H.265 video codec, and 16nm 

FinFET+ programmable logic [33].  

Xilinx produces a range of System-on-Chips (SoCs) that combine the software 

programmability of a processor with the hardware programmability of an FPGA. They 

offer a diverse selection of boards to cater to customers in need of SoC platforms for 

design, classified into three categories: cost-optimized, mid-range, and high-end. The 

cost-optimized category includes devices like the Zynq-7000 series and Artix, providing 

an economical solution for developers working on applications with less demand for 

extensive software processing. These boards can be acquired with either single-core or 

dual-core ARM Cortex-A9 processors. On the opposite end of the spectrum, the high-tier 

category encompasses various versions of the Zynq UltraScale+ RFSoC board, featuring 

options with Radio Frequency (RF) converters, SD-FEC cores, or a combination of both 

[34]. 

The Zynq UltraScale+ MPSoC family comprises three distinct models: CG, EV, 

and EG. In comparison to the CG variant, the EG variant enhances the dual application 

processor setup by introducing a quad application processor and GPU. On the contrary, 

the EV variant integrates the features of the EG variant while enhancing video codec 

capabilities by incorporating both H.264 and H.265 standards. These devices are well-

suited for multimedia vision applications that require the processing of video streams or 

a substantial number of frames. For the purposes of this thesis, the EV model is selected 

as it excels in image and video processing. Figure 3 illustrates the physical layout of the 

FPGA. 
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Figure 3. A detailed picture of Zynq UltraScale+ MPSoC ZCU104 and its interfaces 

 

On the ZCU104's physical features, as shown in Figure 3, the FPGA has 464 

General Purpose I/O (GPIO) pins for connecting other external devices, a Micro-

USB/JTAG port for programming, a Micro SD port for expandable memory and boot 

options, dual HDMI 2.0 ports for input and output, a display port, a PHY tri-mode 

Ethernet port, a USB 3.0 port, and a display port. A quad-core ARM Cortex-A53 CPU 

with an Infineon Power Management Bus (PMBus), a floating-point unit, a Memory 

Management Unit (MMU), a 32 KB instruction cache, and a 32 KB data cache makes up 

the Application Processing Unit (APU) on the board [34].  
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                                             Table 1. ZCU104 Resources [34] 

ZCU104 Resources 

System Logic Cells(K) 504 

Memory 38 MB 

DSP Slices 1,728 

Video Codec Unit 1 

Maximum I/O Pins 464 

 

“Each core of the dual-core ARM Cortex-A5 processor found in the Real-time 

Processing Unit (RPU) has a vector floating-point unit, a Memory Protection Unit 

(MPU), 128 KB of Tightly Coupled Memory (TCM), a 32 KB instruction cache, and a 

32 KB data cache. Two-pixel processors, a geometry processor, an MMU, and a 64 KB 

L2 cache were all part of the GPU on the board. Figure 4 below shows the high-level 

device diagram for the ZCU104. The ZCU104 device, which is on the low end, has the 

programmable logic features listed in Table 1 above” [34]. 

 

Figure 4. ZCU104 High Level device Diagram 
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Additional Components: 

➢ Workstation 

➢ Two HDMI Cables 

➢ SD card at least 8GB 

 

2.1.2 Software components 

2.1.2.1 PYNQ 3.0 with VIVADO 2022.1 

For the purpose of rebuilding the base overlay in VIVADO firstly the version of 

the PYNQ should be compatible with the version of VIVADO which will be used. [35] 

In this thesis PYNQ 3.0 is being used with overlays built in VIVADO 2022.1. On Table 

2 there are all PYNQ versions with its corresponding VIVADO. 

 

Table 2. PYNQ Versions compatible with VIVADO 

 

 

 

 

 

  

VIVADO Version PYNQ Version 

VIVADO 2022.1 Version 3.0 

VIVADO 2020.1 Version 2.6 

VIVADO 2019.1 Version 2.5 

VIVADO 2018.3 Version 2.4 

VIVADO 2018.2 Version 2.3 

VIVADO 2017.4 Version 2.2 

VIVADO 2017.4 Version 2.1 

VIVADO 2016.1 Version 2.0 

VIVADO 2015.4 Version 1.4 
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2.1.2.2 PYNQ Overlays 

The Xilinx Zynq All Programmable devices combine a dual-core Arm Cortex-A9 

processor known as Processing System (PS) with FPGA fabric known as Programmable 

Logic (PL) in order to create a system-on-chip (SOC). Some dedicated peripherals such 

as USB, UART, SPI, memory controllers are included in PS, but this subsystem can also 

be enhanced by adding extra hardware intellectual property (IP) by using a PL Overlay. 

PYNQ overlays play a very important role in the PYNQ framework especially for 

this case with ZCU104 board. An overlay in PYNQ refers to a hardware design that is 

implemented in the programmable logic (PL) section of the Zynq system-on-chip (SoC). 

These overlays give a massive level of abstraction and provide users the ability to 

accelerate their applications by leveraging the FPGA resources available on the ZCU104.  

In order to create a PYNQ overlay the most common way is by using high-level 

synthesis (HLS). This way makes it easier for the developers to design it in languages 

like Python or C++ and to automatically generate the corresponding FPGA bitstream. 

  

 

Figure 5. Connection of the peripherals in the Base Overlay of ZCU104 board 

The overlays in PYNQ are highly customizable and can be tailored to specific 

application requirements. They include dedicated hardware accelerators, custom IP cores, 

or interfaces that enable efficient communication between the PL and the PS. By 
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offloading computationally intensive tasks to the overlay, users can achieve significant 

performance improvements compared to running their applications solely on the 

processing system. 

PYNQ overlays also provide a software interface that allows developers to interact 

with the hardware accelerators and other custom IP cores from the Python environment. 

This interface, known as the PYNQ API, enables seamless integration of the overlay's 

functionality into the software application stack, providing a unified programming model. 

Additionally, the PYNQ ecosystem offers a range of pre-built overlays that target 

specific domains or applications [36]. These overlays can be readily downloaded and used 

as a starting point for building custom overlays, saving development time and effort. 

Moreover, the PYNQ community actively contributes to the creation and sharing of 

overlays, fostering collaboration and knowledge exchange. 

In summary, PYNQ overlays in the context of the PYNQ 3.0 framework and the 

ZCU104 platform provide a means to accelerate applications by leveraging FPGA 

resources. They offer a higher level of abstraction, customizable design options, software 

interfaces for seamless integration, and a thriving ecosystem of pre-built overlays. These 

features empower developers to harness the power of programmable logic and achieve 

enhanced performance for their applications. 
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Figure 6. Base Overlay Block design in PYNQ 3.0 

Video Peripheral structure: 

➢ HDMI IN 

➢ HDMI OUT 

➢ PHY CONTROLLER 

➢ AXI VDMA 

 

Figure 7. Block design of Video on Base Overlay 
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Both HDMI-s have a similar design as can be shown in Figure 5 and Figure 6. The 

components are listed below: 

➢ Color convert (HLS IP) 

➢ Pixel pack (HLS IP) 

➢ AXI4-Stream Subset Converter 

➢ AXI4-Stream Register Slice 

  

 

Figure 8. Design of HDMI INPUT 

 

 

Figure 9. Design of HDMI OUTPUT 
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2.1.2.3 AXI DMA 

Xilinx offers the AXI Direct Memory Access (DMA) IP Core to facilitate 

communication between hardware accelerators in the PL and the main system memory 

[37]. This AXI DMA enables high-bandwidth communication through the utilization of 

AXI Memory-Mapped and AXI stream interfaces. Figure 10 presents a diagram 

illustrating the primary input and output ports of the AXI DMA IP. 

 

Figure 10. The AXI interfaces on the AXI DMA Controller 

 

As depicted, the AXI DMA IP Core incorporates two data movers within its structure. 

One data mover facilitates reading from system memory, as indicated by the orange 

blocks, while the other handles writing data to system memory, represented by the green 

blocks. Each channel functions independently and can be activated or deactivated during 

the hardware system development phase. The process of reading from system memory 

utilizes the AXI4-Stream Master interface, identified as Memory-Mapped to Stream 

(MM2S). The AXI4 Control Stream (MM2S) interface provides the target IP Core with 

supplementary application and control data. Similarly, the write DMA employs the AXI4-

Stream Slave interface for writing data to system memory, which may also be referred to 

as Stream to Memory-Mapped (S2MM). The write DMA includes an additional interface, 
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AXI4 Status Stream (S2MM), to receive status updates and application data from the 

target IP Core. The AXI4-Lite interface facilitates low-bandwidth communication with 

the PS. The optional scatter/gather interface enables the DMA to retrieve preloaded 

descriptors from system memory with minimal assistance from a processor core. 

Subsequently, the DMA can self-configure for its target address, transaction length, and 

other control parameters. 

The Zynq MPSoC features an AXI DMA connection, illustrated in Figure 11 as 

an example of its integration in the PL. This representation is just one of the numerous 

system configurations possible with the Zynq MPSoC. The AXI DMA employs the AXI4 

Memory-Mapped interface when interacting with the DDR Controller, utilizing the burst-

transfer capability of the AXI4 Memory-Mapped protocol. This protocol supports 

efficient data transfers by incorporating an address and an access pattern specified by the 

master, determining subsequent addresses for the following data. 

Burst transfers within a single transaction are facilitated by the access pattern, 

reducing the overhead and latency associated with data transfer. When transmitting data 

to the target IP Core, the AXI DMA utilizes the AXI4-Stream interface, enabling burst 

transfers of an unrestricted (infinite) size. In this protocol, no address channel is 

necessary, as it is designed for a seamless flow of data directly between the source and 

destination within the device. 

In Figure 11, various connections are depicted, including the primary link between 

the DMA and S_AXI_HP1_FPD port through the AXI interconnect. This serves as the 

DMA's main pathway for reading and writing to the primary system memory. By linking 

it to the PL's high-performance ports, a high-throughput route to the DDR controller is 

established. Specifically, the first high-performance port (HP1_FPD) is utilized, having 

an exclusive link to port 4 of the DDR controller. This configuration is illustrated as an 

example of the AXI DMA connected in the Zynq MPSoC PL. 
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Figure 11. An example of the AXI DMA connected in the PL of the Zynq MOSoC [38] 

 

The optional scatter/gather port is connected to S_AXI_HP0_FPD to fetch buffer 

descriptors from main memory. The AXI4-Lite control and status interface links to 

M_AXI_HPM0_FPD for communication with the Arm processors in the PS, enabling 

Arm processors to configure the AXI DMA and obtain status information. During reads 

from system memory, the DMA employs the AXI4 MM2S channel, also known as 

Memory-Mapped to Stream, transferring data to the AXI4-Stream (MM2S) channel for 

further transmission to the IP Core. Conversely, when writing to system memory, the 

DMA controller utilizes the AXI4 S2MM channel for data transfer. 

 

 

2.1.2.4 AXI VIDEO DMA 

The AXI Video DMA, represented by the VDMA IP Core [39], facilitates high-

performance transfer of video frame data between DDR memory and the PL. Similar to 

the AXI DMA, the VDMA features control and status logic, a data mover block, and 
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AXI4-Lite registers, as depicted in Figure 12. Additionally, a new component, the Line 

Buffer, has been introduced. This asynchronous buffer serves as a temporary storage for 

pixel data before it is written to the AXI4 Memory-Mapped interface or AXI4-Stream 

interface. 

 

Figure 12. The AXI VDMA block diagram and AXI interfaces 

 

Similar to the AXI DMA, the VDMA IP Core offered by Xilinx supports two data 

movers, designated for reading from and writing to system memory. Each data mover 

follows the structure illustrated in Figure 12, featuring its own AXI4 Memory-Mapped 

interface for communication with DDR memory and an AXI4-Stream interface for data 

transfer onto the PL. The choice of the VDMA IP over the AXI DMA is motivated by its 

optimization for efficient video data transfer between system memory and the PL [39].  

The VDMA excels in performing DMA operations on video frame data, 

facilitating asynchronous transfer of video frames on both read and write channels. This 

capability proves beneficial in scenarios where the PL needs to buffer video data for 

different clock domains or wait for the completion of another task. The VDMA can 

handle up to 32 frame buffers across a 64-bit address space. An incorporated Data 

Realignment Engine (DRE) enables unaligned access to memory, allowing frame buffers 

to commence at any address in memory. Figure 12 displays the AXI VDMA block 

diagram and AXI interfaces [40], including Registers, Control and Status, Data Mover, 

Line Buffer, AXI4 Memory-Mapped, AXI4-Lite, and AXI4-Stream. 

Illustrated in Figure 13 is an example of a frame buffer configuration in the Zynq 

MPSoC device. This example involves buffering video frames from an incoming High-
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Definition Multimedia Interface (HDMI) signal using the AXI VDMA IP Core. Once the 

video frames are buffered, they are retrieved from system memory and written onto the 

AXI-Stream (MM2S) channel. 

 

Figure 13.The AXI VDMA video frame buffer example. 

 

2.1.2.5 Open Computer Vision (CV) 

A well-known open-source package called OpenCV (Open-Source Computer 

Vision) offers a complete collection of tools and algorithms for computer vision and 

image processing jobs. It provides a variety of features and modules to help programmers 

manage several facets of computer vision applications, including image and video editing, 

feature identification, object recognition, and machine learning integration [41]. With its 

support for numerous programming languages, such as C++, Python, and Java, OpenCV 

is available to a wide range of developers.  

For researchers, engineers, and enthusiasts working on computer vision and image 

analysis projects, OpenCV has emerged as the go-to option thanks to its broad collection 
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of features and interoperability with a wide range of platforms and operating systems. Its 

adaptability, effectiveness, and usability have made it a crucial tool in a variety of 

industries, including robots, augmented reality, surveillance, medical imaging, and more. 

Some of its features in image processing are: 

➢ Color Space Conversion: Facilitates the conversion between different color spaces. 

➢ Image Filtering: Provides various linear and non-linear filtering techniques, including 

blurring and sharpening. 

➢ Geometric Image Transformations: Supports scaling, rotation, and affine and 

perspective transformations. 

➢ Morphological Operations: Includes operations like erosion, dilation, opening, and 

closing that are particularly useful in image pre-processing. 

➢ Histograms: Functions to compute and manipulate image histograms for tasks like 

contrast stretching or histogram equalization. 

➢ Feature Detection and Description 

➢ Edge Detection: Implements algorithms like Sobel and Canny for detecting edges in 

images. 

➢ Contours: Provides functionality to detect and manipulate contours in binary images, 

which is useful in shape analysis and object detection. 

 

2.2  Methodology 

 

2.2.1 Steps for connecting PYNQ to FPGA 

 

➢ PYNQ image should be downloaded in the website. In this case PYNQ 3.0 is used. 

➢ The switch should be set to the position to boot from SD Card. 

➢ PYNQ image is flashed to a 128 Gb SD card using balenaEtcher application. 

➢ SD Card is inserted into ZCU104. 
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➢ Board is connected to PC using LAN. 

➢ Board should also be connected to PC with a Hdmi cable for video input. 

➢ Another Hdmi cable can be connected to a HD monitor but this is not mandatory 

since it can display the output on the Jupyter Notebook itself. 

➢ The ZCU104 should be turned on. 

➢ The static IP address of the FPGA is identified (192.168.2.99). 

➢ Assign a static IP for the computer which should be in the same subnet as the 

FPGA. 

➢ Go to the browser and type the IP address (192.168.2.99). 

➢ Now the Jupyter Notebook is opened containing demos. 

 

2.2.2 Image Processing Filtering 

Digital image processing employs various techniques, one of which involves 

"sectioning" the image data. This segmentation technique, known as neighborhood 

processing, determines the output pixel value not only from its own data but also from its 

nearby neighbors. Illustration is shown in the Figure 14. 

 

Figure 14. Illustration for processing of pixel through neighborhood operations [42] 
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2.2.3 2D Convolution 

Convolution is a key process in signal and image processing, where it involves 

combining two functions to produce a third function that reflects how one function 

influences the other. Specifically, in image processing, spatial convolution is utilized, 

which involves multiplying each pixel of the image with a value from a flipped kernel 

mask. Subsequently, the sum of the pixel's immediate neighboring values is calculated to 

determine the new pixel value. This process is fundamental to 2D convolution and is well-

explained by the following formula, which forms the basis of all 2D convolution 

operations. 

X[m, n] = ∑ ∑ 𝑥[𝑖, 𝑗] ∗ 𝑘[𝑚 − 1, 𝑛 − 𝑗]

∞

𝑖=−∞

∞

𝑗=−∞

 

where: 

o X[m,n] is the output image 

o x[I,J] is the input image 

o k[m-1,n-1] is the flipped kernel 

If the flipped kernel was not used instead the normal one, then this whole 

operation would be referred to as spatial correlation and the output obtained by it would 

have been rotated by 180°. Hence, the kernel is flipped first in order to obtain an accurate 

result. 

 

 

 

 

 

 

 

Equation 1 
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As highlighted in the figure above, the kernel slides collecting data for each pixel and its 

immediate neighbors (if the kernel is 3x3 there are usually 8 neighbors to the input pixel) 

and outputs the new pixel in the output image. 

 

2.2.3.1 Sobel Filter 

Sobel filter is relatively computationally inexpensive algorithm which uses two 

window operates, one that detects the discontinuities in the horizontal direction and the 

other in the vertical direction as shown below. The Sobel filter is a popular edge detection 

algorithm used in image processing. [43] It is a type of discrete differentiation operator, 

computing an approximation of the gradient of the image intensity function. The Sobel 

filter emphasizes regions of high spatial frequency that correspond to edges. Typically, it 

is used to find the approximate absolute gradient magnitude at each point in an input 

grayscale image. The Sobel filter uses two 3x3 kernels, one estimating the gradient in the 

x-direction (horizontal) and the other in the y-direction (vertical). These kernels are 

convolved with the original image to calculate the gradient approximations. The kernels 

are as follows: 

➢ For the x-direction (Sobel_x): 

 

 

➢ For the y-direction (Sobel_y): 

 

 

 

In a closer look it can be noticed that if all the coefficients in a window are 

summed up the value 0 is obtained, therefore meaning that in the areas within the image 

𝐺𝑦 = [
−1 −2 −1
  0   0   0
  1   2   1

] 

𝐺𝑥 = [
−1   0   1
−2   0   2
−1   0   1

] 

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 

Figure 15. 2D Convolution of Image and Kernel Window [50] 

Equation 2 
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that hold a persistent brightness intensity the response would be 0, as it can reflect from 

the MatLab results below:  

 

Figure 16. The illustration of both sobel operators Gy and Gx for the detction of edges 

in the horizontal and vertical direction respectively 

 

  

Figure 17. The resulting image from MatLab of the complete Sobel filter as the 

magnitude of the x and y direction gradients 

 

2.2.3.2  Laplacian Filter 

The Laplacian is the 2nd derivative of an image and is given by the equation below: 

 

𝐿(𝑥, 𝑦) =
𝜕2𝐼

𝜕𝑥2
+

𝜕2𝐼

𝜕𝑦2
 Equation 3 

Equation 4 
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where I represent the pixel intensity value on the x and y coordinates. This filter can be 

calculated using this commonly used kernel window below. 

 

 

However just like in the Canny Filter we might need to apply a gaussian filter before, 

because the kernel window is much sensitive to noise. 

 

2.2.3.3  Canny Filter 

The Canny Filter is rather a composed filter from the Gaussian then the magnitude 

of two Sobel horizontal and vertical gradient opponents. The Gaussian filter smoothest 

the input image so when the operators are applied only the general outlines within the 

image are detected, making it easier for the machine to read information from the filtered 

image through the located discontinuities in the pixel brightness intensity [44].  

 

2.2.3.4  Gaussian Filter 

The Gaussian filter is used to reduce noise from the image thus, creating a blurring 

effect. The purpose of this operation on edge detection is to help the algorithm distinguish 

only the main outlines of the higher resolution images and not read every small line of 

discontinuity within the data as an edge. Especially needed in the developing of 

autonomous cars applications for example. 
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For an illustration of how this filter works the following image1 is processed in 

MatLab in a convolution with the above kernel. The input image is converted from RGB 

to grayscale beforehand in order to compute the 2D convolution. 

 

Figure 18. The result from MatLab of the convolution of the image with the 

Gaussian filter. [45] 

To the result of the Gaussian filter convolution the horizontal and vertical 

operators are separately applied thus obtaining two additional images that are added 

together in accordance to the equation (2). Finally, the following Canny filtered image is 

as follows: 

 

Figure 19. The result from the Canny Filter(left) and Sobel Filter(right) 

Compared side-by-side 

 
1
The image shown below is that of the dwarf planet Ceres, the “unpredictable” orbit of which became the 

cause of Gaussian approximation, and after that Gauss kept on developing his methods that are now 

widely used in various mathematics computations, especially engineering. [45] 
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2.3.1 Steps for implementation of the custom overlay  

A custom overlay to be controlled by PYNQ can be developed into two ways, 

either by editing the existing Base Overlay provided by PYNQ for a specific type of 

supported board or building one from scratch. In this project the second option is chosen. 

The same logic as the above examples is followed throughout the designing process of 

the IP [46]. First, just as it was done before with the grayscale and result images, the data 

size for each image is allocated using the values of maximum width and height that is 

expected from the input. Afterwards, each image declared is used to save every 

transformation the input image goes through. In this case the input image edges need to 

be located through the Canny filter, so we go through the aforementioned steps of the 

Canny Filter. Steps for building a custom overlay are mentioned below [47] [48].  

 Set Up HLS Project 

➢ Install and open Xilinx Vivado HLS. 

➢ Create a new HLS project and target it for the ZCU104 platform. 

1. Write HLS Code for each filter 

Two quite important steps in designing the IP are the interfaces and the declaration of the 

TLAST port, the latter serves as signal from the IP of the last bit received. Without them 

the IP cannot take or receive data from the DMA or PS. Therefore, it is fundamental to 

declare them correctly. 

#pragma HLS INTERFACE axis port=in 

#pragma HLS INTERFACE axis port=out\ 

#pragma HLS INTERFACE s_axilite port=return bundle=CRTL_BUS 

typedef hls::stream<ap_axiu<24,1,1,1>>IN; 

typedef hls::stream<ap_axiu<24,1,1,1>>OUT; 

Canny Algorithm implementation: Implement the steps of the Canny algorithm (Gaussian 

blur, gradient calculation, non-maximum suppression, hysteresis thresholding). They 

might need to be written in separate functions for each step and call them from your main 

function. 
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2. Apply HLS Dataflow Optimization: 

In HLS, the #pragma HLS DATAFLOW directive can be utilized to enable concurrent 

execution of functions. This allows pipelining of operations, reducing latency. Algorithm 

is decomposed into multiple functions or blocks that can run in parallel. The frame is 

captured from the video stream (in the simulation only one image is used to test the IP). 

[49] That frame is saved in image 0 and its color space is RGB. Additionally, the data 

type is 24-bit (3 channels) as the cvt.h file suggests the type of the IN data is. The image 

data of image 0 is converted to grayscale and saved to the destination image 1. The same 

procedure is applied to the Gaussian filter too, where the kernel dimensions are taken 3x3  

#pragma HLS dataflow 

hls::AXIvideo2Mat(INPUT_STREAM, img_0); 

hls::CvtColor<HLS_BGR3GRAY>(img_0, img_1); 

hls::GaussianBlur<3,3>(img_1,img_2); 

hls::Duplicate(img_2,img_2a,img_2b); 

hls::Sobel<1,0,3>(img_2a,img_3); 

hls::Sobel<0,1,3>(img_2b,img_4); 

hls::Addweighted(img_4,0.5,img_3,0.5,0.0,img_5); 

hls::CvtColor<HLS_GRAY2RGB>(img_5,img_6) 

The image data then is duplicated so Sobel gradients in the x direction and y direction 

respectively may be estimated. The gradient images are added together with the 

AddWeighted function same as before. Only this time the functions are referenced from 

the “hls_video.h/ hls/hls_video_imgproc.h” library. The image data is converted back 

into the RBG colorspace and sent to stream. 

3.  Test and Simulate: HLS is used for design simulation. There must be a correct 

behaviour with the test inputs. After HLS synthesis, RTL code is generated and can 

analyze performance metrics. 

4.  Export HLS Design: RTL is generated by exporting the synthesized design 

(VHDL/Verilog) along with the test bench, and an IP is created by packaging the 

High-Level Synthesis (HLS) design for seamless integration into the Vivado IP 

integrator. 
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5. Integrate into Vivado and PYNQ: The HLS-generated IP is imported into a Vivado 

block design targeting the ZCU104 for Vivado Integration. The bitstream is 

subsequently generated, and the hardware design, comprising HWH and BIT files, is 

exported. A PYNQ overlay is then created using the exported files, and Python code 

is authored to interface with the hardware in the context of PYNQ Overlay creation. 

The implementation of the HLS IP is depicted within the block design. 

 

 

Figure 20. Implementation of the IP in the block design for ZCU104 

 

In the block design it should be made sure that there is no mismatch in the data 

width or IP I/O interfaces and DMA slave and master, that’s why a Axi Width Converter 

is used in order to convert the 24-bit wide data stream of the IP to a 32-bit wide data 

stream at the DMA. Also, the S_AXI_HP0_FPD port is enabled so that the DMA catch 

is flushed. 

The next final steps are the design validation that should be done with no errors 

and creating an HDL wrapper of the block design. Finally, choosing the option “generate 

bitstream” a new custom overlay for the board is created. 
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CHAPTER 3 

 

RESULTS AND DISCUSSION 

3.1 Implementation of Real-Time Video through HDMI interface 

(BASE OVERLAY) 

This notebook is run on the “base overlay.bit”, and the cells are explained below. First, 

aliases are created for both HDMI input and output, configuring them based on the format 

required, which is RGB in this case. Additionally, both HDMI-s are initialized. 

 

Figure 21. Initialization of the HDMI input and HDMI output 

 

The next step would be to import the libraries of PIL Image in order to display the image 

and time library from python to help measure the rate that the frame is passed through 

HDMI input to output. This cell measures only the frame rate without applying any filters, 

just to test the maximum real-time frame rate. 
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Figure 22. Code cell for the real-time video displayed on the HD monitor 

 

 

Figure 23. Real time display of Laptop screen on PYNQ 
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Figure 24. Real Time Edge Detection Using Laptop Screen as an input 

 

In the following cells implementation of the filter algorithms is made possible 

through the OpenCV libraries. The code steps are almost similar cell-to-cell. Allocating 

the space for the grayscale and the result image using the configurations of HDMI_IN in 

order to ensure there is no mismatch of types. In this case the height and width are that of 

the Laptop Monitor (1920x1080) and the type is uitn8, which stands for unsigned 8-bit 

integer. Inside the loop the video live stream is treated as a stream of images, so each 

frame is processed one by one by the code. As mentioned above, in order to compute the 

2D convolution the input should be only one channel (grayscale) in order to use the 

cvtColor( ) function to convert each frame to grayscale before starting the convolution. 

The cvtColor() function has an argument format of: 

cv2.cvtColor(source, code [, destination [, destinationCn]]) 

Where source represents the input image, code is the code of the color space we 

wish to convert the image to and the destination image (allocated above) in brackets is 

the number of channels, in this case being 1. The frame is then filtered with the filter 

function accordingly: 

➢ The Laplacian filter is similar to the color conversion function. 
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➢ The Canny filter function is also similar except the second and fourth arguments are 

the value of the upper and lower threshold set for the filter. 

➢ The Sobel filter is rather complex. First, the gradient is calculated along the x-axis 

and afterwards the gradient along the y-axis. The way these two are differentiated 

from each other are the values of the second than third arguments, respectively the 

value of dx and dy. 

 After the input frame is filtered the newframe function is called from the hdmi_out. The 

filtered frame is converted back to RGB color space in order to be compatible when 

written in the HDMI output channel, through the calling of the “writeframe()”function 

 

Figure 25. Cell code for the real-time video with Laplacian Edge Detection 
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Figure 26. Cell code for the real-time video with Canny Edge Detection 

 

 

Figure 27. Cell code for the real-time video with Sobel Edge Detection 
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Figure 28. Implementation of real time canny filter on USB CAMERA 
 

3.2 Results of the Real time video in the Jupyter Notebook 

3.2.1 The Frame Rate Comparison: 

 

Table 3. Side to Side Comparison of Filters Implementation on Software 
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From the chart above it can clearly be seen that the highest frame per second 

achieved is 60fps. And that is only achieved when no filter is applied. This frame rate is 

decreased when filters like Canny, Sobel, and Laplacian are applied. This happens 

because this is the maximum capacity of the software domain.  

 

3.2 Results from of Real-Time Video from USB camera and pre-saved 

Video)  

 

3.2.1 USB Camera Input (1280x720)  

 

Table 4. Comparison of Hardware and Software with the input coming from the USB 

Camera Input 

 SOFTWARE HARDWARE 

DILATE 16.96 fps 79.04 fps 

LIVE STREAM 7.905 fps 9.03 fps 

 

3.2.2 Pre-saved video Input (768x576) 

 

Table 5. Comparison of Hardware and Software with the input coming from the 

pre=saved video "vtest.mp4" 

 SOFTWARE HARDWARE 

DILATE 34.8 fps 165.42 fps 

LIVE STREAM 16.31 fps 18.6 fps 
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The empirical findings presented herein substantiate the assertion that 

computational efficiency is notably enhanced when convolution occurs through the 

Programmable Logic (PL) in comparison to exclusive programming utilization of the 

processing system (PS) within the board. Furthermore, it is observed that at reduced 

resolution rates, exemplified by the video saved, a heightened frame rate is achieved due 

to the diminished size of the image data. 

 

 

3.2.3 Power Consumption Comparison: 

 

Table 6. Power Comparison 1240x720(Watts) 

 SOFTWARE HARDWARE 

DILATE 10.325 10.275 

LIVE STREAM 10.325 10.290 

 

These tables present a comparison of power consumption between the two 

methods based on the average of measurements taken from three instances. The results 

clearly indicate that hardware implementation is more energy-efficient than software 

implementation, making it the preferable choice for image processing tasks. 

 

 

3.2.4 Data read from disk: 

     

This is a very important parameter because it affects how quickly video frames 

can be processed, the strain on system’s memory and overall performance. The data read 

from the disk for the for the two resolutions throughout the hardware implementation is 
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shown in the table below. As it can be seen the data read from disk grows with the 

resolution of the video. 

 

 

Table 7. Data read from disk during hardware implementation 

 Data read from disc(bytes/s) 

1280x720 2764800 

768x576 1658880 

 

 

 

3.3 Results from the HLS IP C simulation for Gaussian Filter 5x5: 

 

 VERILOG 

Slice 0 

LUT 753 

FF 221 

DSP 12 

URAM 0 

 

 These results suggest that the design does not utilize any Block RAM (BRAM_18K) or 

UltraRAM (URAM) resources. It employs 12 DSP slices, which are specialized hardware 

units for complex arithmetic operations. The design uses 221 flip-flops (FF) for storing 
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state information and control logic. The majority of resources are LUTs (Lookup Tables), 

with 753 LUTs utilized. LUTs are essential for implementing combinational and 

sequential logic in FPGA designs. These resource utilization numbers provide insights 

into the design's logic complexity, resource requirements, and potential areas for 

optimization. 

 

 

3.4 Results from the HLS IP C simulation for Sobel Filter: 

 

 

Figure 29. The simulation results of the HLS IP (1280x720) image 
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Figure 30.  Graphical representation of the device and placed logic resources 

 

A graphical representation of the device and placed logic resources in FPGA design 

provides a visual depiction of how various logic elements and resources are physically 

arranged and utilized within the FPGA chip. This representation includes the device 

structure, showing logic blocks, routing resources, I/O pins, clocking elements, memory 

blocks like BRAM and URAM, DSP slices, and other specialized components specific to 

the FPGA architecture. Within this representation, placed logic resources are visualized 

based on their physical placement and utilization, such as LUTs, flip-flops, DSP slices, 

BRAM, and URAM. Graphical elements like squares, rectangles, icons, or symbols are 

used to represent these resources, often with color coding to indicate utilization levels. 

This graphical view aids designers in understanding how their design is mapped onto the 

FPGA chip, identifying resource allocation, optimizing utilization, and ensuring efficient 

hardware implementation. 
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CHAPTER 4 

 

CONCLUSION 

 

In conclusion, this thesis has explored the ongoing evolution of technology, which 

continually raises the bar for digital media processing in terms of quality and processing 

speed. It has become evident that keeping up with this rapid evolution demands more than 

just software enhancements; the real power lies in programmable hardware. Through our 

utilization of the ZCU104 board equipped with the ZYNQ Ultrascale+ MPSoC EV, we 

have unequivocally demonstrated that direct programming on the Programmable Logic 

(PL) portion of the board, combined with executing computations through peripherals 

and custom Integrated Circuits (ICs), surpasses the efficiency of implementing algorithms 

solely through the processor. A substantial increase in performance, yielding a frame rate 

up to 4.7 times higher, has been observed in hardware-based video processing compared 

to software implementations despite having similar power consumption. 

These findings not only present a compelling demonstration of the project but also 

offer an intriguing glimpse into future possibilities. They suggest that with the appropriate 

investment of effort, hardware will transcend its traditional role as a bottleneck in data 

processing. Instead, it will emerge as a pivotal element in driving forward a more 

advanced and efficient future in data processing. 
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