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ABSTRACT 

 

 

 



THE DETECTION OF FRAUDULENT TRANSACTIONS USING 

MACHINE LEARNING  

Gjoni, Anisa 

M.Sc., Department of Computer Engineering

Supervisor: Assoc.Prof. Dr. Dimitrios Karras

Credit cards are massively used nowadays for internet transactions performed at 

any moment, given that they have offered facilitation both in usage and time. With the 

growing usage of credit cards, there has also been an increase in their misuse capacity. 

Credit card deceits cause considerable financial loss not only for their owners but also 

for the financial companies.   

The main objective of this research study is the identification of the fraudulence 

cases which may include the access of the public data, handling groups of largely 

destabilized data and the adaption to the developing deception models. The 

corresponding literature poses many approaches based on Machine Learning for the 

detection of credit cards, some of which are: Extreme Learning Method, Decision Tree, 

0Random Forest, Support Vector Machine, Logistic Regression and XG Boost.  

However, due to an insufficient accuracy, there is still some need to apply 

deeper algorithms to reduce the loss from fraudulence. For this aim, the main focus of 

this research wok has been the application of “Deep Learning” algorithms. A 

comparing analysis between the two algorithms “Machine Learning” and “Deep 

Learning” was conducted in order to retrieve efficient results. Also, a Machine 

Learning algorithm was applied on the group of data, which improved significantly the 

accuracy of detecting fraudulence. Moreover, I applied three architectures based on a 

convolutional neural network to ameliorate even further the performance of fraud 
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detection. A complete empirical analysis was performed by experimenting with 

different configurations of the hidden layers by changing the number of training epochs 

and using the latest models.  

The findings from this research demonstrate enhanced results, specifically in 

terms of accuracy and precision. The suggested model outperforms the most recent 

Machine Learning and Deep Learning algorithms designed for addressing credit card 

fraud detection issues. In addition, I conducted experiments to balance the data and 

implemented Deep Learning algorithms to reduce the occurrence of biased negative 

results. These proposed methods can be efficiently employed to identify instances of 

credit card fraud in real-world scenarios. 

Keywords: Credit Card Fraud Detection, Deep Learning, Machine Learning, 

Cybersecurity 

 

 

 

 

 

 

 

  



ABSTRAKT 

DEDEKTIMI I TRANSAKSIONEVE MASHTRUESE NEPERMJET 

PERDORIMIT TE MACHINE LEARNING  

Gjoni, Anisa 

Master Shkencor, Departamenti I Inxhinierisë Kompjuterike 

Udhëheqësi: Assoc.Prof. Dr. Dimitrios Karras 

Njerëzit i përdorin kartat e kreditit për transaksione në internet në çdo moment, 

pasi ofrojnë një lehtësim në kohë dhe në përdorim. Me rritjen e përdorimit të kartave të 

kreditit, është rritur edhe kapaciteti i keqpërdorimit të tyre. Mashtrimet me kartat e 

kreditit shkaktojnë humbje të konsiderueshme financiare, si për mbajtësit e kartave të 

kredititashtuedhepërkompanitëfinanciare.  

Objektivi kryesor i këtij studimi kërkimor është identifikimi i rasteve të 

mashtrimit, të cilat mund të përfshijnë aksesimin e të dhënave publike, trajtimin e 

grupeve të të dhënave shumë të çekuilibruara dhe përshtatjen ndaj modeleve në 

zhvillim të mashtrimit. Literaturat përkatëse paraqesin shumë qasje të bazuar në 

Machine Learning për zbulimin e kartave të kreditit, siç janë Metoda Extreme 

Learning, Decision Tree, Random Forest, Support Vector Machine, Logistic 

Regression dhe XG Boost.  

Megjithatë, për shkak të saktësisë së pamjaftueshme, ekziston ende nevoja për 

të aplikuar algoritme më të thellë për të reduktuar humbjet nga mashtrimi. Fokusi 

kryesor ka qenë zbatimi i algoritmeve “Deep Learning” për këtë qëllim. Analiza 

krahasuese e të dy algoritmeve “Machine Learning” dhe të "Deep Learning" u krye për 
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të gjetur rezultate efikase. Analiza e detajuar empirike është kryer duke përdorur të 

dhënat e standardeve evropiane të kartave për zbulimin e mashtrimit. Një algoritëm 

“Machine Learning” u aplikua në grupin e të dhënave, gjë që përmirësoi saktësinë e 

zbulimit të mashtrimeve në një masë të caktuar. Më pas, janë aplikuar tre arkitektura të 

bazuar në një rrjet nervor konvolucional për të përmirësuar performancën e zbulimit të 

mashtrimit. Shtimi i shtresave të thellësuara më tej rriti saktësinë e zbulimit. 

 

Vlerësimi i punës kërkimore tregon rezultate të përmirësuara, si saktësia dhe 

precizioni. Modeli i propozuar tejkalon algoritmet më të fundit të mësimit të makinave 

dhe të mësimit të thellë për problemet e zbulimit të kartave të kreditit. Përveç kësaj, 

kemi bërë eksperimente duke balancuar të dhënat dhe duke aplikuar algoritme të 

mësimit të thellë për të minimizuar shkallën e rezultateve të gabuara negative. Qasjet e 

propozuara mund të zbatohen me efikasitet për zbulimin e mashtrimit me karta krediti 

në botën reale. 

 

 

Fjalë kyçe:  Zbulimi i mashtrimeve me kartat e creditit, Deep Learning, Machine 

Learning, CyberSecurity. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

In an era characterized by a rapid technology integration in various aspects of the 

everyday life, there has never been a more critical need for well-run data systems. With 

the proliferation of online transactions and expansion of digital payment systems, there 

is a proclivity in the need for more robust and adaptive fraud detection systems. 

This master thesis offers a detailed exploration and analysis regarding credit 

cards fraud detection, with its main focus on the exploitation of advanced technologies, 

particularly Machine Learning and Deep Learning. The subsequent chapters present a 

sheer paradigm of the design and implementation of a system, whose main goal is the 

protection of financial transactions against a nefarious use. These approaches are taken 

as an attempt to thwart hackers from tampering with sensitive financial information and 

to build an unimpaired system that does not disclose any confidential data.  

A systematic analysis has been performed for both existing systems used in the 

field and the proposed system, aiming to improve the shortcomings of the current 

methodologies. Chapter 2 concenters in the main requirements specifications, including 

the requests of hardware and software, and also the technologies used in the project, 

such as Python and ML, with particular emphasis on their relevance to credit card fraud 

detection.  

Thence the system design and implementation are examined, by taking into 

account limitations in analysis and design and the critical security and performance 

requirements needed to optimally combat this evolving threat. Chapter 4 explains the 

system’s architectural framework and it provides a visual representation, including the 
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architecture diagrams and UML diagrams. Furthermore, this paper casts some light on 

the intricacies on the collection and processing of the data set. Lastly, the procedures of 

coding and testing are detailed, in the sense of coding standards, system testing protocols 

and various testing techniques that are critical to ensure the reliability and accuracy of 

fraud detection.  

The testing phase offers recommendations to ameliorate the effectiveness of the 

system and a general overview of its impact in the credit card fraud detection problem. 

As a result, this paper will offer a better understanding of the various nature of threats 

posed to credit card usage, along with a practical overview of how the DL and ML 

technologies can be exploited to undermine the dangers related to financial transactions. 

 

 
 

1.1. Methodology 

 

 The proposed paradigm serves to detect and improve credit card transaction data 

so as to build a system that securely retains such information and utterly separates it 

from illicit, harmful and deceitful transactions. I have taken my dataset from kaggle.com 

website and what is aimed through this research work is the annihilation of fraudulent 

transactions from this dataset. The built model is established using Deep Learning and 

Machine Learning in Python through tensor flow libraries and DL algorithms. I 

conducted my study with different operating systems, such as: Mac, Windows and 

Linux.  

Dataset: In the dataset there is a total of 280.000 transactions. So, the dataset is a 

numerical one and it contains these variables: “time”, “amount”, “class” and also V1-

V27 variables, which were created to store the identity of each of the users that have 

made these transactions.  
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Configurations: The programming language that I have used is Python (version 

3.2). There have also been used Jupyter Notebook, Anaconda, TensorFlow and also 

Python libraries such as: KERAS (which allows the definition and training of neural 

network models), Pandas (used for analyzing, exploring and training the data), Numpy 

(used to work with arrows) etc. 

Libraries: In my project of detecting fraudulent transactions, I have made use of 

several programming and data analysis libraries. Following is a more detailed 

description of them. 

TensorFlow is an open-source machine learning software library created by 

Google, and I have employed it for constructing machine learning models. 

 Keras is an API for ML that integrates with TensorFlow and was used to 

facilitate the creation and implementation of ML models. 

Pandas is a data processing library used to import, manipulate and analyze data. I 

used this library to read and manipulate Kaggle’s credit transaction dataset. 

NumPy is a library of Python used for scientific computation to manipulate data 

in the form of matrices and vectors. In this model it became useful for numerical data 

manipulation. 

Seaborn is a data visualization library that is constructed upon Matplotlib. It 

served as a tool for representing data through visual elements such as graphics and 

various types of diagrams. 

Matplotlib, on the other hand, is a comprehensive Python library that facilitates 

the generation of static and animated graphs, as well as diverse forms of data 

visualizations. 

Scikit-Learn (sklearn) is a Python machine learning library that furnishes a 

variety of tools essential for training, evaluating, and validating machine learning 
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models. In my applications, I utilized the “train_test_split” function to partition the data 

into training and testing sets. Additionally, I employed “StandardScaler” for normalizing 

the data. 

The Confusion Matrix serves as a tool for assessing the effectiveness of a 

machine learning model. It shows how accurate or not the model’s classifications are. 

 

Followed steps:  

1. Retrieving the credit card transaction dataset from Kaggle. This dataset is a 

numerical one consisting from credit card transactions. 

2. Exploring the data: Refers to the exploration of the dataset. I looked into the 

structure of the dataset, feature analysis and key data identification. Pandas, 

NumPy, Seaborn and Matplotlib were the libraries used for data analysis and 

visualization.  

3. Data processing: After their exploration, I processed the data. This encompassed 

tasks such as cleaning empty data, addressing missing values, normalizing the 

data, and partitioning the dataset into training and testing sets. For this phase I 

used the Scikit-Learn library. 

4. Modelling: After processing the data, the model was built. TensorFlow and 

Keras came in hand to build the ML model. I defined the model, selected the 

optimizer and compiled the model. 

5. Model training: The training of the model was conducted using the training 

dataset. I used the optimization algorithms to update the model weights through 

the training data. Our model learns from the training set. 

6. Model Evaluation: Following the training phase, an evaluation of its performance 

was conducted. Model evaluation methods were employed to gauge its 

effectiveness in accurately identifying fraudulent transactions.  
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1.2. Existing system 

 

The pertinent literatures present various Machine Learning approaches for credit 

card fraud detection, including methods such as Extreme Learning Method, Decision 

Tree, Random Forest, Support Vector Machine, Logistic Regression, and XG Boost. 

However, these methods have been associated with low accuracy rates. In the year 2020 

alone, there were approximately 393,207 reported cases of credit card fraud out of 

around 1.4 million identity theft reports. Starting from that year, Credit Card Fraud 

(CCF) emerged as the second most prevalent type of identity theft, closely following 

government document frauds and kleptocracy [1] . The global economy incurred a 

staggering cost of 24.26 million dollars due to card theft in the previous year. With 

credit card fraud accounting for 38.6% of reported losses in 2018, it is evident that the 

United States is particularly susceptible to identity theft [2].  

  

 

1.3. The proposed system 

 

DL algorithms are applied everywhere: in computer networks, banks, mobiles, 

medical discoveries, malware, location tracking etc. In this model I seek to identify 

thefts happening with credit cards in the banking institutions. A number of DL 

algorithms is used to identify CCF, however in this model I have decided to choose 

CNN model and its layers to detect the thefts, as well as the normal transactions in the 

set of data. 

To address the imbalance in CCF data, a transformation was applied to create a 

balanced dataset by excluding non-fraudulent transactions from the original dataset.  
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The Convolutional Neural Network (CNN) model, featuring a layered architecture, 

was then employed on this balanced dataset to assess the proposed model. The CNN 

layers demonstrated a sequential architecture that resulted in training and validation 

accuracy exceeding 90%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 

 

CHAPTER 2 

 

REQUIREMENT SPECIFICATIONS 

 

2.1.      Credit card fraud 

 

Credit card fraud (CCF) involves the unauthorized use of credit card or account 

details by someone other than the rightful owner, leading to illicit transactions. Fraud 

can occur when a credit card is lost, stolen, or forged. Additionally, fraudulent activities 

can take place even without the physical presence of a card, such as through the use of 

credit card numbers in e-commerce transactions, a trend that has become more prevalent 

with the rise of online shopping [3]. The surge in fraud cases, including CCF, can be 

attributed to the growth of e-banking and various online payment platforms. 

In the current era dominated by online payments, detecting CCF has become a 

crucial objective. This is particularly significant as society will gradually transition 

toward a cashless culture. With the decline of traditional payment methods, businesses 

must adapt to these changes to remain relevant. Incentives, such as premiums for credit 

and debit card payments, are encouraging customers to move away from cash 

transactions. Consequently, companies need to update their financial systems to 

accommodate a variety of payment methods. The anticipation is that this situation will 

become more critical in the coming years. 
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Figure 1.Apple’s Fraudulent Statistics in 2022 [Apple.com] 

 

The goal of supervised CCFD is to establish a Machine Learning model using 

historical credit card payment data. This model should possess the capability to 

distinguish between fraudulent and legitimate transactions, enabling it to assess the 

authenticity of incoming transactions. Critical considerations in this endeavor include 

the system's response time, cost sensitivity, and feature preprocessing [4] . 

Machine Learning (ML), within the realm of artificial intelligence, involves 

utilizing computers to make predictions based on patterns observed in historical data. In 

the context of CCFD, the application of ML is pivotal for developing an effective and 

accurate system that can identify and mitigate fraudulent transactions. 
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2.2.1. Hardware requirements 

 

 Hard Disc: 500GB 

 RAM: 4 GB and above 

 Processor: I3 and above 

 

2.2.2. Software requirements 

 

 Operating System: Windows 10 (64 bit) 

 Software: Python 

 Tools: Anaconda 

 

2. 3. Used technology  

 

 Python 

 Deep Learning 

 

 

2.3.1. Python  

 

Python is a high-level, general-purpose programming language that enjoys 

widespread usage. Designed with a focus on simplicity, its syntax allows programmers 

to express concepts in a concise and clear manner. 
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One of Python's notable advantages is its ability to facilitate a rapid coding 

process, allowing developers to achieve more in fewer lines of code. This characteristic 

not only enhances the efficiency of coding but also promotes seamless system 

integration. Overall, Python stands out as a versatile and user-friendly programming 

language. 

 

Utilization in Various Fields:  

 Employed in web development, specifically from the server side.  

 Widely used in software development processes. 

 Applied in mathematical computations and analyses. 

 Utilized for system scripting purposes. 

 

Python applications: 

 Python finds utility in server environments for building web applications. 

 It has the capability to create workflows when combined with suitable software.  

 Python is adept at interfacing with database systems and can proficiently read 

and modify files. 

 Handling large datasets and executing intricate mathematical operations are 

among Python's strengths. 

 It serves purposes ranging from rapid prototyping to the development of 

production-ready software. 

Reasons for choosing Python: 

 Python exhibits cross-platform compatibility, running seamlessly on Windows, 

Mac, Linux, and even Raspberry Pi.  
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 Its syntax is straightforward, resembling the English language, making it user-

friendly for developers. 

 Python's syntax efficiency enables the creation of programs with fewer lines 

compared to other programming languages.  

 Python operates within an interpreter system, facilitating immediate code 

execution and expediting the prototyping process. 

 Distinguishing itself from other languages, Python concludes commands with 

new lines instead of semicolons or parentheses. 

  

Python is interpreted: 

 Python is one of the most popular interpreted languages, meaning that it runs the 

code line by line and the command is carried out without first translating the 

source code into machine code. 

 This allows for a faster development cycle, since the code is directly written and 

executed with no intermediate steps. Even if there is an error at the bottom of the 

code it will still produce an output up until the line of the program is correct and 

then it will stop and generate and error statement.  

 One potential drawback of interpreted languages lies in execution speed, with 

programs compiled in the native language of the computer processor typically 

running faster than interpreted ones.  

 Despite its syntactical simplicity, Python accommodates constructs anticipated 

by a high-level language. This includes support for complex and dynamic data 

types, structured and functional programming, as well as object-oriented 

programming. 
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2.3.2.  What is Deep Learning  

 

Deep Learning stands out as a specialized branch of Machine Learning, 

employing supervised, unsupervised, or semi-supervised learning techniques to glean 

insights from data representations. Its architecture bears a striking resemblance to the 

intricate workings of the human nervous system, featuring a complex network of 

interconnected computing units that collaborate harmoniously to process intricate 

information [5]. It's worth noting that Machine Learning operates on the premise that 

machines can acquire knowledge from data. Deep Learning, in turn, elevates Machine 

Learning to a more advanced and sophisticated level. 

Deep Learning encompasses various facets, including: 

 Multiple levels of hierarchical layouts 

 Neural networks with many layers 

 The training of expansive neural networks.  

 Application of multiple nonlinear transformations.  

 Proficiency in pattern recognition.  

 Capability for feature extraction.  

 Establishment of high-level data abstraction models. 

 

An artificial neural network (ANN) represents a technique within artificial 

intelligence aimed at guiding computers to process data in a manner reminiscent of the 

human brain. Positioned as a subset of machine learning, ANN serves as the 

foundational framework for deep learning. It relies on a layered structure comprising 

interconnected neurons or nodes, closely mirroring the intricate organization of the 

human brain [6]. ANN is composed of four main parts, being: neurons, nodes, input and 

output. 
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Neurons 

 Artificial neural networks are structured with layers of neurons, where each 

neuron functions as a computational unit, processing information through weighted input 

parameters. The neurons individually weigh the inputs, sum them up, and then pass the 

result through a nonlinear function to generate the output. Each layer of neurons is adept 

at detecting specific information, such as identifying edges in images or locating tumors 

in the human body. Employing multiple layers of neurons enables the network to 

uncover additional insights about the input parameters. 

 

Nodes  

 An artificial neural network is a network of interconnected nodes, resembling the 

layered structure of neurons in the brain. Each circular node signifies an artificial 

neuron, and arrows represent connections from the output of one neuron to the input of 

another. Inputs are initially transmitted to the first layer, where individual neurons 

receive specific input values. Subsequently, these values are used to compute a product 

based on their respective weights and interactions. 

 

Results  

 The outcomes from the first layer are sequentially forwarded to the second layer 

for further processing. This iterative process continues until the final output is generated. 

After each iteration of passing data through the network, the resulting output is 

compared to the correct one, and adjustments are made to the values of the nodes until 

the network consistently produces the correct final output. This iterative learning process 

enhances the network's ability to approximate desired outputs over time. 
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2.3.2.1. Convolutional Neural Network (CNN) 

 

The pivotal moment for neural networks occurred in 2012 during the annual 

computer vision Olympics, when CNNs were employed, reducing the classification error 

rate from 26% to an impressive 15%. This marked a significant improvement at that 

time and sparked widespread interest in neural networks [7]. Since then, numerous 

companies have incorporated machine learning (ML) at the core of their services. 

Prominent examples include Facebook utilizing neural networks for auto-tagging 

algorithms, Google relying on them for image search, Amazon employing them in 

product recommendations, Pinterest leveraging neural networks for home feed 

personalization, and Instagram integrating them into their search infrastructure [8]. 

While CNNs find application in various domains, their classic and most popular use case 

is often associated with image processing, particularly in image classification.  

 

2.3.2.2.  Image classification 

 

Image classification refers to the process of taking an input image and 

determining its class or providing a probability distribution across various classes that 

best characterize the image. For humans, this cognitive ability is one of the earliest skills 

acquired, developing naturally and effortlessly from birth and becoming second nature 

as adults. Without conscious effort, we possess the capability to swiftly identify our 

surroundings and the objects within them. These abilities, such as rapid pattern 

recognition, generalization from prior knowledge, and adaptation to diverse image 

environments, set us apart from machines. The innate capacity to quickly recognize 

patterns and make sense of visual information underscores the human ability to navigate 

and understand the visual world. 
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Figure 2. CNN image classification [Neural Network from scratch, Victor Zhou (2007)] 

 

Input and Output  

 When a computer processes an image as input, it perceives it as an array of pixel 

values. The size of this array is determined by the resolution and dimensions of the 

image, often represented as a set of numbers such as 32 x 32 x 3, denoting RGB values. 

For instance, in the case of a colored JPG image with dimensions 480 x 480, the 

corresponding array would be 480 x 480 x 3. Each numerical value in this array, ranging 

from 0 to 255, signifies the intensity of the pixels at that specific point. While these 

numerical values might seem arbitrary to us, they constitute the sole input available to 

the computer.  

In essence, the primary concept involves presenting the computer with this array 

of numbers, and in return, it produces numerical outputs that indicate the probability of 

the image belonging to a particular class. The computer, through the process of image 

classification, translates pixel information into meaningful predictions about the content 

or category of the given image. 
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2.3.2.3 Biological connection 

 

 The foundational principles of CNNs, draw inspiration from the workings of the 

visual cortex in the human brain. The visual cortex comprises small cell areas that 

exhibit sensitivity to specific regions of the visual field. This concept traces back to a 

pivotal experiment conducted in 1962, where it was unveiled that individual neuronal 

cells in the brain exhibited distinct responses to the presence of edges with specific 

orientations. For instance, certain neurons reacted to vertical edges, while others 

responded to horizontal or diagonal edges [9]. 

The manner in which CNN works is that it starts with an input image, which is a grid of 

pixel values. Then it goes through convolutional layers, nonlinear activation, pooling 

layers, fully connected layers and the output one. 

 

2.3.2.4. First Layer – Convolutional layer  

 

 In a Convolutional Neural Network (CNN), the first layer is typically the 

convolutional layer, responsible for processing the input, which is a collection of pixel 

values representing an image. Convolution involves the movement of a filter (or kernel) 

across the image, conducting mathematical operations to extract features. Each 

convolutional layer captures distinct aspects and patterns of the input image. 

To grasp how a convolutional layer works, we imagine a flashlight shining in the 

upper left corner of the image, covering a 5 x 5 area. This flashlight that serves as a filter 

or kernel, slides across the entire image, and the area it illuminates is referred to as the 

receptive field. The filter is essentially a set of numbers called weights or parameters, 

and its depth must match the depth of the input; for instance, a 5 x 5 x 3 filter for a 

colored image (RGB channels). 
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At each position, the filter multiplies its values by the corresponding pixel values 

of the image, and the results are summed up to produce a single representative value. 

This process repeats as the filter moves right, pixel by pixel, until it covers the entire 

image. Each position of the filter produces a value, and collectively, these values form a 

28 x 28 x 1 activation map or feature map. The size of 28 x 28 is derived from the fact 

that a 5 x 5 filter can fit into a 32 x 32 input image in 784 different positions. If multiple 

filters, such as two 5 x 5 x 3 filters, are used, the output volume becomes 28 x 28 x 2. 

Employing more filters enables the CNN to recognize more complex features than when 

using a smaller number. This flexibility allows the network to identify not only edges or 

simple shapes but also more intricate patterns within the input image. 

 

First layer – High level perspective 

 When discussing simple characteristics that are common to all images, such as 

straight edges, solid colors, and curves, each applied filter in a CNN can be viewed as a 

feature identifier. For instance, let's consider a hypothetical scenario where the first filter 

is designed to be a 7 x 7 x 3 curve detector. In the context of being a curve detector, this 

filter is essentially a pixel structure with higher numerical values positioned in an 

arrangement that corresponds to the shape of a curve.  

 

Figure 3. Curve detector filter [The Artificial Neural Networks handbook, 2018] 
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As the filter slides across the image during the convolution process, it identifies 

and responds to regions in the image that exhibit a curve-like pattern. The areas with the 

highest numerical values in the filter align with the presence of curves in the input 

image. When this filter is utilized in the upper left corner of an image, it aggregates the 

results of the multiplications between the values of the filter and the corresponding pixel 

values of the image within that specific area.  

To illustrate, let's consider an image earmarked for classification, and we 

position the filter in the upper left corner of this image. 

 

Figure 4. Visualizing the filter on the image [The Artificial Neural Networks handbook, 

2018] 

 

To classify the image, the essential step involves multiplying the values of the 

filter by the original pixel values of the image.
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Figure 5. Multiplication and summation of filter values [The Artificial Neural Networks 

handbook, 2018] 

 

In essence, in the input image, if there exists a shape resembling the curve 

represented by that filter, the total sum of the multiplications will yield a substantial 

value. 

 

Figure 6.Image shape not resembling the filter curve [The Artificial Neural Networks 

handbook, 2018] 

 

As evident, the value is notably low, indicating that there was no corresponding 

pattern in the image section for the curve detector filter. The output of this convolutional 

layer manifests as an activation map. In a simple scenario like rotation using a filter, the 

activation map reveals areas in the image where curves are likely present. In this specific 
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example, the upper left value in the 26 x 26 x 1 activation map (due to a 7 x 7 filter 

instead of 5 x 5) is 6600. This high value suggests the probable existence of a curve in 

the image that triggered the filter. Conversely, the value on the right of the activation 

map is 0, indicating the absence of curves in that part of the original image, preventing 

the filter from activation. 

This example involves only one filter designed to detect lines curving outward 

and to the right. To enhance feature detection, additional filters can be introduced, which 

increment the depth of the activation map, providing more comprehensive information 

about the input volume. 

Denial 

The filter I elucidated in this section was simplified primarily to illustrate the 

processes involved in convolution. In the image below, I will exemplify actual 

visualizations of the first layer convolution filters in a trained network. These filters in 

the initial layer traverse around the input image and become activated when they identify 

the specific feature, they are designed to detect within the input volume. 

 

Figure 7. Visualization of first layer conversion filter [Heritage Image Classification by 

Convolution Neural Networks, Le Van Linh] 
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2.3.2.5. Deeper in the network 

 

In the conventional architecture of Convolutional Neural Networks, there are 

additional layers interconnected amid the convolution layers. These layers introduce 

nonlinearities and facilitate dimension preservation, contributing to the overall 

robustness of the network. A typical CNN architecture would exhibit the following 

structure: 

 

Figure 8. Classic CNN architecture [Convolution Neural Networks, Manh-Tu-Vu] 

The filters in the convolution layer, which is the initial one, are specifically 

crafted to detect low-level features such as edges and curves. However, to predict 

whether an image contains a certain object, the network must be capable of recognizing 

higher-level features [10]. This necessitates the inclusion of additional layers. In the 

example above, when another convolution layer is applied, the output of the first 

convolution layer serves as the input for the second convolution layer. Therefore, each 

input layer essentially describes the image location where certain low-level features 

appear. When a set of filters is applied, they generate activations representing high-level 

features. These features could manifest as semicircles or squares, for instance. 

 As we traverse through the network and multiple convolution layers, the output 

consists of activation maps that progressively represent increasingly complex features. 

It's noteworthy that, with the deepening of the network, the filters start to possess a 

larger receptive field. This implies that they can take into account information from a 

broader area compared to the original input volume. Consequently, these filters become 

more receptive to a larger region of pixel space, enabling them to capture and understand 

more extensive contextual information in the images being processed. 
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2.3.2.6. Fully connected layers 

 

This layer integrates information from various parts of the image to make high-

level decisions. It takes as input the output of the convolution layer and pooling layer, 

generating an N-dimensional vector as output, where N corresponds to the number of 

classes the program needs to choose from. For instance, in a digit classification program 

with 10 digits, N would be 10. Each element in this N-dimensional vector represents the 

probability of a particular class. For example, if the vector resulting from a digit 

classification program is [0.1, 0.1, 0.75, 0, 0, 0, 0, 0, 0, 0.05], it signifies a 10% 

probability for being 1, a 75% probability for being 2, and a 5% probability for being 9. 

The functioning of this fully connected layer involves examining the output of the 

preceding layer and identifying which features are more closely associated and relevant 

to a specific class.

 

Figure 9. Fully connected CNN scheme [Analytics, Vidhya (2019)] 

 

 

2.3.2.7. Training (what makes the model work) 

 

 Before a Convolutional Neural Network (CNN) begins, the weights and filter 

values are initially random, lacking knowledge on how to identify specific features like 
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edges, curves, paws, or beaks. Similar to the process of children learning object labels 

by exposure to different images, the training of CNNs involves a dataset with thousands 

of images of various objects, each labeled with its corresponding category. 

The backpropagation process can be broken down into four distinct stages: 

forward pass, loss function, back pass, and weight update. During the forward pass, a 

training image, represented as a 32 x 32 x 3 set of numbers, traverses through the entire 

network. In the initial training example, with randomly initialized weights and filter 

values, the output is a result that doesn't prioritize any particular number, resembling 

something like [.1, .1, .1, .1, .1, .1, .1, .1, .1, .1]. At this stage, the network lacks the 

capability to recognize low-level features, making it incapable of forming a conclusion 

about the image classification. 

The process moves on to the loss function during backpropagation, where the 

training data, consisting of an image and its corresponding label, comes into play. For 

instance, if the label for the first training image is 3, the image label would be 

represented as [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]. Various methods exist for defining a loss 

function, with Mean Squared Error (MSE) being the most common. The loss function 

helps quantify the disparity between the predicted output and the actual label, guiding 

the network in adjusting its weights and filters during the subsequent stages of 

backpropagation to enhance its performance. 

 

Figure 10. Loss function 

 

The initial set of training images typically incurs a higher loss. The objective is 

to ensure that the output of the convolutional network deviates from the training label. 
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Figure 11. Minimizing the loss [Mathematics Stacks, 2020] 

 

The objective is to execute a backward pass through the network, identifying 

which weights contributed the most to the loss, and devising adjustments to minimize 

the loss. Subsequently, after calculating this derivative, the final step involves updating 

the weights.  

 

Figure 12. Very high learning rate [Mathematical Stacks, 2020] 

 

The sequence of backpropagation constitutes a training iteration, the aim of 

which is to optimize the layer weights effectively, ensuring accurate convergence and 

improved model performance. 
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How do companies use CNN? 

 Companies dealing with substantial datasets possess an inherent advantage over 

their competitors. The abundance of training data allows for a greater number of training 

iterations, enabling more weight updates and resulting in a better-tuned overall network. 

For instance, Facebook and Instagram have access to billions of user photos, Pinterest 

can leverage information from its 50 billion pins, Google can utilize search data, and 

Amazon can tap into data from the millions of products purchased daily [11]. The scale 

and diversity of these datasets empower these companies to train and optimize their 

networks effectively. 
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CHAPTER 3 

 

THESIS’ SPECIFICS 

 

3.1. Analysis constraints 

 

 Constraints as informal text - Informal text serves as constraints during the 

analysis. 

 Operational constraints - Constraints pertaining to operations and functionality. 

 Constraints integrated into existing model concepts - The assimilation of 

constraints into pre-existing model concepts. 

 Treating constraints as a distinct concept - Considering constraints as an 

independent and separate element. 

 Constraints implied by the Model Structure - Constraints that are implicitly 

suggested by the structure of the model. 

 

3.2.  Design constraints 

 

 Determining the classes involved 

 Determining the objects involved 

 Determining the actions involved 

 Determining the claim clauses 

 Global operations and realization of constraints 
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3.3. Application constraints 

 

A hierarchical arrangement of relationships may lead to an increased number of 

classes and a more intricate implementation structure. Therefore, it is recommended to 

streamline the hierarchical structure into a simpler alternative, such as the conventional 

flat structure. The latter is characterized by greater decentralization, where decision-

making authority is dispersed across the organization. Transforming the hierarchical 

model into a bipartite, flat structure, comprising classes and straightforward 

relationships, is relatively straightforward. At the design stage, flat relationships are 

favored for their simplicity and ease of implementation. Such relationships align with 

the relational concept found in entity-relationship modeling and are compatible with 

numerous object-oriented methods. 

 

 

3.4. Performance requirements 

 

The application manages and interacts with two primary generic components: 

 Integrated browser responsible for navigation and Internet access 

 Server level: The server houses the core functionalities of the architecture of the 

paradigm, comprising the following components at this level: a web server, 

security module, server-side capture engine, preprocessing engine, database 

system, validation engine, and output module [12]. 
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3.5. Security requirements  

 

 The software constitutes a crucial component of a security system, making its 

integrity critical. Issues related to its integrity level can be of significant 

concern. 

 If both a system and its program are at a high integrity level, it is essential for 

the hardware to match that same level of integrity. 

 Building flawless code in any language is futile if the hardware and software 

lack reliability. 

 A computer system intended to run high-integrity level software should not 

concurrently support software of a lower integrity level. 

 The highest required integrity level should be enforced across all systems within 

the same environment. 

 Systems with distinct security requirements should be kept separate. 
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CHAPTER 4  

 

ARCHITECTURE 

 

4.1. Architecture diagram  

 

Figure 13. Architecture diagram 

The image input refers to the screen that will be used, so the conversion filter. 
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4.2. Use–Case diagram  

 

The use-case diagram serves to visually represent the functionalities offered by a 

system concerning the actors, their requirements, and any dependencies among these use 

cases. It comprises two main components: 

 The use case, depicted as a horizontal ellipse, delineates a sequence of actions 

that yield value to an actor.  

 An actor, which can be an individual, organization, or external system, assumes a 

role in one or more interactions with the system. 

 

Figure 14. Use-Case Diagram 
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4.3. Activity diagram  

 

The activity diagram provides a visual representation of activity workflows and 

step-by-step actions, incorporating features like choice, iteration, and concurrency. This 

diagram offers an overview of the control flow and includes various shapes, such as: 

 Rounded rectangles, symbolizing activities.  

 Diamond shapes, denoting decision points.  

 Bars, indicating the initiation or conclusion of concurrent activities.  

 Black circles, signifying the initiation of a workflow.  

 Plain circles, representing the ending of a workflow. 

 

Figure 15. Activity diagram 
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4.4. Collaboration diagram  

 

A collaboration diagram illustrates the relationships and interactions among 

objects within a software system. It illustrates the messages that are sent between 

classes and objects. These diagrams identify each object's functionality and show 

how a particular use case behaves. 

 

Figure 16. Collaboration diagram 
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CHAPTER 5 
 

MODULES 
 

5.1. Modules 

 

 Data collection 

 Algorithms comparison 

 Discoveries 

 

5.2. Comparison among different algorithms 

 

In my analysis I considered and evaluated several classifiers in order to determine 

their effectiveness in detecting fraudulent transactions. The models that I considered 

included: 

o Random forest 

o Gradient Boosting 

o K-nearest neighbor  

o Support Vector Classifier  

o Logistic Regression 

Random Forest and Gradient Boosting are often preferred for classification tasks, 

such as credit card detection, as a result of their adaptive ability to different datasets. 

Logistic Regression is a common choice for simple binary classification tasks. 



34 

 

K-Nearest Neighbors (KNN) is useful for a simple approach and does not require 

model training, however it poses difficulty for new data arrivals and performs poorly on 

large datasets. 

Support Vector Classifier (SVC) is used on datasets with a distinct separation 

between classes, but it needs good calibration on hyper parameters. 

Convolutional Neural Network (CNN) are mainly used for the analysis of complex 

data structures and they are more suitable for datasets that contain images or structured 

information. 

 

 

 

5.2.1 Followed steps for comparing the algorithms 

 

1. Initially I imported the libraries. 

 

Figure 17. Libraries importing in Jupyter for comparison between models 
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2. Then I built the models for each of the algorithms  

 

Figure 18. Building the model for Random Forest and Gradient Boosting 
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Figure 19. Building the model for KNN and Logistic Regression 
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3. Then I trained the models. 

 

Figure 20. Training the models with training sets 

 

4. I split the dataset into training and testing sets. 

 

Figure 21. Dividing the dataset into training and testing sets 

 

5. The accuracy of the models’ results was then calculated and displayed. 

 

Figure 22. Displaying the models’ accuracy 
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5.2.2 Comparison’s result 

 

Each algorithm in general has its own advantage and disadvantage, and their 

performance varies on the nature of data and what is aimed to be studied with them. 

However, given that with CNN, an accuracy of 98% was attained through different 

training epochs, it’s worth stating that the CNN algorithm that I decided to work with, is 

the most suitable and effective one in the context of fraudulent transaction detection. 

 

5.3 Collecting the dataset  

 

The CNN model's deep learning (DL) algorithm underwent modifications through 

the addition of extra layers for feature extraction and the classification of credit card 

transactions as either fraudulent or not. The primary objective of this model is to detect 

fraudulent transactions utilizing deep learning algorithms. In the initial phase, the 

unbalanced CCF numeric dataset is converted into a balanced dataset by eliminating 

non-fraudulent transactions. In real-world transactions, the imbalance between 

fraudulent and normal classes is inherent to the nature of the problem. The proposed 

model employs a convolutional neural network with a 14-layer architecture on the 

balanced dataset to validate its effectiveness. This architecture achieved training and 

validation accuracies of 94.6% and 95.8%, respectively. 

Distinctively from traditional neural networks that rely on multiplications of 

matrixes, convolutional networks employ a Convolution technique. In mathematical 

terms, this method is an operation on two functions, producing a third one that 

demonstrates how the shape of one function is modified by the other. 
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5.4 Layers in the CNN 

 

In the CNN model, six distinct layers have been defined: the input layer, 

Convolutional layer (Convo layer), Pooling layer, Fully Connected layer, SoftMax 

(logistic layer), and the output layer. The input layer comprises of image data, 

represented by three-dimensional matrices that are transformed into a single column. 

The Convolutional layer serves as the feature extraction layer, and the Pooling layer 

diminishes the spatial volume of the input image, making it computationally efficient. 

The subsequent layer is the Fully Connected layer, involving weights, biases, and 

neurons to establish connections between different layers' neurons. Through training, 

this layer classifies photos into multiple categories. Finally, the logistic layer is utilized 

for binary classification, assigning a label of 0 to the normal class and 1 to the abnormal 

class. 

Given the typical imbalance between fraudulent and normal classes, the initial 

step involves transforming the unbalanced CCF data into a balanced dataset by 

excluding non-fraudulent transactions. The proposed model comprises 14 layers: a 

convolutional layer with a 32 x 2 kernel size and a ReLU activation function, followed 

by a group normalization layer and a dropout layer with a dropout rate of 0.2. Another 

convolutional layer follows with a 64 x 2 kernel size and a ReLU activation function, 

accompanied by a batch normalization layer and a dropout layer with a 0.5 dropout rate. 

This sequence is repeated with an additional layer where only the dropout layer changes 

to 0.25. Three more dense layers are included, with the first having an activation 

function of 100, the second with 50, and the third with a ReLU of 25. Finally, a dense 

layer for classification with a sigmoid activation function is appended. After 100 

iterations, the accuracy exceeds 90%. 
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CHAPTER 6 

 

CODING  

6.1. Coding  

 

After finalizing the design aspect of the system, the next steps involve coding 

and testing. The coding phase transforms the conceptual system design into operational 

reality by translating it into code using a specific programming language. For this 

reason, an efficient coding style is required that whenever new changes are made, it 

easily adapts them to the system. 

 

6.2. Coding standards  

 

Coding standards consist of programming guidelines that prioritize the visual 

structure and presentation of the code. They are designed to enhance code readability, 

comprehension, and maintainability. During the coding phase, the developed plan from 

the design phase is implemented, and adherence to coding standards becomes crucial. 

The specifications of the coding should enable any programmer to comprehend it easily 

and make necessary modifications when required. Some essential standards to achieve 

the aforementioned objectives include: 

1. Simplicity and clarity 

2. Naming conventions 

3. Value conventions     

4. Writing and commenting standard 

5. Message box format 

6. Exceptions and error handling  
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6.2.1. Writing and commenting standard  

 

Scriptwriting is a process in which indentation is highly important in order to 

make the code readable and easy to understand.  Conditional and loop statements should 

be matched properly to facilitate understanding. Comments are also included to better 

know what to expect when running the code. 

 

6.2.2. Message box format  

 

When requesting information from the user, it is essential that the user can easily 

understand the messages presented to them. To achieve this, a specific format has been 

established for displaying messages, as outlined below: 

 X – The user has performed an illicit operation 

 ! – Denotes messages containing important information for the user 
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CHAPTER 7  

 

DATA AND CODE PREPARATION 

 

7.1. Dataset description  

 

The dataset comprises transactions made by European citizens using credit cards 

over a span of two days, with a total of 284,807 transactions, including 492 instances of 

fraud. Notably, the data exhibits significant imbalance, as the positive class (fraudulent 

transactions) constitutes only 0.172% of the entire dataset. Key characteristics of the 

dataset include: 

 Only numeric data variables resulting from Principal Component Analysis (PCA) 

transformation, denoted as columns V1, V2, … V28. PCA transformation was 

applied to reduce the dimensionality of the numeric dataset while still preserving 

its information. 

 Due to confidentiality constraints, the original features of the data are 

undisclosed. 

 Attributes that include "time" (representing seconds elapsed since the first 

transaction) and "value" (sum of transactions, indicating cost dependency). 

 The "class" attribute functions as the dependent variable, assuming a value of 1 

for fraud and 0 for normal transactions. 
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Figure 23. The dataset used for the model [Kaggle, 2013] 

 

In order to explore this dataset, a PCA transformation has been conducted in order to 

reduce its large dimensions into a more understandable one.  
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Figure 24. Exploring the dataset after PCA transformation 

 

  

7.2. PCA and its components 

 

As aforementioned PCA was used in my dataset. This principal component 

analysis is a dimensionality reduction method, which is often used to reduce the 

dimensions of large datasets, by transforming tedious sets of variables into smaller ones 

that still preserve the initial data sets’ main information.  

By having a more manageable number of variables, it can be easier for the data 

to be handled and tackled with a view to processing it. Also, smaller sets are more 

manageable to explore and visualize by making so the analysis of the data points much 

easier and faster for machine learning algorithms. In general terms, the idea of PCA 

revolves around the reduction on the number of variables of a group of data, by 

simultaneously storing as much information as possible [2]. 
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Principal components are new variables created by combining or blending the 

original variables in a linear fashion. These combinations are designed to ensure that the 

new variables are uncorrelated, while retaining most of the information from the original 

variables. For instance, in a scenario with 10-dimensional data, 10 principal components 

are generated. However, the goal of PCA is to maximize the information stored in the 

first component, followed by the maximum remaining information in subsequent 

components, until it approximates the illustration shown in the chart below. 

 

Figure 25. Principal components [builtin.com] 

 

The organization of the information in the principal components in such a way 

allows to bring down the dimensionality without losing too much information, by 

removing low-information components and by considering the remaining ones as new 

variables. Since there are as many principal components as there are variables in the 

dataset, these components are designed to ensure that the first one captures the highest 

variance. 
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Geometrically, principal components represent the directions within the data that 

reveal the highest variance. The connection between variance and information is 

evident: a line with greater variance accommodates a wider spread of data points along 

it, signifying richer informational content. In essence, principal components act as new 

axes that offer the optimal perspective to analyze and interpret the data. 

 

 

7.2.1. Handling the unbalanced data 

 

Before working with the dataset, I handled the imbalanced data as follows: 

 

Figure 26. Handling the unbalanced data 

 

Nevertheless, Principal Component Analysis and Imbalanced Data Handling, are 

two distinct concepts in Machine Learning and data analysis.  

Imbalanced data arises when the classes within a dataset are not evenly 

distributed, meaning that one class may have notably more instances than another. Such 
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an imbalance can result in biased models that exhibit poor performance, particularly in 

the minority class. Addressing this imbalance involves employing various techniques, 

including sampling methods such as minority class sampling and majority class 

subsampling, generating synthetic samples, utilizing alternative evaluation metrics like 

F1 score, precision, and recall, or using specialized algorithms designed to handle 

imbalanced data, such as Random Forest with class weights or gradient boosting. 

So in principle, PCA and unbalanced data handling serve distinct purposes: PCA 

primarily focuses on dimensionality reduction, while methods for handling unbalanced 

data aim to address issues related to class imbalance in classification tasks. 

 

 

7.2.2. Applying PCA to my dataset 

 

To perform principal component analysis on the balanced dataset, after handling 

their imbalance, I followed these steps: 

o Features and target separation, which helped in distinguishing the independent 

variables from the target one. 

o Variable standardization: this helped to ensure that all features contributed 

evenly in the analysis. Standardization means scaling the features to have a mean 

of 0 and a standard deviation of 1. 

o Application of PCA after the features were standardized, to reduce the 

dimensionality. 
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Figure 27. Coding for applying PCA 

 

After having applied PCA on my dataset, a validation process was performed so 

as to confirm it was correctly applied. Firstly, PCA calculated the explained variance 

ratio for each principal component.  

 

Figure 28. Validating PCA through the explained variance ratio 
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The outputted values 0.37762436, 0.0992584, 0.07113154 and 0.05375999 represent the 

explained variance ratio for each principal component. 

First principal component (PC1): the value 0.37762436 demonstrated that the 

first principal component explained approximately 37.76% of the total variance in the 

original dataset, which meant that only 37.76% of the variability in the data could be 

captured by this single component. 

Second principal component (PC2): the value 0.0992584 demonstrated that the 

second principal component explained approximately 9.93% of the total variance in the 

original dataset, meaning that only 9.93% of the variability in the data could be captured 

by this second component. 

These two values were essential because they determined how much information 

would be stored when the dimensionality of the dataset was reduced by PCA. Based on 

these values of the explained variance ratio, I decided on the number of principal 

components that I was going to store. 

 Secondly, after calculating the explained variance ratio for each principal 

component, what followed was the visualization of the principal components. This type 

of validation showed how the data had been transformed into the new feature space. 
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Figure 29. PCA visualization 

 

After having done such modifications, first five lines of the transformed dataset 

were displayed. 
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Figure 30. The dataset after the PCA application 

 

 

Table 1.  List of available features in the CCFD dataset 

No. Characteristic Description 

1 Bank account Related to the account 

number 

2 Ready to buy Balance availability 

3 Credit limit Maximum credit capacity 

for the user 

4 Card number Card number 

5 Transaction amount The amount paid by the 

buyer 

6 Transaction time The time of the transaction 

7 Transaction date The date of the transaction 

8 Currency code The code of the used 
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currency 

9 Merchant category code Merchant category code 

10 Merchant number Merchant number 

11 Transaction country Country where the 

transaction takes place 

12 Transaction city City where the transaction 

takes place 

13 Approval code The request authorization 

response, meaning 

approved or denied. 

  

 

Table 2. Data characteristics 

No. Feature Description 

1 Time Time expressed in seconds 

between the current 

transaction and the 

previous one 

2 V1 – V28 attribute These 28 columns show 

the PCA results to store 

the users’ data 

3 Amount Transaction amount 
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4 Binary class label Binary classes, expressed 

by 0 for non-fraudulent 

classes and 1 for 

fraudulent ones 

 

 

 

7.3  The steps that were followed to identify the data in the code 

 

The approach that I chose to tackle my topic and to arrange the dataset is composed 

of a series of steps, which put together give a much better understanding on how the 

banking transactions work, what happens with them and how to eliminate the fraudulent 

data. In the following paragraphs I will briefly explain what I have used and the outputs 

that have been produced by the created model. 

The code builds a Convolutional Neural Network model for fraud detection. CNNs 

are a type of ML model commonly used for image and sequence data. In this case they 

are applied on the ID data (sequential data). The architecture of the model is defined by 

using Keras. It includes convolutional layers with ReLU activation functions, batch 

normalization to ameliorate training stability and dropout layers to prevent overlapping. 

The final dense layer with a sigmoid activation function is responsible for making binary 

predictions (fraudulent or non-fraudulent). The model is then trained up until a certain 

time period. 

 

 

 



54 

 

Step 1: Library importing 

The script initiates by importing essential Python libraries. TensorFlow and 

Keras are employed for constructing and training the neural network model. 

Additionally, various other libraries, including Pandas, NumPy, Seaborn, Matplotlib, 

and Scikit-Learn, are utilized for tasks such as data manipulation, visualization, and 

assessing the performance of the constructed model. 

 

Figure 31. Importing libraries in machine learning 

 

Step 2: Data uploading 

 The pd.read_csv function is used to upload the CSV file that contains the credit 

card transaction data. This data is stored in a Pandas data frame called “data”. The data 

contains various attributes linked to the credit card transactions. 

 

Figure 32. Uploading the ML data 
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Step 3. Exploratory data analysis (EDA) 

 The script performs basic exploratory analysis of the uploaded numerical dataset 

so as to discover patterns and main characteristics.  

 Data.info() offers information about the DataFrame, including data types and 

non-null numerations 

 Data.shape() gives the dimensions of the dataset, in terms of the number of rows 

and columns 

 Data.describe() summarizes the basic statistics for each numeric column in the 

dataset 

As aforementioned, after uploading the dataset and the corresponding libraries, I 

called “value_counts()” in order to get the total sum of the transactions that fall in each 

label category, where it resulted that there were 492 fraudulent ones and 284315 normal 

transactions. 

 

Figure 33. Exploratory data analysis EDA 

 

In the cases when the class imbalance is a problem (i.e. different classes have 

different numbers of examples), it is important to balance to group of data. The minority 
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class, being the one of fraud transactions, is randomly selected by selecting an equal 

number of non-fraudulent transactions. This balancing step helps to prevent the model 

from being biased towards the majority class.  

 

Step 4: Data preprocessing 

 Preparing the data is a pivotal stage in machine learning, involving tasks such as 

distinguishing between features and labels, partitioning the data into training and testing 

sets, and implementing feature standardization. The standardization process is crucial for 

ensuring uniform scales across all features, facilitating the model's effective learning of 

patterns. 

 

Figure 34. Training the data through a supervised learning method. 
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The trained model generates predictions to assess its accuracy, quantifying the 

number of true positives, true negatives, false positives, and false negatives through the 

use of a confusion matrix. 

 

This is the output produced: 

 

Figure 35. Confusion matrix 
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Figure 36. Output of confusion matrix 

The model continues to get trained up until a certain time period in order to improve the 

logistic regression.  

 

Figure 37. Model training 

 

It outputs a changed confusion matrix. 
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Figure 38. Changed confusion matrix 

 

The process continues and the weights are updated again and this produces a new output. 

 

Figure 39. Updating weights in confusion matrix 
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Model evaluation: 

 To assess the model's performance, the script visualizes learning curves, 

providing insights into how accuracy and training loss evolve over time. 

 The accuracy of the model on the training data is scrutinized to gauge its 

effectiveness in learning from the training set. 

 A confusion matrix is computed on the test data, offering a breakdown of true 

positives, true negatives, false positives, and false negatives predicted by the 

model. 

 The script calculates "precision" and "recall," pivotal metrics for appraising 

binary classification model performance. Leveraging the Scikit-Learn metrics 

library, "precision" quantifies the accuracy of positive predictions, while "recall" 

gauges the model's ability to capture actual positive cases. 

 Individual prediction: the script shows how to make predictions for an individual 

transaction. It scales the features of the transaction and feeds them to the trained 

model to classify it as a fraudulent transaction or not.   
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CONCLUSIONS  

 

Studying fraudulent data using Python and Machine Learning can bring about many 

important conclusions for the identification and prevention of such illicit activities. This 

type of analysis consists of several different steps, being: 

 Data preparation 

 Data exploration: refers to the analysis of the frequencies and the variables to 

understand the characteristics of the data. This allows the identification of any 

patterns emerging from the data. 

 Choosing the model: choosing the proper model is very important. Models like: 

Random Forest, Support Vector Machines (SVM) and Neural networks are often 

used to identify dangerous schemes. 

 Handling fraudulent data: in the case of fraudulent data in the dataset, different 

approaches can be followed to handle them. Deleting rows, columns or other 

methods can be helpful to solve this issue. 

 Modeling and uncertainty handling: uncertainty can be handled with various 

modeling methods, including cross-validation and hyperparameter research to 

ensure a good model. 

 

 

Conclusions about this model: 

 Essential factors influencing the performance of the fraud detection model 

include credit card fraud detection itself, the number of features, the number of 

transactions, and the correlation between features. 

 Deep learning (DL) methods, specifically Convolutional Neural Networks 

(CNN) and their associated layers, are traditionally linked with text processing 

and form the core of the model. Leveraging these methods for credit card fraud 
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detection has demonstrated superior performance compared to conventional 

algorithms. 

 Using Convolutional Neural Network in this project for the detection of 

deceitful transactions demonstrated that we have explored a very accurate 

machine learning method.  

 

 

Preventing fraudulent transactions: 

 There are some actions that can be taken in order to reduce the high levels of 

fraudulent transactions, like: 

 Identity verification: requiring a strong identity verification process for the users, 

including two-factor authentication. 

 Urge users to regularly change and refresh their passwords. 

 Activity monitoring: by setting up a monitoring system for users’ activity it can 

detect suspicious and unusual activity. 

 Use advanced technology and analytics to identify suspicious transaction 

patterns. 

 Risk analysis: use risk analysis technology to evaluate the potential level of 

threat for each transaction. Also, by being aware of possible credit card usage 

patterns that are common for fraudulent transactions. 
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APPENDIX A 

 

 SOME CODING ELEMENTS 

 

 

Figure 40. Interpreting the logistic regression model 

 
Figure 41. Interpreting the XGBoost Model 

 
Figure 42. Output of using XGB classifier 
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Figure 43. Performance metrics for fraud detection (the cost of misclassification) 
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Figure 44. Cost of misclassification 

 

And this is the confusion matrix: 

 

 
 

Figure 45. Confusion matrix XGB classifier 
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Figure 46. Code for changed cost of fraudulence 

 
Figure 47. Matrix for changed cost 
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Figure 48. Calculating the accuracy score 

 

 

 
 

Figure 49. Output of accuracy calculation 

 

 

 
 

 

 




