

THE DETECTION OF FRAUDULENT TRANSACTIONS USING

MACHINE LEARNING

A THESIS SUBMITTED TO

THE FACULTY OF ACHITECTURE AND ENGINEERING

OF

EPOKA UNIVERSITY

BY

ANISA GJONI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF THE MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

MARCH, 2024

ii

Approval sheet of the Thesis

This is to certify that we have read this thesis entitled “The detection of fraudulent

transactions using Machine Learning” and that in our opinion it is fully adequate, in

scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Arban Uka

Head of Department

 Date: March 01, 2024

Examining Committee Members:

Prof. Dr. Betim Çiço (Computer Engineering) ________________

Prof. Dr. Bekir Karlik (Computer Engineering) ________________

Assoc. Prof. Dr. Dimitrios A. Karras (Computer Engineering) ________________

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

 Name Surname: Anisa Gjoni

 Signature: ______________

ABSTRACT

THE DETECTION OF FRAUDULENT TRANSACTIONS USING

MACHINE LEARNING

Gjoni, Anisa

M.Sc., Department of Computer Engineering

Supervisor: Assoc.Prof. Dr. Dimitrios Karras

Credit cards are massively used nowadays for internet transactions performed at

any moment, given that they have offered facilitation both in usage and time. With the

growing usage of credit cards, there has also been an increase in their misuse capacity.

Credit card deceits cause considerable financial loss not only for their owners but also

for the financial companies.

The main objective of this research study is the identification of the fraudulence

cases which may include the access of the public data, handling groups of largely

destabilized data and the adaption to the developing deception models. The

corresponding literature poses many approaches based on Machine Learning for the

detection of credit cards, some of which are: Extreme Learning Method, Decision Tree,

0Random Forest, Support Vector Machine, Logistic Regression and XG Boost.

However, due to an insufficient accuracy, there is still some need to apply

deeper algorithms to reduce the loss from fraudulence. For this aim, the main focus of

this research wok has been the application of “Deep Learning” algorithms. A

comparing analysis between the two algorithms “Machine Learning” and “Deep

Learning” was conducted in order to retrieve efficient results. Also, a Machine

Learning algorithm was applied on the group of data, which improved significantly the

accuracy of detecting fraudulence. Moreover, I applied three architectures based on a

convolutional neural network to ameliorate even further the performance of fraud

iv

v

detection. A complete empirical analysis was performed by experimenting with

different configurations of the hidden layers by changing the number of training epochs

and using the latest models.

The findings from this research demonstrate enhanced results, specifically in

terms of accuracy and precision. The suggested model outperforms the most recent

Machine Learning and Deep Learning algorithms designed for addressing credit card

fraud detection issues. In addition, I conducted experiments to balance the data and

implemented Deep Learning algorithms to reduce the occurrence of biased negative

results. These proposed methods can be efficiently employed to identify instances of

credit card fraud in real-world scenarios.

Keywords: Credit Card Fraud Detection, Deep Learning, Machine Learning,

Cybersecurity

ABSTRAKT

DEDEKTIMI I TRANSAKSIONEVE MASHTRUESE NEPERMJET

PERDORIMIT TE MACHINE LEARNING

Gjoni, Anisa

Master Shkencor, Departamenti I Inxhinierisë Kompjuterike

Udhëheqësi: Assoc.Prof. Dr. Dimitrios Karras

Njerëzit i përdorin kartat e kreditit për transaksione në internet në çdo moment,

pasi ofrojnë një lehtësim në kohë dhe në përdorim. Me rritjen e përdorimit të kartave të

kreditit, është rritur edhe kapaciteti i keqpërdorimit të tyre. Mashtrimet me kartat e

kreditit shkaktojnë humbje të konsiderueshme financiare, si për mbajtësit e kartave të

kredititashtuedhepërkompanitëfinanciare.

Objektivi kryesor i këtij studimi kërkimor është identifikimi i rasteve të

mashtrimit, të cilat mund të përfshijnë aksesimin e të dhënave publike, trajtimin e

grupeve të të dhënave shumë të çekuilibruara dhe përshtatjen ndaj modeleve në

zhvillim të mashtrimit. Literaturat përkatëse paraqesin shumë qasje të bazuar në

Machine Learning për zbulimin e kartave të kreditit, siç janë Metoda Extreme

Learning, Decision Tree, Random Forest, Support Vector Machine, Logistic

Regression dhe XG Boost.

Megjithatë, për shkak të saktësisë së pamjaftueshme, ekziston ende nevoja për

të aplikuar algoritme më të thellë për të reduktuar humbjet nga mashtrimi. Fokusi

kryesor ka qenë zbatimi i algoritmeve “Deep Learning” për këtë qëllim. Analiza

krahasuese e të dy algoritmeve “Machine Learning” dhe të "Deep Learning" u krye për

vi

vii

të gjetur rezultate efikase. Analiza e detajuar empirike është kryer duke përdorur të

dhënat e standardeve evropiane të kartave për zbulimin e mashtrimit. Një algoritëm

“Machine Learning” u aplikua në grupin e të dhënave, gjë që përmirësoi saktësinë e

zbulimit të mashtrimeve në një masë të caktuar. Më pas, janë aplikuar tre arkitektura të

bazuar në një rrjet nervor konvolucional për të përmirësuar performancën e zbulimit të

mashtrimit. Shtimi i shtresave të thellësuara më tej rriti saktësinë e zbulimit.

Vlerësimi i punës kërkimore tregon rezultate të përmirësuara, si saktësia dhe

precizioni. Modeli i propozuar tejkalon algoritmet më të fundit të mësimit të makinave

dhe të mësimit të thellë për problemet e zbulimit të kartave të kreditit. Përveç kësaj,

kemi bërë eksperimente duke balancuar të dhënat dhe duke aplikuar algoritme të

mësimit të thellë për të minimizuar shkallën e rezultateve të gabuara negative. Qasjet e

propozuara mund të zbatohen me efikasitet për zbulimin e mashtrimit me karta krediti

në botën reale.

Fjalë kyçe: Zbulimi i mashtrimeve me kartat e creditit, Deep Learning, Machine

Learning, CyberSecurity.

ACKNOWLEDGEMENTS

viii

 I would like to express my thanks and my gratitude to my supervisor,

faculty, family, friends and all those who have supported me and believed in me

throughout this journey. Your guidance, encouragement and cooperation have been

invaluable to me and I am very excited to apply the knowledge and skills that I have

gained to make meaningful contributions in the scientific field. Thank you for being a

part of my success!

ix

TABLE OF CONTENTS

ABSTRACT ..iii

ABSTRAKT .. vi

ACKNOWLEDGEMENTS ... vii

LIST OF TABLES ... xii

LIST OF FIGURES ..xiii

LIST OF ABBREVIATIONS ... xvi

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1. Methodology ... 2

1.2. Existing system .. 5

1.3. The proposed system ... 5

CHAPTER 2 .. 7

REQUIREMENT SPECIFICATIONS .. 7

2.1. Credit card fraud .. 7

2.2.1. Hardware requirements .. 9

2.2.2. Software requirements ... 9

2. 3. Used technology ... 9

2.3.1. Python .. 9

2.3.2. What is Deep Learning.. 12

2.3.2.1. Convolutional Neural Network (CNN) ... 14

2.3.2.2. Image classification .. 14

2.3.2.3 Biological connection... 16

2.3.2.4. First Layer – Convolutional layer ... 16

2.3.2.5. Deeper in the network ... 21

2.3.2.6. Fully connected layers... 22

x

2.3.2.7. Training (what makes the model work) .. 22

CHAPTER 3 .. 26

THESIS’ SPECIFICS .. 26

3.1. Analysis constraints ... 26

3.2. Design constraints ... 26

3.3. Application constraints .. 27

3.4. Performance requirements ... 27

3.5. Security requirements .. 28

CHAPTER 4 .. 29

ARCHITECTURE ... 29

4.1. Architecture diagram ... 29

4.2. Use–Case diagram ... 30

4.3. Activity diagram .. 31

4.4. Collaboration diagram ... 32

CHAPTER 5 .. 33

MODULES .. 33

5.1. Modules ... 33

5.2. Comparison among different algorithms ... 33

5.2.1 Followed steps for comparing the algorithms.. 34

5.2.2 Comparison’s result ... 38

5.3 Collecting the dataset .. 38

5.4 Layers in the CNN ... 39

CHAPTER 6 .. 40

CODING .. 40

6.1. Coding ... 40

6.2. Coding standards ... 40

6.2.1. Writing and commenting standard ... 41

6.2.2. Message box format ... 41

CHAPTER 7 .. 42

xi

DATA AND CODE PREPARATION .. 42

7.1. Dataset description .. 42

7.2. PCA and its components ... 44

7.2.1. Handling the unbalanced data .. 46

7.2.2. Applying PCA to my dataset ... 47

7.3 The steps that were followed to identify the data in the code 53

CONCLUSIONS .. 61

REFERENCES ... 63

APPENDIX A .. 65

SOME CODING ELEMENTS .. 65

xii

LIST OF TABLES

Table 1. List of available features in the CCFD dataset ... 51

Table 2. Data characteristics .. 52

xiii

LIST OF FIGURES

Figure 1.Apple’s Fraudulent Statistics in 2022 [Apple.com].. 8

Figure 2. CNN image classification [Neural Network from scratch, Victor Zhou

(2007)] .. 15

Figure 3. Curve detector filter [The Artificial Neural Networks handbook, 2018] 17

Figure 4. Visualizing the filter on the image [The Artificial Neural Networks

handbook, 2018] ... 18

Figure 5. Multiplication and summation of filter values [The Artificial Neural

Networks handbook, 2018] .. 18

Figure 6.Image shape not resembling the filter curve [The Artificial Neural Networks

handbook, 2018] ... 19

Figure 7. Visualization of first layer conversion filter [Heritage Image Classification

by Convolution Neural Networks, Le Van Linh]... 20

Figure 8. Classic CNN architecture [Convolution Neural Networks, Manh-Tu-Vu] ... 21

Figure 9. Fully connected CNN scheme [Analytics, Vidhya (2019)] 22

Figure 10. Loss function ... 23

Figure 11. Minimizing the loss [Mathematics Stacks, 2020] .. 24

Figure 12. Very high learning rate [Mathematical Stacks, 2020] 24

Figure 13. Architecture diagram ... 29

Figure 14. Use-Case Diagram ... 30

Figure 15. Activity diagram .. 31

Figure 16. Collaboration diagram ... 32

xiv

Figure 17. Libraries importing in Jupyter for comparison between models 34

Figure 18. Building the model for Random Forest and Gradient Boosting 35

Figure 19. Building the model for KNN and Logistic Regression 36

Figure 20. Training the models with training sets ... 37

Figure 21. Dividing the dataset into training and testing sets 37

Figure 22. Displaying the models’ accuracy ... 37

Figure 23. The dataset used for the model [Kaggle, 2013] ... 43

Figure 24. Exploring the dataset after PCA transformation .. 44

Figure 25. Principal components [builtin.com] ... 45

Figure 26. Handling the unbalanced data .. 46

Figure 27. Coding for applying PCA .. 48

Figure 28. Validating PCA through the explained variance ratio 48

Figure 29. PCA visualization .. 50

Figure 30. The dataset after the PCA application ... 51

Figure 31. Importing libraries in machine learning... 54

Figure 32. Uploading the ML data .. 54

Figure 33. Exploratory data analysis EDA.. 55

Figure 34. Training the data through a supervised learning method. 56

Figure 35. Confusion matrix ... 57

Figure 36. Output of confusion matrix .. 58

Figure 37. Model training ... 58

Figure 38. Changed confusion matrix ... 59

Figure 39. Updating weights in confusion matrix ... 59

xv

Figure 40. Interpreting the logistic regression model ... 65

Figure 41. Interpreting the XGBoost Model ... 65

Figure 42. Output of using XGB classifier ... 65

Figure 43. Performance metrics for fraud detection (the cost of misclassification) 66

Figure 44. Cost of misclassification .. 67

Figure 45. Confusion matrix XGB classifier .. 67

Figure 46. Code for changed cost of fraudulence ... 68

Figure 47. Matrix for changed cost ... 68

Figure 48. Calculating the accuracy score .. 69

Figure 49. Output of accuracy calculation .. 69

xvi

LIST OF ABBREVIATIONS

ML

DL

CCFD

ANN

RGB

CNN

MSE

Machine Learning

Deep Learning

Credit card fraud detection

Artificial Neural Network

Color model

Convolutional Neural Network

Mean Square Error

SVM

Support Vector Machine

CHAPTER 1

INTRODUCTION

In an era characterized by a rapid technology integration in various aspects of the

everyday life, there has never been a more critical need for well-run data systems. With

the proliferation of online transactions and expansion of digital payment systems, there

is a proclivity in the need for more robust and adaptive fraud detection systems.

This master thesis offers a detailed exploration and analysis regarding credit

cards fraud detection, with its main focus on the exploitation of advanced technologies,

particularly Machine Learning and Deep Learning. The subsequent chapters present a

sheer paradigm of the design and implementation of a system, whose main goal is the

protection of financial transactions against a nefarious use. These approaches are taken

as an attempt to thwart hackers from tampering with sensitive financial information and

to build an unimpaired system that does not disclose any confidential data.

A systematic analysis has been performed for both existing systems used in the

field and the proposed system, aiming to improve the shortcomings of the current

methodologies. Chapter 2 concenters in the main requirements specifications, including

the requests of hardware and software, and also the technologies used in the project,

such as Python and ML, with particular emphasis on their relevance to credit card fraud

detection.

Thence the system design and implementation are examined, by taking into

account limitations in analysis and design and the critical security and performance

requirements needed to optimally combat this evolving threat. Chapter 4 explains the

system’s architectural framework and it provides a visual representation, including the

2

architecture diagrams and UML diagrams. Furthermore, this paper casts some light on

the intricacies on the collection and processing of the data set. Lastly, the procedures of

coding and testing are detailed, in the sense of coding standards, system testing protocols

and various testing techniques that are critical to ensure the reliability and accuracy of

fraud detection.

The testing phase offers recommendations to ameliorate the effectiveness of the

system and a general overview of its impact in the credit card fraud detection problem.

As a result, this paper will offer a better understanding of the various nature of threats

posed to credit card usage, along with a practical overview of how the DL and ML

technologies can be exploited to undermine the dangers related to financial transactions.

1.1. Methodology

 The proposed paradigm serves to detect and improve credit card transaction data

so as to build a system that securely retains such information and utterly separates it

from illicit, harmful and deceitful transactions. I have taken my dataset from kaggle.com

website and what is aimed through this research work is the annihilation of fraudulent

transactions from this dataset. The built model is established using Deep Learning and

Machine Learning in Python through tensor flow libraries and DL algorithms. I

conducted my study with different operating systems, such as: Mac, Windows and

Linux.

Dataset: In the dataset there is a total of 280.000 transactions. So, the dataset is a

numerical one and it contains these variables: “time”, “amount”, “class” and also V1-

V27 variables, which were created to store the identity of each of the users that have

made these transactions.

3

Configurations: The programming language that I have used is Python (version

3.2). There have also been used Jupyter Notebook, Anaconda, TensorFlow and also

Python libraries such as: KERAS (which allows the definition and training of neural

network models), Pandas (used for analyzing, exploring and training the data), Numpy

(used to work with arrows) etc.

Libraries: In my project of detecting fraudulent transactions, I have made use of

several programming and data analysis libraries. Following is a more detailed

description of them.

TensorFlow is an open-source machine learning software library created by

Google, and I have employed it for constructing machine learning models.

 Keras is an API for ML that integrates with TensorFlow and was used to

facilitate the creation and implementation of ML models.

Pandas is a data processing library used to import, manipulate and analyze data. I

used this library to read and manipulate Kaggle’s credit transaction dataset.

NumPy is a library of Python used for scientific computation to manipulate data

in the form of matrices and vectors. In this model it became useful for numerical data

manipulation.

Seaborn is a data visualization library that is constructed upon Matplotlib. It

served as a tool for representing data through visual elements such as graphics and

various types of diagrams.

Matplotlib, on the other hand, is a comprehensive Python library that facilitates

the generation of static and animated graphs, as well as diverse forms of data

visualizations.

Scikit-Learn (sklearn) is a Python machine learning library that furnishes a

variety of tools essential for training, evaluating, and validating machine learning

4

models. In my applications, I utilized the “train_test_split” function to partition the data

into training and testing sets. Additionally, I employed “StandardScaler” for normalizing

the data.

The Confusion Matrix serves as a tool for assessing the effectiveness of a

machine learning model. It shows how accurate or not the model’s classifications are.

Followed steps:

1. Retrieving the credit card transaction dataset from Kaggle. This dataset is a

numerical one consisting from credit card transactions.

2. Exploring the data: Refers to the exploration of the dataset. I looked into the

structure of the dataset, feature analysis and key data identification. Pandas,

NumPy, Seaborn and Matplotlib were the libraries used for data analysis and

visualization.

3. Data processing: After their exploration, I processed the data. This encompassed

tasks such as cleaning empty data, addressing missing values, normalizing the

data, and partitioning the dataset into training and testing sets. For this phase I

used the Scikit-Learn library.

4. Modelling: After processing the data, the model was built. TensorFlow and

Keras came in hand to build the ML model. I defined the model, selected the

optimizer and compiled the model.

5. Model training: The training of the model was conducted using the training

dataset. I used the optimization algorithms to update the model weights through

the training data. Our model learns from the training set.

6. Model Evaluation: Following the training phase, an evaluation of its performance

was conducted. Model evaluation methods were employed to gauge its

effectiveness in accurately identifying fraudulent transactions.

5

1.2. Existing system

The pertinent literatures present various Machine Learning approaches for credit

card fraud detection, including methods such as Extreme Learning Method, Decision

Tree, Random Forest, Support Vector Machine, Logistic Regression, and XG Boost.

However, these methods have been associated with low accuracy rates. In the year 2020

alone, there were approximately 393,207 reported cases of credit card fraud out of

around 1.4 million identity theft reports. Starting from that year, Credit Card Fraud

(CCF) emerged as the second most prevalent type of identity theft, closely following

government document frauds and kleptocracy [1] . The global economy incurred a

staggering cost of 24.26 million dollars due to card theft in the previous year. With

credit card fraud accounting for 38.6% of reported losses in 2018, it is evident that the

United States is particularly susceptible to identity theft [2].

1.3. The proposed system

DL algorithms are applied everywhere: in computer networks, banks, mobiles,

medical discoveries, malware, location tracking etc. In this model I seek to identify

thefts happening with credit cards in the banking institutions. A number of DL

algorithms is used to identify CCF, however in this model I have decided to choose

CNN model and its layers to detect the thefts, as well as the normal transactions in the

set of data.

To address the imbalance in CCF data, a transformation was applied to create a

balanced dataset by excluding non-fraudulent transactions from the original dataset.

6

The Convolutional Neural Network (CNN) model, featuring a layered architecture,

was then employed on this balanced dataset to assess the proposed model. The CNN

layers demonstrated a sequential architecture that resulted in training and validation

accuracy exceeding 90%.

7

CHAPTER 2

REQUIREMENT SPECIFICATIONS

2.1. Credit card fraud

Credit card fraud (CCF) involves the unauthorized use of credit card or account

details by someone other than the rightful owner, leading to illicit transactions. Fraud

can occur when a credit card is lost, stolen, or forged. Additionally, fraudulent activities

can take place even without the physical presence of a card, such as through the use of

credit card numbers in e-commerce transactions, a trend that has become more prevalent

with the rise of online shopping [3]. The surge in fraud cases, including CCF, can be

attributed to the growth of e-banking and various online payment platforms.

In the current era dominated by online payments, detecting CCF has become a

crucial objective. This is particularly significant as society will gradually transition

toward a cashless culture. With the decline of traditional payment methods, businesses

must adapt to these changes to remain relevant. Incentives, such as premiums for credit

and debit card payments, are encouraging customers to move away from cash

transactions. Consequently, companies need to update their financial systems to

accommodate a variety of payment methods. The anticipation is that this situation will

become more critical in the coming years.

8

Figure 1.Apple’s Fraudulent Statistics in 2022 [Apple.com]

The goal of supervised CCFD is to establish a Machine Learning model using

historical credit card payment data. This model should possess the capability to

distinguish between fraudulent and legitimate transactions, enabling it to assess the

authenticity of incoming transactions. Critical considerations in this endeavor include

the system's response time, cost sensitivity, and feature preprocessing [4] .

Machine Learning (ML), within the realm of artificial intelligence, involves

utilizing computers to make predictions based on patterns observed in historical data. In

the context of CCFD, the application of ML is pivotal for developing an effective and

accurate system that can identify and mitigate fraudulent transactions.

9

2.2.1. Hardware requirements

 Hard Disc: 500GB

 RAM: 4 GB and above

 Processor: I3 and above

2.2.2. Software requirements

 Operating System: Windows 10 (64 bit)

 Software: Python

 Tools: Anaconda

2. 3. Used technology

 Python

 Deep Learning

2.3.1. Python

Python is a high-level, general-purpose programming language that enjoys

widespread usage. Designed with a focus on simplicity, its syntax allows programmers

to express concepts in a concise and clear manner.

10

One of Python's notable advantages is its ability to facilitate a rapid coding

process, allowing developers to achieve more in fewer lines of code. This characteristic

not only enhances the efficiency of coding but also promotes seamless system

integration. Overall, Python stands out as a versatile and user-friendly programming

language.

Utilization in Various Fields:

 Employed in web development, specifically from the server side.

 Widely used in software development processes.

 Applied in mathematical computations and analyses.

 Utilized for system scripting purposes.

Python applications:

 Python finds utility in server environments for building web applications.

 It has the capability to create workflows when combined with suitable software.

 Python is adept at interfacing with database systems and can proficiently read

and modify files.

 Handling large datasets and executing intricate mathematical operations are

among Python's strengths.

 It serves purposes ranging from rapid prototyping to the development of

production-ready software.

Reasons for choosing Python:

 Python exhibits cross-platform compatibility, running seamlessly on Windows,

Mac, Linux, and even Raspberry Pi.

11

 Its syntax is straightforward, resembling the English language, making it user-

friendly for developers.

 Python's syntax efficiency enables the creation of programs with fewer lines

compared to other programming languages.

 Python operates within an interpreter system, facilitating immediate code

execution and expediting the prototyping process.

 Distinguishing itself from other languages, Python concludes commands with

new lines instead of semicolons or parentheses.

Python is interpreted:

 Python is one of the most popular interpreted languages, meaning that it runs the

code line by line and the command is carried out without first translating the

source code into machine code.

 This allows for a faster development cycle, since the code is directly written and

executed with no intermediate steps. Even if there is an error at the bottom of the

code it will still produce an output up until the line of the program is correct and

then it will stop and generate and error statement.

 One potential drawback of interpreted languages lies in execution speed, with

programs compiled in the native language of the computer processor typically

running faster than interpreted ones.

 Despite its syntactical simplicity, Python accommodates constructs anticipated

by a high-level language. This includes support for complex and dynamic data

types, structured and functional programming, as well as object-oriented

programming.

12

2.3.2. What is Deep Learning

Deep Learning stands out as a specialized branch of Machine Learning,

employing supervised, unsupervised, or semi-supervised learning techniques to glean

insights from data representations. Its architecture bears a striking resemblance to the

intricate workings of the human nervous system, featuring a complex network of

interconnected computing units that collaborate harmoniously to process intricate

information [5]. It's worth noting that Machine Learning operates on the premise that

machines can acquire knowledge from data. Deep Learning, in turn, elevates Machine

Learning to a more advanced and sophisticated level.

Deep Learning encompasses various facets, including:

 Multiple levels of hierarchical layouts

 Neural networks with many layers

 The training of expansive neural networks.

 Application of multiple nonlinear transformations.

 Proficiency in pattern recognition.

 Capability for feature extraction.

 Establishment of high-level data abstraction models.

An artificial neural network (ANN) represents a technique within artificial

intelligence aimed at guiding computers to process data in a manner reminiscent of the

human brain. Positioned as a subset of machine learning, ANN serves as the

foundational framework for deep learning. It relies on a layered structure comprising

interconnected neurons or nodes, closely mirroring the intricate organization of the

human brain [6]. ANN is composed of four main parts, being: neurons, nodes, input and

output.

13

Neurons

 Artificial neural networks are structured with layers of neurons, where each

neuron functions as a computational unit, processing information through weighted input

parameters. The neurons individually weigh the inputs, sum them up, and then pass the

result through a nonlinear function to generate the output. Each layer of neurons is adept

at detecting specific information, such as identifying edges in images or locating tumors

in the human body. Employing multiple layers of neurons enables the network to

uncover additional insights about the input parameters.

Nodes

 An artificial neural network is a network of interconnected nodes, resembling the

layered structure of neurons in the brain. Each circular node signifies an artificial

neuron, and arrows represent connections from the output of one neuron to the input of

another. Inputs are initially transmitted to the first layer, where individual neurons

receive specific input values. Subsequently, these values are used to compute a product

based on their respective weights and interactions.

Results

 The outcomes from the first layer are sequentially forwarded to the second layer

for further processing. This iterative process continues until the final output is generated.

After each iteration of passing data through the network, the resulting output is

compared to the correct one, and adjustments are made to the values of the nodes until

the network consistently produces the correct final output. This iterative learning process

enhances the network's ability to approximate desired outputs over time.

14

2.3.2.1. Convolutional Neural Network (CNN)

The pivotal moment for neural networks occurred in 2012 during the annual

computer vision Olympics, when CNNs were employed, reducing the classification error

rate from 26% to an impressive 15%. This marked a significant improvement at that

time and sparked widespread interest in neural networks [7]. Since then, numerous

companies have incorporated machine learning (ML) at the core of their services.

Prominent examples include Facebook utilizing neural networks for auto-tagging

algorithms, Google relying on them for image search, Amazon employing them in

product recommendations, Pinterest leveraging neural networks for home feed

personalization, and Instagram integrating them into their search infrastructure [8].

While CNNs find application in various domains, their classic and most popular use case

is often associated with image processing, particularly in image classification.

2.3.2.2. Image classification

Image classification refers to the process of taking an input image and

determining its class or providing a probability distribution across various classes that

best characterize the image. For humans, this cognitive ability is one of the earliest skills

acquired, developing naturally and effortlessly from birth and becoming second nature

as adults. Without conscious effort, we possess the capability to swiftly identify our

surroundings and the objects within them. These abilities, such as rapid pattern

recognition, generalization from prior knowledge, and adaptation to diverse image

environments, set us apart from machines. The innate capacity to quickly recognize

patterns and make sense of visual information underscores the human ability to navigate

and understand the visual world.

15

Figure 2. CNN image classification [Neural Network from scratch, Victor Zhou (2007)]

Input and Output

 When a computer processes an image as input, it perceives it as an array of pixel

values. The size of this array is determined by the resolution and dimensions of the

image, often represented as a set of numbers such as 32 x 32 x 3, denoting RGB values.

For instance, in the case of a colored JPG image with dimensions 480 x 480, the

corresponding array would be 480 x 480 x 3. Each numerical value in this array, ranging

from 0 to 255, signifies the intensity of the pixels at that specific point. While these

numerical values might seem arbitrary to us, they constitute the sole input available to

the computer.

In essence, the primary concept involves presenting the computer with this array

of numbers, and in return, it produces numerical outputs that indicate the probability of

the image belonging to a particular class. The computer, through the process of image

classification, translates pixel information into meaningful predictions about the content

or category of the given image.

16

2.3.2.3 Biological connection

 The foundational principles of CNNs, draw inspiration from the workings of the

visual cortex in the human brain. The visual cortex comprises small cell areas that

exhibit sensitivity to specific regions of the visual field. This concept traces back to a

pivotal experiment conducted in 1962, where it was unveiled that individual neuronal

cells in the brain exhibited distinct responses to the presence of edges with specific

orientations. For instance, certain neurons reacted to vertical edges, while others

responded to horizontal or diagonal edges [9].

The manner in which CNN works is that it starts with an input image, which is a grid of

pixel values. Then it goes through convolutional layers, nonlinear activation, pooling

layers, fully connected layers and the output one.

2.3.2.4. First Layer – Convolutional layer

 In a Convolutional Neural Network (CNN), the first layer is typically the

convolutional layer, responsible for processing the input, which is a collection of pixel

values representing an image. Convolution involves the movement of a filter (or kernel)

across the image, conducting mathematical operations to extract features. Each

convolutional layer captures distinct aspects and patterns of the input image.

To grasp how a convolutional layer works, we imagine a flashlight shining in the

upper left corner of the image, covering a 5 x 5 area. This flashlight that serves as a filter

or kernel, slides across the entire image, and the area it illuminates is referred to as the

receptive field. The filter is essentially a set of numbers called weights or parameters,

and its depth must match the depth of the input; for instance, a 5 x 5 x 3 filter for a

colored image (RGB channels).

17

At each position, the filter multiplies its values by the corresponding pixel values

of the image, and the results are summed up to produce a single representative value.

This process repeats as the filter moves right, pixel by pixel, until it covers the entire

image. Each position of the filter produces a value, and collectively, these values form a

28 x 28 x 1 activation map or feature map. The size of 28 x 28 is derived from the fact

that a 5 x 5 filter can fit into a 32 x 32 input image in 784 different positions. If multiple

filters, such as two 5 x 5 x 3 filters, are used, the output volume becomes 28 x 28 x 2.

Employing more filters enables the CNN to recognize more complex features than when

using a smaller number. This flexibility allows the network to identify not only edges or

simple shapes but also more intricate patterns within the input image.

First layer – High level perspective

 When discussing simple characteristics that are common to all images, such as

straight edges, solid colors, and curves, each applied filter in a CNN can be viewed as a

feature identifier. For instance, let's consider a hypothetical scenario where the first filter

is designed to be a 7 x 7 x 3 curve detector. In the context of being a curve detector, this

filter is essentially a pixel structure with higher numerical values positioned in an

arrangement that corresponds to the shape of a curve.

Figure 3. Curve detector filter [The Artificial Neural Networks handbook, 2018]

18

As the filter slides across the image during the convolution process, it identifies

and responds to regions in the image that exhibit a curve-like pattern. The areas with the

highest numerical values in the filter align with the presence of curves in the input

image. When this filter is utilized in the upper left corner of an image, it aggregates the

results of the multiplications between the values of the filter and the corresponding pixel

values of the image within that specific area.

To illustrate, let's consider an image earmarked for classification, and we

position the filter in the upper left corner of this image.

Figure 4. Visualizing the filter on the image [The Artificial Neural Networks handbook,

2018]

To classify the image, the essential step involves multiplying the values of the

filter by the original pixel values of the image.

19

Figure 5. Multiplication and summation of filter values [The Artificial Neural Networks

handbook, 2018]

In essence, in the input image, if there exists a shape resembling the curve

represented by that filter, the total sum of the multiplications will yield a substantial

value.

Figure 6.Image shape not resembling the filter curve [The Artificial Neural Networks

handbook, 2018]

As evident, the value is notably low, indicating that there was no corresponding

pattern in the image section for the curve detector filter. The output of this convolutional

layer manifests as an activation map. In a simple scenario like rotation using a filter, the

activation map reveals areas in the image where curves are likely present. In this specific

20

example, the upper left value in the 26 x 26 x 1 activation map (due to a 7 x 7 filter

instead of 5 x 5) is 6600. This high value suggests the probable existence of a curve in

the image that triggered the filter. Conversely, the value on the right of the activation

map is 0, indicating the absence of curves in that part of the original image, preventing

the filter from activation.

This example involves only one filter designed to detect lines curving outward

and to the right. To enhance feature detection, additional filters can be introduced, which

increment the depth of the activation map, providing more comprehensive information

about the input volume.

Denial

The filter I elucidated in this section was simplified primarily to illustrate the

processes involved in convolution. In the image below, I will exemplify actual

visualizations of the first layer convolution filters in a trained network. These filters in

the initial layer traverse around the input image and become activated when they identify

the specific feature, they are designed to detect within the input volume.

Figure 7. Visualization of first layer conversion filter [Heritage Image Classification by

Convolution Neural Networks, Le Van Linh]

21

2.3.2.5. Deeper in the network

In the conventional architecture of Convolutional Neural Networks, there are

additional layers interconnected amid the convolution layers. These layers introduce

nonlinearities and facilitate dimension preservation, contributing to the overall

robustness of the network. A typical CNN architecture would exhibit the following

structure:

Figure 8. Classic CNN architecture [Convolution Neural Networks, Manh-Tu-Vu]

The filters in the convolution layer, which is the initial one, are specifically

crafted to detect low-level features such as edges and curves. However, to predict

whether an image contains a certain object, the network must be capable of recognizing

higher-level features [10]. This necessitates the inclusion of additional layers. In the

example above, when another convolution layer is applied, the output of the first

convolution layer serves as the input for the second convolution layer. Therefore, each

input layer essentially describes the image location where certain low-level features

appear. When a set of filters is applied, they generate activations representing high-level

features. These features could manifest as semicircles or squares, for instance.

 As we traverse through the network and multiple convolution layers, the output

consists of activation maps that progressively represent increasingly complex features.

It's noteworthy that, with the deepening of the network, the filters start to possess a

larger receptive field. This implies that they can take into account information from a

broader area compared to the original input volume. Consequently, these filters become

more receptive to a larger region of pixel space, enabling them to capture and understand

more extensive contextual information in the images being processed.

22

2.3.2.6. Fully connected layers

This layer integrates information from various parts of the image to make high-

level decisions. It takes as input the output of the convolution layer and pooling layer,

generating an N-dimensional vector as output, where N corresponds to the number of

classes the program needs to choose from. For instance, in a digit classification program

with 10 digits, N would be 10. Each element in this N-dimensional vector represents the

probability of a particular class. For example, if the vector resulting from a digit

classification program is [0.1, 0.1, 0.75, 0, 0, 0, 0, 0, 0, 0.05], it signifies a 10%

probability for being 1, a 75% probability for being 2, and a 5% probability for being 9.

The functioning of this fully connected layer involves examining the output of the

preceding layer and identifying which features are more closely associated and relevant

to a specific class.

Figure 9. Fully connected CNN scheme [Analytics, Vidhya (2019)]

2.3.2.7. Training (what makes the model work)

 Before a Convolutional Neural Network (CNN) begins, the weights and filter

values are initially random, lacking knowledge on how to identify specific features like

23

edges, curves, paws, or beaks. Similar to the process of children learning object labels

by exposure to different images, the training of CNNs involves a dataset with thousands

of images of various objects, each labeled with its corresponding category.

The backpropagation process can be broken down into four distinct stages:

forward pass, loss function, back pass, and weight update. During the forward pass, a

training image, represented as a 32 x 32 x 3 set of numbers, traverses through the entire

network. In the initial training example, with randomly initialized weights and filter

values, the output is a result that doesn't prioritize any particular number, resembling

something like [.1, .1, .1, .1, .1, .1, .1, .1, .1, .1]. At this stage, the network lacks the

capability to recognize low-level features, making it incapable of forming a conclusion

about the image classification.

The process moves on to the loss function during backpropagation, where the

training data, consisting of an image and its corresponding label, comes into play. For

instance, if the label for the first training image is 3, the image label would be

represented as [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]. Various methods exist for defining a loss

function, with Mean Squared Error (MSE) being the most common. The loss function

helps quantify the disparity between the predicted output and the actual label, guiding

the network in adjusting its weights and filters during the subsequent stages of

backpropagation to enhance its performance.

Figure 10. Loss function

The initial set of training images typically incurs a higher loss. The objective is

to ensure that the output of the convolutional network deviates from the training label.

24

Figure 11. Minimizing the loss [Mathematics Stacks, 2020]

The objective is to execute a backward pass through the network, identifying

which weights contributed the most to the loss, and devising adjustments to minimize

the loss. Subsequently, after calculating this derivative, the final step involves updating

the weights.

Figure 12. Very high learning rate [Mathematical Stacks, 2020]

The sequence of backpropagation constitutes a training iteration, the aim of

which is to optimize the layer weights effectively, ensuring accurate convergence and

improved model performance.

25

How do companies use CNN?

 Companies dealing with substantial datasets possess an inherent advantage over

their competitors. The abundance of training data allows for a greater number of training

iterations, enabling more weight updates and resulting in a better-tuned overall network.

For instance, Facebook and Instagram have access to billions of user photos, Pinterest

can leverage information from its 50 billion pins, Google can utilize search data, and

Amazon can tap into data from the millions of products purchased daily [11]. The scale

and diversity of these datasets empower these companies to train and optimize their

networks effectively.

26

CHAPTER 3

THESIS’ SPECIFICS

3.1. Analysis constraints

 Constraints as informal text - Informal text serves as constraints during the

analysis.

 Operational constraints - Constraints pertaining to operations and functionality.

 Constraints integrated into existing model concepts - The assimilation of

constraints into pre-existing model concepts.

 Treating constraints as a distinct concept - Considering constraints as an

independent and separate element.

 Constraints implied by the Model Structure - Constraints that are implicitly

suggested by the structure of the model.

3.2. Design constraints

 Determining the classes involved

 Determining the objects involved

 Determining the actions involved

 Determining the claim clauses

 Global operations and realization of constraints

27

3.3. Application constraints

A hierarchical arrangement of relationships may lead to an increased number of

classes and a more intricate implementation structure. Therefore, it is recommended to

streamline the hierarchical structure into a simpler alternative, such as the conventional

flat structure. The latter is characterized by greater decentralization, where decision-

making authority is dispersed across the organization. Transforming the hierarchical

model into a bipartite, flat structure, comprising classes and straightforward

relationships, is relatively straightforward. At the design stage, flat relationships are

favored for their simplicity and ease of implementation. Such relationships align with

the relational concept found in entity-relationship modeling and are compatible with

numerous object-oriented methods.

3.4. Performance requirements

The application manages and interacts with two primary generic components:

 Integrated browser responsible for navigation and Internet access

 Server level: The server houses the core functionalities of the architecture of the

paradigm, comprising the following components at this level: a web server,

security module, server-side capture engine, preprocessing engine, database

system, validation engine, and output module [12].

28

3.5. Security requirements

 The software constitutes a crucial component of a security system, making its

integrity critical. Issues related to its integrity level can be of significant

concern.

 If both a system and its program are at a high integrity level, it is essential for

the hardware to match that same level of integrity.

 Building flawless code in any language is futile if the hardware and software

lack reliability.

 A computer system intended to run high-integrity level software should not

concurrently support software of a lower integrity level.

 The highest required integrity level should be enforced across all systems within

the same environment.

 Systems with distinct security requirements should be kept separate.

29

CHAPTER 4

ARCHITECTURE

4.1. Architecture diagram

Figure 13. Architecture diagram

The image input refers to the screen that will be used, so the conversion filter.

30

4.2. Use–Case diagram

The use-case diagram serves to visually represent the functionalities offered by a

system concerning the actors, their requirements, and any dependencies among these use

cases. It comprises two main components:

 The use case, depicted as a horizontal ellipse, delineates a sequence of actions

that yield value to an actor.

 An actor, which can be an individual, organization, or external system, assumes a

role in one or more interactions with the system.

Figure 14. Use-Case Diagram

31

4.3. Activity diagram

The activity diagram provides a visual representation of activity workflows and

step-by-step actions, incorporating features like choice, iteration, and concurrency. This

diagram offers an overview of the control flow and includes various shapes, such as:

 Rounded rectangles, symbolizing activities.

 Diamond shapes, denoting decision points.

 Bars, indicating the initiation or conclusion of concurrent activities.

 Black circles, signifying the initiation of a workflow.

 Plain circles, representing the ending of a workflow.

Figure 15. Activity diagram

32

4.4. Collaboration diagram

A collaboration diagram illustrates the relationships and interactions among

objects within a software system. It illustrates the messages that are sent between

classes and objects. These diagrams identify each object's functionality and show

how a particular use case behaves.

Figure 16. Collaboration diagram

33

CHAPTER 5

MODULES

5.1. Modules

 Data collection

 Algorithms comparison

 Discoveries

5.2. Comparison among different algorithms

In my analysis I considered and evaluated several classifiers in order to determine

their effectiveness in detecting fraudulent transactions. The models that I considered

included:

o Random forest

o Gradient Boosting

o K-nearest neighbor

o Support Vector Classifier

o Logistic Regression

Random Forest and Gradient Boosting are often preferred for classification tasks,

such as credit card detection, as a result of their adaptive ability to different datasets.

Logistic Regression is a common choice for simple binary classification tasks.

34

K-Nearest Neighbors (KNN) is useful for a simple approach and does not require

model training, however it poses difficulty for new data arrivals and performs poorly on

large datasets.

Support Vector Classifier (SVC) is used on datasets with a distinct separation

between classes, but it needs good calibration on hyper parameters.

Convolutional Neural Network (CNN) are mainly used for the analysis of complex

data structures and they are more suitable for datasets that contain images or structured

information.

5.2.1 Followed steps for comparing the algorithms

1. Initially I imported the libraries.

Figure 17. Libraries importing in Jupyter for comparison between models

35

2. Then I built the models for each of the algorithms

Figure 18. Building the model for Random Forest and Gradient Boosting

36

Figure 19. Building the model for KNN and Logistic Regression

37

3. Then I trained the models.

Figure 20. Training the models with training sets

4. I split the dataset into training and testing sets.

Figure 21. Dividing the dataset into training and testing sets

5. The accuracy of the models’ results was then calculated and displayed.

Figure 22. Displaying the models’ accuracy

38

5.2.2 Comparison’s result

Each algorithm in general has its own advantage and disadvantage, and their

performance varies on the nature of data and what is aimed to be studied with them.

However, given that with CNN, an accuracy of 98% was attained through different

training epochs, it’s worth stating that the CNN algorithm that I decided to work with, is

the most suitable and effective one in the context of fraudulent transaction detection.

5.3 Collecting the dataset

The CNN model's deep learning (DL) algorithm underwent modifications through

the addition of extra layers for feature extraction and the classification of credit card

transactions as either fraudulent or not. The primary objective of this model is to detect

fraudulent transactions utilizing deep learning algorithms. In the initial phase, the

unbalanced CCF numeric dataset is converted into a balanced dataset by eliminating

non-fraudulent transactions. In real-world transactions, the imbalance between

fraudulent and normal classes is inherent to the nature of the problem. The proposed

model employs a convolutional neural network with a 14-layer architecture on the

balanced dataset to validate its effectiveness. This architecture achieved training and

validation accuracies of 94.6% and 95.8%, respectively.

Distinctively from traditional neural networks that rely on multiplications of

matrixes, convolutional networks employ a Convolution technique. In mathematical

terms, this method is an operation on two functions, producing a third one that

demonstrates how the shape of one function is modified by the other.

39

5.4 Layers in the CNN

In the CNN model, six distinct layers have been defined: the input layer,

Convolutional layer (Convo layer), Pooling layer, Fully Connected layer, SoftMax

(logistic layer), and the output layer. The input layer comprises of image data,

represented by three-dimensional matrices that are transformed into a single column.

The Convolutional layer serves as the feature extraction layer, and the Pooling layer

diminishes the spatial volume of the input image, making it computationally efficient.

The subsequent layer is the Fully Connected layer, involving weights, biases, and

neurons to establish connections between different layers' neurons. Through training,

this layer classifies photos into multiple categories. Finally, the logistic layer is utilized

for binary classification, assigning a label of 0 to the normal class and 1 to the abnormal

class.

Given the typical imbalance between fraudulent and normal classes, the initial

step involves transforming the unbalanced CCF data into a balanced dataset by

excluding non-fraudulent transactions. The proposed model comprises 14 layers: a

convolutional layer with a 32 x 2 kernel size and a ReLU activation function, followed

by a group normalization layer and a dropout layer with a dropout rate of 0.2. Another

convolutional layer follows with a 64 x 2 kernel size and a ReLU activation function,

accompanied by a batch normalization layer and a dropout layer with a 0.5 dropout rate.

This sequence is repeated with an additional layer where only the dropout layer changes

to 0.25. Three more dense layers are included, with the first having an activation

function of 100, the second with 50, and the third with a ReLU of 25. Finally, a dense

layer for classification with a sigmoid activation function is appended. After 100

iterations, the accuracy exceeds 90%.

40

CHAPTER 6

CODING

6.1. Coding

After finalizing the design aspect of the system, the next steps involve coding

and testing. The coding phase transforms the conceptual system design into operational

reality by translating it into code using a specific programming language. For this

reason, an efficient coding style is required that whenever new changes are made, it

easily adapts them to the system.

6.2. Coding standards

Coding standards consist of programming guidelines that prioritize the visual

structure and presentation of the code. They are designed to enhance code readability,

comprehension, and maintainability. During the coding phase, the developed plan from

the design phase is implemented, and adherence to coding standards becomes crucial.

The specifications of the coding should enable any programmer to comprehend it easily

and make necessary modifications when required. Some essential standards to achieve

the aforementioned objectives include:

1. Simplicity and clarity

2. Naming conventions

3. Value conventions

4. Writing and commenting standard

5. Message box format

6. Exceptions and error handling

41

6.2.1. Writing and commenting standard

Scriptwriting is a process in which indentation is highly important in order to

make the code readable and easy to understand. Conditional and loop statements should

be matched properly to facilitate understanding. Comments are also included to better

know what to expect when running the code.

6.2.2. Message box format

When requesting information from the user, it is essential that the user can easily

understand the messages presented to them. To achieve this, a specific format has been

established for displaying messages, as outlined below:

 X – The user has performed an illicit operation

 ! – Denotes messages containing important information for the user

42

CHAPTER 7

DATA AND CODE PREPARATION

7.1. Dataset description

The dataset comprises transactions made by European citizens using credit cards

over a span of two days, with a total of 284,807 transactions, including 492 instances of

fraud. Notably, the data exhibits significant imbalance, as the positive class (fraudulent

transactions) constitutes only 0.172% of the entire dataset. Key characteristics of the

dataset include:

 Only numeric data variables resulting from Principal Component Analysis (PCA)

transformation, denoted as columns V1, V2, … V28. PCA transformation was

applied to reduce the dimensionality of the numeric dataset while still preserving

its information.

 Due to confidentiality constraints, the original features of the data are

undisclosed.

 Attributes that include "time" (representing seconds elapsed since the first

transaction) and "value" (sum of transactions, indicating cost dependency).

 The "class" attribute functions as the dependent variable, assuming a value of 1

for fraud and 0 for normal transactions.

43

Figure 23. The dataset used for the model [Kaggle, 2013]

In order to explore this dataset, a PCA transformation has been conducted in order to

reduce its large dimensions into a more understandable one.

44

Figure 24. Exploring the dataset after PCA transformation

7.2. PCA and its components

As aforementioned PCA was used in my dataset. This principal component

analysis is a dimensionality reduction method, which is often used to reduce the

dimensions of large datasets, by transforming tedious sets of variables into smaller ones

that still preserve the initial data sets’ main information.

By having a more manageable number of variables, it can be easier for the data

to be handled and tackled with a view to processing it. Also, smaller sets are more

manageable to explore and visualize by making so the analysis of the data points much

easier and faster for machine learning algorithms. In general terms, the idea of PCA

revolves around the reduction on the number of variables of a group of data, by

simultaneously storing as much information as possible [2].

45

Principal components are new variables created by combining or blending the

original variables in a linear fashion. These combinations are designed to ensure that the

new variables are uncorrelated, while retaining most of the information from the original

variables. For instance, in a scenario with 10-dimensional data, 10 principal components

are generated. However, the goal of PCA is to maximize the information stored in the

first component, followed by the maximum remaining information in subsequent

components, until it approximates the illustration shown in the chart below.

Figure 25. Principal components [builtin.com]

The organization of the information in the principal components in such a way

allows to bring down the dimensionality without losing too much information, by

removing low-information components and by considering the remaining ones as new

variables. Since there are as many principal components as there are variables in the

dataset, these components are designed to ensure that the first one captures the highest

variance.

46

Geometrically, principal components represent the directions within the data that

reveal the highest variance. The connection between variance and information is

evident: a line with greater variance accommodates a wider spread of data points along

it, signifying richer informational content. In essence, principal components act as new

axes that offer the optimal perspective to analyze and interpret the data.

7.2.1. Handling the unbalanced data

Before working with the dataset, I handled the imbalanced data as follows:

Figure 26. Handling the unbalanced data

Nevertheless, Principal Component Analysis and Imbalanced Data Handling, are

two distinct concepts in Machine Learning and data analysis.

Imbalanced data arises when the classes within a dataset are not evenly

distributed, meaning that one class may have notably more instances than another. Such

47

an imbalance can result in biased models that exhibit poor performance, particularly in

the minority class. Addressing this imbalance involves employing various techniques,

including sampling methods such as minority class sampling and majority class

subsampling, generating synthetic samples, utilizing alternative evaluation metrics like

F1 score, precision, and recall, or using specialized algorithms designed to handle

imbalanced data, such as Random Forest with class weights or gradient boosting.

So in principle, PCA and unbalanced data handling serve distinct purposes: PCA

primarily focuses on dimensionality reduction, while methods for handling unbalanced

data aim to address issues related to class imbalance in classification tasks.

7.2.2. Applying PCA to my dataset

To perform principal component analysis on the balanced dataset, after handling

their imbalance, I followed these steps:

o Features and target separation, which helped in distinguishing the independent

variables from the target one.

o Variable standardization: this helped to ensure that all features contributed

evenly in the analysis. Standardization means scaling the features to have a mean

of 0 and a standard deviation of 1.

o Application of PCA after the features were standardized, to reduce the

dimensionality.

48

Figure 27. Coding for applying PCA

After having applied PCA on my dataset, a validation process was performed so

as to confirm it was correctly applied. Firstly, PCA calculated the explained variance

ratio for each principal component.

Figure 28. Validating PCA through the explained variance ratio

49

The outputted values 0.37762436, 0.0992584, 0.07113154 and 0.05375999 represent the

explained variance ratio for each principal component.

First principal component (PC1): the value 0.37762436 demonstrated that the

first principal component explained approximately 37.76% of the total variance in the

original dataset, which meant that only 37.76% of the variability in the data could be

captured by this single component.

Second principal component (PC2): the value 0.0992584 demonstrated that the

second principal component explained approximately 9.93% of the total variance in the

original dataset, meaning that only 9.93% of the variability in the data could be captured

by this second component.

These two values were essential because they determined how much information

would be stored when the dimensionality of the dataset was reduced by PCA. Based on

these values of the explained variance ratio, I decided on the number of principal

components that I was going to store.

 Secondly, after calculating the explained variance ratio for each principal

component, what followed was the visualization of the principal components. This type

of validation showed how the data had been transformed into the new feature space.

50

Figure 29. PCA visualization

After having done such modifications, first five lines of the transformed dataset

were displayed.

51

Figure 30. The dataset after the PCA application

Table 1. List of available features in the CCFD dataset

No. Characteristic Description

1 Bank account Related to the account

number

2 Ready to buy Balance availability

3 Credit limit Maximum credit capacity

for the user

4 Card number Card number

5 Transaction amount The amount paid by the

buyer

6 Transaction time The time of the transaction

7 Transaction date The date of the transaction

8 Currency code The code of the used

52

currency

9 Merchant category code Merchant category code

10 Merchant number Merchant number

11 Transaction country Country where the

transaction takes place

12 Transaction city City where the transaction

takes place

13 Approval code The request authorization

response, meaning

approved or denied.

Table 2. Data characteristics

No. Feature Description

1 Time Time expressed in seconds

between the current

transaction and the

previous one

2 V1 – V28 attribute These 28 columns show

the PCA results to store

the users’ data

3 Amount Transaction amount

53

4 Binary class label Binary classes, expressed

by 0 for non-fraudulent

classes and 1 for

fraudulent ones

7.3 The steps that were followed to identify the data in the code

The approach that I chose to tackle my topic and to arrange the dataset is composed

of a series of steps, which put together give a much better understanding on how the

banking transactions work, what happens with them and how to eliminate the fraudulent

data. In the following paragraphs I will briefly explain what I have used and the outputs

that have been produced by the created model.

The code builds a Convolutional Neural Network model for fraud detection. CNNs

are a type of ML model commonly used for image and sequence data. In this case they

are applied on the ID data (sequential data). The architecture of the model is defined by

using Keras. It includes convolutional layers with ReLU activation functions, batch

normalization to ameliorate training stability and dropout layers to prevent overlapping.

The final dense layer with a sigmoid activation function is responsible for making binary

predictions (fraudulent or non-fraudulent). The model is then trained up until a certain

time period.

54

Step 1: Library importing

The script initiates by importing essential Python libraries. TensorFlow and

Keras are employed for constructing and training the neural network model.

Additionally, various other libraries, including Pandas, NumPy, Seaborn, Matplotlib,

and Scikit-Learn, are utilized for tasks such as data manipulation, visualization, and

assessing the performance of the constructed model.

Figure 31. Importing libraries in machine learning

Step 2: Data uploading

 The pd.read_csv function is used to upload the CSV file that contains the credit

card transaction data. This data is stored in a Pandas data frame called “data”. The data

contains various attributes linked to the credit card transactions.

Figure 32. Uploading the ML data

55

Step 3. Exploratory data analysis (EDA)

 The script performs basic exploratory analysis of the uploaded numerical dataset

so as to discover patterns and main characteristics.

 Data.info() offers information about the DataFrame, including data types and

non-null numerations

 Data.shape() gives the dimensions of the dataset, in terms of the number of rows

and columns

 Data.describe() summarizes the basic statistics for each numeric column in the

dataset

As aforementioned, after uploading the dataset and the corresponding libraries, I

called “value_counts()” in order to get the total sum of the transactions that fall in each

label category, where it resulted that there were 492 fraudulent ones and 284315 normal

transactions.

Figure 33. Exploratory data analysis EDA

In the cases when the class imbalance is a problem (i.e. different classes have

different numbers of examples), it is important to balance to group of data. The minority

56

class, being the one of fraud transactions, is randomly selected by selecting an equal

number of non-fraudulent transactions. This balancing step helps to prevent the model

from being biased towards the majority class.

Step 4: Data preprocessing

 Preparing the data is a pivotal stage in machine learning, involving tasks such as

distinguishing between features and labels, partitioning the data into training and testing

sets, and implementing feature standardization. The standardization process is crucial for

ensuring uniform scales across all features, facilitating the model's effective learning of

patterns.

Figure 34. Training the data through a supervised learning method.

57

The trained model generates predictions to assess its accuracy, quantifying the

number of true positives, true negatives, false positives, and false negatives through the

use of a confusion matrix.

This is the output produced:

Figure 35. Confusion matrix

58

Figure 36. Output of confusion matrix

The model continues to get trained up until a certain time period in order to improve the

logistic regression.

Figure 37. Model training

It outputs a changed confusion matrix.

59

Figure 38. Changed confusion matrix

The process continues and the weights are updated again and this produces a new output.

Figure 39. Updating weights in confusion matrix

60

Model evaluation:

 To assess the model's performance, the script visualizes learning curves,

providing insights into how accuracy and training loss evolve over time.

 The accuracy of the model on the training data is scrutinized to gauge its

effectiveness in learning from the training set.

 A confusion matrix is computed on the test data, offering a breakdown of true

positives, true negatives, false positives, and false negatives predicted by the

model.

 The script calculates "precision" and "recall," pivotal metrics for appraising

binary classification model performance. Leveraging the Scikit-Learn metrics

library, "precision" quantifies the accuracy of positive predictions, while "recall"

gauges the model's ability to capture actual positive cases.

 Individual prediction: the script shows how to make predictions for an individual

transaction. It scales the features of the transaction and feeds them to the trained

model to classify it as a fraudulent transaction or not.

61

CONCLUSIONS

Studying fraudulent data using Python and Machine Learning can bring about many

important conclusions for the identification and prevention of such illicit activities. This

type of analysis consists of several different steps, being:

 Data preparation

 Data exploration: refers to the analysis of the frequencies and the variables to

understand the characteristics of the data. This allows the identification of any

patterns emerging from the data.

 Choosing the model: choosing the proper model is very important. Models like:

Random Forest, Support Vector Machines (SVM) and Neural networks are often

used to identify dangerous schemes.

 Handling fraudulent data: in the case of fraudulent data in the dataset, different

approaches can be followed to handle them. Deleting rows, columns or other

methods can be helpful to solve this issue.

 Modeling and uncertainty handling: uncertainty can be handled with various

modeling methods, including cross-validation and hyperparameter research to

ensure a good model.

Conclusions about this model:

 Essential factors influencing the performance of the fraud detection model

include credit card fraud detection itself, the number of features, the number of

transactions, and the correlation between features.

 Deep learning (DL) methods, specifically Convolutional Neural Networks

(CNN) and their associated layers, are traditionally linked with text processing

and form the core of the model. Leveraging these methods for credit card fraud

62

detection has demonstrated superior performance compared to conventional

algorithms.

 Using Convolutional Neural Network in this project for the detection of

deceitful transactions demonstrated that we have explored a very accurate

machine learning method.

Preventing fraudulent transactions:

 There are some actions that can be taken in order to reduce the high levels of

fraudulent transactions, like:

 Identity verification: requiring a strong identity verification process for the users,

including two-factor authentication.

 Urge users to regularly change and refresh their passwords.

 Activity monitoring: by setting up a monitoring system for users’ activity it can

detect suspicious and unusual activity.

 Use advanced technology and analytics to identify suspicious transaction

patterns.

 Risk analysis: use risk analysis technology to evaluate the potential level of

threat for each transaction. Also, by being aware of possible credit card usage

patterns that are common for fraudulent transactions.

63

REFERENCES

[

1

]

A. Kaleel, "Research Gate," 6 December 2023. [Online]. Available:

https://www.researchgate.net/publication/377417277_Credit_Card_Fraud_Detection_

and_Identification_using_Machine_Learning_Techniques.

[

2

]

H. A. Lynne J Williams, "Research gate," 24 July 2010. [Online]. Available:

https://www.researchgate.net/publication/227644862_Principal_Component_Analysis.

[Accessed 25 January 2024].

[

3

]

S. G. Vaishnavi Nath Dornadula, "Research gate," 12 January 2019. [Online].

Available:

https://www.researchgate.net/publication/339543849_Credit_Card_Fraud_Detection_

using_Machine_Learning_Algorithms. [Accessed 25 January 2024].

[

4

]

Y. Z. C. H. Yong Fang, "Research gate," 16 January 2019. [Online]. Available:

https://www.researchgate.net/publication/336062599_Credit_Card_Fraud_Detection_

Based_on_Machine_Learning. [Accessed 26 January 2024].

[

5

]

A. B. Said Jadid Abdulkadir, "Research gate," 14 July 2019. [Online]. Available:

https://www.researchgate.net/profile/Abdullateef-

Balogun/publication/334319562_Performance_Analysis_of_Feature_Selection_Metho

ds_in_Software_Defect_Prediction_A_Search_Method_Approach/links/5d24782ba6f

dcc2462ce38ca/Performance-Analysis-of-Feature-Selectio. [Accessed 26 January

2024].

[

6

]

P. A. P. B. A. S. G. Bernardo Branco, "Research gate," 14 February 2020. [Online].

Available: https://paperswithcode.com/paper/interleaved-sequence-rnns-for-fraud-

detection. [Accessed 20 January 2024].

[

7

]

B. O. I. B. Samira Douzi, "Research gate," 04 January 2021. [Online]. Available:

https://www.researchgate.net/profile/Samira-

Douzi/publication/350691336_Credit_Card_Fraud_Detection_Model_Based_on_LST

M_Recurrent_Neural_Networks/links/60f18b0ffb568a7098b2a188/Credit-Card-

Fraud-Detection-Model-Based-on-LSTM-Recurrent-Neural-Networks.pdf. [Accessed

01 February 2024].

[O. A. O. E. F. Cartella, "Semantic Scholar," 20 January 2021. [Online]. Available:

64

8

]

https://www.semanticscholar.org/paper/Adversarial-Attacks-for-Tabular-Data:-

Application-Cartella-

Anuncia%C3%A7%C3%A3o/ea33122e1599d9c35323ec2af6a413d125c09a31/figure/

1. [Accessed 15 January 2024].

[

9

]

X. Z. S. R. J. S. Kaiming He, "Research gate," 14 January 2019. [Online]. Available:

https://www.cv-

foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_

CVPR_2016_paper.pdf. [Accessed 20 January 2024].

[

1

0

]

S. S. L. Amol C Adamuthe, "Research gate," 20 December 2020 . [Online]. Available:

https://www.researchgate.net/publication/347901019_Malware_Classification_with_I

mproved_Convolutional_Neural_Network_Model. [Accessed 20 January 2024].

[

1

1

]

J. F. Saeedeh Momtazi, "Research gate," 20 November 2020. [Online]. Available:

https://www.researchgate.net/publication/345896338_Ensemble_of_deep_sequential_

models_for_credit_card_fraud_detection. [Accessed 02 January 2024].

[

1

2

]

H. C. R. Z. Xinyi Hu, "Research gate," 21 September 2019. [Online]. Available:

https://www.researchgate.net/publication/339821451_Short_Paper_Credit_Card_Frau

d_Detection_using_LightGBM_with_Asymmetric_Error_Control. [Accessed 26

November 2023].

65

APPENDIX A

 SOME CODING ELEMENTS

Figure 40. Interpreting the logistic regression model

Figure 41. Interpreting the XGBoost Model

Figure 42. Output of using XGB classifier

66

Figure 43. Performance metrics for fraud detection (the cost of misclassification)

67

Figure 44. Cost of misclassification

And this is the confusion matrix:

Figure 45. Confusion matrix XGB classifier

68

Figure 46. Code for changed cost of fraudulence

Figure 47. Matrix for changed cost

69

Figure 48. Calculating the accuracy score

Figure 49. Output of accuracy calculation

