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    ABSTRACT 

 

MACHINE LEARNING ALGORITHMS FOR CYBER ATTACK DETECTION 

AND CLASSIFICATION 

  

Mullalli, Erindi 

Master of Science, Department of Computer Engineering 

Supervisor: Prof.Dr. Betim Çiço 

  

 As a result of the accelerated development and expansion of technology in the 

present day, a new concern has emerged: cyberattacks. This has generated significant 

concern across various domains globally, leading to considerable disruption in 

networks and presenting PC users with a multitude of challenges. Presently, a 

multitude of organisations are striving to combat these types of cyber-attacks through 

the implementation of novel detection and subsequent destruction methods. The 

domain of machine learning enables computers to acquire knowledge and skills 

without requiring explicit programming. There are an abundance of implementation 

strategies for this technology. This study aims to demonstrate a diverse array of 

algorithms utilised in the defence against various cyber-attacks. This paper will 

examine various classification algorithms utilised to defend against diverse cyber-

attacks, as well as the methods of defence against these attacks. The implementation, 

accuracy, and testing time of these algorithms will vary depending on the classification 

of the attack. This thesis will discuss various varieties of these algorithms. 

  

Keywords: Performance, cyber-attack, cyber-defense, machine learning, and deep learning 
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ABSTRAKT 

   

Algoritmet e mësimit të makinerisë për zbulimin dhe klasifikimin e 

sulmeve kibernetike 

 

Mullalli, Erindi 

Master of Science, Department of Computer Engineering 

Udhëheqësi: Prof.Dr. Betim Çiço 

  

Si rezultat i zhvillimit të përshpejtuar dhe zgjerimit të teknologjisë në ditët e sotme, 

është shfaqur një shqetësim i ri: sulmet kibernetike. Kjo ka krijuar shqetësim të madh 

në fusha të ndryshme globalisht, duke çuar në ndërprerje të konsiderueshme në rrjete 

dhe duke i paraqitur përdoruesit e PC me një mori sfidash. Aktualisht, një mori 

organizatash po përpiqen të luftojnë këto lloje të sulmeve kibernetike përmes zbatimit 

të metodave të reja të zbulimit dhe shkatërrimit të mëvonshëm. Fusha e mësimit të 

makinerive u mundëson kompjuterëve të fitojnë njohuri dhe aftësi pa kërkuar 

programim të qartë. Ka një bollëk strategjish zbatimi për këtë teknologji. Ky studim 

synon të demonstrojë një grup të larmishëm algoritmesh të përdorura në mbrojtjen 

kundër sulmeve të ndryshme kibernetike. Ky punim do të shqyrtojë algoritme të 

ndryshme klasifikimi të përdorura për t'u mbrojtur kundër sulmeve të ndryshme 

kibernetike, si dhe metodat e mbrojtjes kundër këtyre sulmeve. Zbatimi, saktësia dhe 

koha e testimit të këtyre algoritmeve do të ndryshojnë në varësi të klasifikimit të 

sulmit. Kjo tezë do të diskutojë varietete të ndryshme të këtyre algoritmeve. 

Fjalë kyce: Performanca, sulmi kibernetik, mbrojtja kibernetike, mësimi i makinerive 

dhe mësimi i thellë 
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CHAPTER 1 

INTRODUCTION 

 

 Presently, scientists are devoting considerable effort to the development of an 

intelligent system that can detect various types of intrusions. 

 

 

I.1 Purpose of this thesis 

This is to achieve theThe objective of this endeavour is to develop an intelligent 

system capable of identifying various types of network anomalies and to evaluate the 

efficacy of each approach we implement. Machine learning techniques were selected 

due to their widespread recognition and acceptance as a preferred approach. They are 

capable of acquiring knowledge independently, without requiring explicit 

programming. Obtaining a more in-depth comprehension of deep learning and 

machine learning classification methods is an additional goal that this endeavour aims 

to accomplish. With the use of four different kinds of datasets, the purpose of this 

investigation is to determine how accurate the learning algorithms are. 

I.2 The thesis synopsis 

Including an introduction, a literature review, materials and methods, results 

and discussion, conclusions, and a section on future work are the six chapters that 

make up this project. The introduction section comprises a succinct delineation of the 

project, its intended objective, and an outline of the thesis. The literature review is 

structured into three sections, each of which pertains to cyber-attacks and identifies 

which varieties cause the most damage. The subsequent segment delineates the various 

forms of safeguards against cyber-criminals and cyber-attacks. The collection of 

machine learning algorithms that are utilised in the area of cyber security is presented 

in the third part of this introduction. The next section provides an analysis of the 

achievements of this endeavour in light of the sources that were mentioned. In the 
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section under "Materials and Methods," a comprehensive overview of the datasets that 

were utilised for the research is included, along with an explanation of the reasons 

behind their selection. The structure is divided into two distinct portions. In the first 

part of the presentation, an overview of the datasets that were used is presented. 

Detailed information on the results of the training time, testing time, training accuracy, 

and testing accuracy of the algorithms that were applied for machine learning and deep 

learning may be found in the section under "Result and Discussion." Even things like 

the Discussion and Results are broken up into four distinct parts for each dataset that 

is being offered. In the section, "Conclusions," you will find a summary of the results 

and consequences of the study, as well as some recommendations for further research 

that may be conducted in the future. Finally, in the section under "References," we 

provide hyperlinks to the many sources that we have relied on during our research.   
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CHAPTER II 

 

REVIEW OF THE LITERATURE 

II.1 Assaults on the system  

       A method that is used to compromise the data that is kept on a computer that is 

the subject of an assault is referred to as a cyber-attack. This may be accomplished by 

unauthorised access, theft, acquisition, alteration, or disabling. There is another way 

to describe a cyber-attack, which is an incursion that targets the system of a computer 

with the purpose of compromising the integrity, availability, and confidentiality of the 

data. In addition to that, it is also known as the CIA trinity. The protection of data from 

being accessed by those who are not permitted to do so is an example of secrecy. When 

a person who is not permitted to do so acquires your credit card information or 

password, this is a breach of confidence. Integrity refers to the guarantee that data 

cannot be altered by anyone who are not permitted to do so. The provision of permitted 

users with access to the data whenever it is necessary is what we mean by 

"availability." The deletion of each and every file on your computer is an example of 

a circumstance in which the availability is lost. It is possible to launch a broad range 

of cyberattacks. 

II.1.1 Abuse of resources as a target of attack 

Employees of an organisation may, on occasion, inadvertently allow access to 

information belonging to the institution to persons who are not permitted to have 

access to it. A Man-in-the-Middle attack, often known as a MitM assault, is an example 

of an attack that takes advantage of resource mismanagement. An instance of this kind 

of intrusion takes place when a criminal places oneself in the middle of a client and a 

server's connection that requires reliability. In this kind of attack, the cybercriminal 

makes changes to the communication that takes place between the server and the 

corresponding client. Both the server and the client are unaware of the fact that a third 

party is acting as an intermediary between them and is aware of all of the 

communications that are being sent back and forth between them. When it comes to 
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ModM attacks, session hijacking is one kind.  During this kind of attack, a 

cybercriminal inserts themselves into the middle of a session that is taking place 

between the server and the client (the client in this case being the victim). After this, 

the cybercriminal will change the Internet Protocol (IP) address of the client to a 

different one of his choice. As a consequence of this, he resumes the connection with 

the server, which, ignorant to the circumstances, identifies the cybercriminal's IP 

address as that of a trusted client. After this, the device used by the cybercriminal 

creates a link with the computer belonging to the client, who is the victim, and then 

forges the sequence number and internal data of the client's machine. 

II.1.2 User-access compromise 

 Presently, a prevalent form of attack involves the compromise of personally 

identifiable information (Passwords, Credit Card Numbers, and so forth). Personal 

information can be compromised through a variety of means, including social 

engineering, surveillance, brute force, dictionary, phishing, spearfishing, and so forth. 

Sniffing is a technique by which a cybercriminal can intercept data during its wireless 

transmission from one personal computer to another. Numerous gratis software 

programmes, including Wireshark, aid cybercriminals in conducting surveillance. 

Typically, this type of assault is employed in public areas with wireless access, such 

as cafeterias. This type of attack enables the cybercriminal to observe the content that 

is submitted on the website as well as the requests that are returned. Social engineering 

is a form of attack in which a cybercriminal manipulates a victim psychologically into 

divulging sensitive information. There exist numerous methods by which this may be 

accomplished. In class, for instance, when the instructor inquired as to how each 

student had entered the Facebook password, they began to demonstrate it individually.  

A brute force attack occurs when a cybercriminal attempts to deduce the password of 

an account by trying each possible combination of characters until they succeed. The 

dictionary assault is a more sophisticated form of intrusion than the brute force attack. 

Similar to the brute force attack, the cybercriminal endeavours to discover the 

passwords by trying every possible combination of characters. However, in this 

instance, he possesses a list consisting of the most frequently used passwords, 

including '1234' and others. Phishing is a form of cyberattack in which a target is duped 

into divulging sensitive information. Phishing, also referred to as the theft of sensitive 
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personal information like credit card numbers and passwords, is executed by a 

cybercriminal. 

II.1.3 Root access compromise  

  This form of attack bears significant resemblance to user access compromise; 

nevertheless, in contrast to the latter, the cybercriminal gains access to the 

administrator account rather than the specific host. The administrator account 

possesses distinct privileges that distinguish it from the majority of other accounts 

within the network system. 

 

II.1.4 Web access compromise 

           This form of intrusion is carried out through the exploitation of vulnerabilities 

present on various websites.  Web compromise assaults are frequently executed 

through the utilisation of SQL (structured query language) injection and XSS (cross-

site scripting).SQL injection is a form of injection that enables cybercriminals to 

compromise data, disrupt operations, or cause damage to information by 

impersonating their identities or rendering it ineffective, among other things. 

 

        II.1.5 Malware attack  

Malware (short for malicious software) refers to a type of software that is 

capable of causing damage to a computer system.  Malware has been utilised by 

hackers for decades to achieve a variety of goals, including disabling or destroying 

cyber-systems, compromising systems or networks, stealing massive amounts of data, 

injecting malicious programmes, and so forth. On the basis of their propagation 

frequency and intended use, malware can be categorised into various categories. 

Among this category, the most prevalent are ransomware, spyware, viruses, Trojans, 

and worms. 

Virus assault: Comparable to how a biological virus replicates within the 

human body, a computer virus can also duplicate itself. It can infect other files on your 

computer after cloning itself and may be attached to a software application. Numerous 

varieties of viruses exist, including the Elk Cloner virus and the Melissa virus.  
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Worms: Unlike viruses, worms can replicate without the assistance of 

software. Self-cloning is possible via propagation across the network. The solitary 

worm is capable of cloning itself via email attachments. Worms are incapable of 

infecting computer files. Worms are capable of executing Denial-of-Service (DoS) 

attacks by replicating themselves across all contacts in the victim's email and by 

utilising all available network resources.Trojans are fundamentally dissimilar to 

viruses and worms in essence. Trojan-launching cybercriminals typically employ 

social engineering techniques to convince their targets to install the Trojan on their 

own systems. A Trojan does not possess the capability to replicate or infect the files 

present on a computer. Its sole purpose is to provide cybercriminals with a gateway 

through which they can execute malware whenever they deem it necessary. 

Spyware is a form of malicious software designed to monitor the activities of 

targets instead of initiating an actual attack. Without the cognizance of the victim, this 

type of malware steals sensitive information from them, including passwords, credit 

card numbers, and logon credentials.  

Ransomware is a form of malicious software that obstructs a collection of 

applications on a system with the intention of extracting a ransom, which is typically 

monetary. Typically, such assaults are executed with the assistance of a Trojan. 

Ransomware is illustrated by the name Wannacry.  

 

II.1.6 Denial of Service  

The primary objective of this category of cyber-attack is to disrupt the typical 

functioning state of a system or network. Distributed Denial of Service attacks, 

network-based attacks, and host-based attacks are the three primary classifications of 

denial of service attacks. 

Host-based assault:  This category of attacks involves the installation of viruses 

and malware within computer systems with the purpose of carrying out their payload 

or operation, which is to inundate the entire network system with an infinite number 

of host requests. 

Network-based attack: In contrast to the aforementioned form of attack, which 

requires a specific computer system as its target, cybercriminals infiltrate the entire 
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network with the intention of executing their payload and subsequently disrupting the 

network's regular operations. 

 

A Distributed Denial of Service (DDoS) attack is typically executed by a 

computer system or network with the intention of entirely deactivating the victim's 

network. 

 

 

II.2 Security measures to ward against cyberattacks 

            As a result of the existence of several defensive mechanisms, the system is 

protected, either totally or partly, from the aforementioned types of attack. As an 

alternative, these measures are often referred to as Intrusion Detection Systems, or IDS 

for short. 

 

II.2.1 Intrusion Detection Systems 

An intrusion prevention mechanism and an intrusion detection mechanism are 

both components of the intrusion detection system. In order to identify and regulate 

network activities that are taking place inside the network, an intrusion detection 

system, also known as an IDS, is developed by using a mix of hardware and software 

components. There are two separate categories that make up the Intrusion Detection 

System. These categories are determined by the detection technique and the aim. 

detection-based and data source-based classification techniques are the two types of 

classification methods that are employed by an intrusion detection system. A misuse-

based detection and an anomaly-based detection are the two unique subgroups that fall 

under the category of detection-based methods.  The source-based techniques and the 

network-based methods are the two subcategories that fall under the umbrella of the 

data source approach. 

Technique that is based on detection: Other names for signature-based 

detection are misuse detection and signature-based detection. The preservation of 
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recognisable attack behaviours, such as database signatures, is the overriding objective 

of this strategy. In addition to being extraordinarily rapid, the abuse approach generates 

an extremely low amount of false alerts. This technique, on the other hand, has a 

significant false alarm rate when it comes to situations in which there are no attacks or 

when there are attacks that have not been discovered. 

Method that is depending on the source of the data: Without much difficulty, 

the host-based technique is able to identify intrusions that originate from a particular 

machine. In addition to being able to accurately identify the behaviour of network 

objects like programmes, ports, and files, this approach also has the power to do so. 

On the other hand, the host-based strategy is dependent on host resources, which in 

this case are computers, and as a result, it is unable to recognise instances of network 

abnormalities or assaults. When compared to host-based techniques, network-based 

methods are able to function independently of the resources provided by the host, such 

as computers. By and large, routers and switches are the devices that are used to 

implement network-based approaches. This system is not reliant on any particular 

operating system and is able to differentiate between many types of network protocols. 

One of the limitations is that its use is limited to monitoring the flow of data inside a 

particular network and not beyond it. 

 

 

II.2.2 Protection against an assault on resource misuse 

A network intrusion detection system based on anomalies is required to prevent 

attacks involving the exploitation of resources. A system that falls into this category is 

able to monitor network flows and will raise the alarm in the event that an attempt is 

made to take control of a network session. This specific kind of system will produce a 

high number of false alerts in the event that zero-day threats are present, despite the 

fact that it has shown remarkable performance against known network assaults. It is 

advised that businesses use preventative measures, such as a Virtual Private Network 

(VPN), while accessing resources inside their network in order to maintain network 

security against zero-day attacks. This is done in order to protect the network from 

being compromised. 
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II.2.3 Protective measures against attacks that compromise both root 

and user access 

           The term "phishing" refers to a situation in which both root and user access 

have been effectively compromised. Furthermore, this indicates that the prevention 

and protection against spoofing attacks may be used to ensure that both root and user 

access to a particular system are protected. Utilising a strategy that is based on email 

as a defence mechanism against phishing attempts is one option that can be used to 

ensure its security. 

II.2.4 Provides protection against attacks that compromise the web 

            SQL injection and cross-site scripting attacks are two methods that 

cybercriminals use to launch a web access compromise attack against a particular 

website address. These attacks are carried out when this vulnerability is discovered.  

Anomaly detection and signature-based detection are the two separate detection 

approaches that are used in order to protect the system from assaults that are aimed at 

compromising the web.  In addition to this, it is necessary to establish a secure coding 

practice, keep an up-to-date knowledge of vulnerabilities inside the database, and 

apply updates for programmes that are capable of preventing vulnerabilities of this 

kind. 

II.2.5 Protection against malicious software 

The current worldwide epidemic that has affected the whole digital 

environment is malware, which is a kind of malicious software. Cybercriminals use 

this strategy to their advantage in order to secure computer systems and get access to 

sensitive information. Malware detection methods are an essential part of the defensive 

system since they serve as the first line of defence against assaults that are carried out 

by malicious software. There are three distinct categories that make up the detection 

mechanism. These categories are based on the method in which the malware detection 

process will be carried out. 

Signature-based: This technique is used rather often in the detection of 

malicious software. Companies that specialise in anti-malware techniques do malware 

analysis and then proceed to produce signatures, which are made up of a string of 

bytes. A pattern-matching algorithm is implemented, and signatures are used to assure 



 

 

10 

 

the safety of their customers. This is accomplished via the use of signatures. The most 

significant disadvantage of this technique, on the other hand, is that it is possible for 

malicious actors to modify a section of code and the programme that came before it in 

order to avoid detection by signature-based systems. It is also not possible to use this 

strategy to defend against zero-day attacks.  

The notion of behavior-based malware detection is strongly tied with 

signature-based detection; however, it utilises a different process for extracting 

characteristics. Signature-based detection is closely related to behavior-based malware 

detection. By using a detection method that examines the behaviours of the virus rather 

than its vocal communication, this approach is able to identify malicious software. 

Identification of malware that is capable of obfuscation and aberrant malware may be 

accomplished via the use of behavior-based malware detection, which is an appropriate 

approach. Malware that displays characteristics that are similar to one another is 

categorised under a single signature rather than establishing separate signatures for 

each individual byte code sequence. A considerable reduction in the number of false 

alarms generated by behavior-based approaches is achieved as a result of this. The 

behavior-based detection approach is distinguished by the presence of three separate 

components. The first component, which is identified as the data collector, is used for 

the purpose of collecting data that is associated with executable element information. 

In order to transform the data that has been acquired, the alternative component acts 

as a medium that acts as an intermediate. The last step in the process of generating the 

output involves comparing the representations to the database that contains the 

behaviour signature. 

 

 

Although the behavior-based detection strategy is far more effective than the 

signature-based approach, cybercriminals are nevertheless able to defeat this method 

by using tough countermeasures. This is the case despite the fact that the signature-

based approach is significantly more effective. Researchers in the modern day use a 

heuristic strategy, which is a combination of machine learning and data mining 

methods, in order to solve this difficulty. 
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II.2.6 Defense against Denial of Service attacks 

Defending a system from DoS (Denial of Service) attacks constitutes an extensive area 

of study. Defending against a DoS attack requires the implementation of two distinct 

strategies: attack prevention and detection. 

Preventing attacks: This technique is predominantly implemented in networking 

routers to identify malicious traffic based on signatures. An assault prevention method 

is also the initial line of defence in the event of a DoS attack. The following are some 

techniques utilised to filter packets:  

Ingress and egress filtering (a) The filtration packet grants access to internal network 

traffic contingent upon the equivalence of ingress (traffic entering the local network) 

and egress (traffic leaving the local network) traffic with the expected traffic from the 

originating IP.  

 

b. Router-based packet filtering: This form of packet filtering operates based on 

routing information pertaining to the source and destination IP addresses of the 

incoming packets. 

c. Packet-filtering by Hop Count: The hop count refers to the discrepancy between the 

initial value and the Time to Live (TTL) value of a packet in network traffic. Through 

this process, a network router generates a database table that contains the hop count of 

each user in relation to a particular destination. As a result, should the router detect an 

irregularity in the expected step counts, it will discard the packet and generate an alert 

to safeguard the network from potential threats or attacks. 

This category of detection mechanisms employed to thwart DoS attacks is comprised 

of the following two groups: 

a. Detection based on signatures: Malicious traffic is identified using this method by 

analysing the signatures of attack traffic data. 

b. DoS detection based on anomalies: This method is widely employed today for DoS 

detection due to the fact that attack patterns are significantly more complex than they 

were previously. In general, machine learning techniques are applied to this method. 
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This approach consists of two fundamental components. Initially, network 

characteristics such as Time to Live (TTL), IP packet length, and so forth, are extracted 

from network traffic data using Data Mining (DM) techniques. Subsequently, a 

detection model is built upon this feature representation. Second, incoming traffic is 

evaluated by this model to determine whether or not it is malevolent, based on the 

value of a predetermined threshold.  

 

 

II.3 Artificial Intelligence (Learning Machine) 

Machine learning is an umbrella term that is used to represent computational 

techniques that try to duplicate the learning processes of people via the use of 

computers in order to gain information automatically. These approaches are used in 

order to acquire knowledge. It includes a wide range of fields, some of which are 

computer science, statistics, psychology, and neurology, amongst others. It is a very 

large area of research. Significant progress has been made in the way that learning 

algorithms are implemented in the current day. This is the result of recent 

developments in the performance of processors and the storage of expansive amounts 

of data. Supervised learning, unsupervised learning, and reinforcement learning are 

the three separate categories that machine learning algorithms fall into. These 

categories are dependent on the learning strategies that they apply. During the training 

process of supervised learning algorithms, models are trained to the degree that they 

are mapped to the actual output labels. This allows the models to understand the 

connection that exists between the labels and the feature value that corresponds to 

them. Supporting Vector Machines, Logistic Regression, Random Forest, Decision 

Tree, and K-Nearest Neighbours are all examples of supervised learning algorithms. 

Neural networks, such as Convolutional Neural Networks, Recurrent Neural 

Networks, and Artificial Neural Networks (which also include Multilevel Perception), 

are also included in this category of neural networks. Unsupervised learning 

algorithms, on the other hand, are able to gain information from the complete training 

dataset without being aware of the outcome for individual inputs. Data that does not 

include any labels is used to train algorithms that are used for unsupervised learning. 
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The K-means clustering technique is only one of the many examples of an 

unsupervised learning algorithm that is now available. The purpose of a reinforcement 

learning (RL) algorithm is to learn from the environment in which it deploys an agent. 

This is the aim of the algorithm. The agent is able to gain knowledge by the activities 

that it does within the environment, and it uses this information to decide whether it 

will make a mistake or achieve success. A combination of supervised and unsupervised 

learning strategies is what makes up the algorithms that make up reinforcement 

learning. 

II.3.1 Decision Tree algorithm 

                             

                                            Fig 1.  The decision Tree algorithm 

The Decision Tree algorithm is a classification model based on rules. It is 

represented by a tree structure in which each feature is represented by a vertex, and 

the feature value is determined by each branch. The vertex positioned at the apex 

of the tree is referred to as the root. The component in question retains the largest 

proportion of the information gain (entropy differences) among all the features and 

is utilised to divide the training data appropriately. The term "leaves" refers to the 

vertices located at the bottom of the algorithm. The class is represented by a leaf. 

Throughout the classification process, the decision tree transitions to a top-down 

methodology to satisfy the classification instance. The following equation 

describes the information gain utilised in a decision tree to precisely divide samples 

in a tree-structured method:The Decision Tree algorithm is a classification model 

based on rules. It is represented by a tree structure in which each feature is 

represented by a vertex, and the feature value is determined by each branch. The 
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vertex positioned at the apex of the tree is referred to as the root. The component 

in question retains the largest proportion of the information gain (entropy 

differences) among all the features and is utilised to divide the training data 

appropriately. The term "leaves" refers to the vertices located at the bottom of the 

algorithm. The class is represented by a leaf. Throughout the classification process, 

the decision tree transitions to a top-down methodology to satisfy the classification 

instance. The following equation describes the information gain utilised in a 

decision tree to precisely divide samples in a tree-structured method: 

𝐺𝑎𝑖𝑛(𝑃, 𝑄) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃) − ∑
𝑃𝑣

𝑃
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃𝑣)                     𝐸𝑞  1

𝑣∈𝐷𝑄

 

         When applied to this scenario, Gain(P,Q) represents the entropy reduction that 

was applied in order to sort P according to feature Q. In a strategy that works from the 

top down, nodes are defined by characteristics that have an information gain value that 

is always growing. The uncomplicated implementation of the decision tree method and 

the high classification accuracy it offers are the two key advantages of using this 

technique. The complexity of the decision tree classifier's computations is, on the other 

hand, the most significant disadvantage related to it. 

II.3.2 Random Forest algorithm 

                                 

                                     Fig 2. Random Forest algorithm  

The algorithm known as random forest is made up of a collection of many 

different decision trees coming together. Every single tree that is still a part of the 

Random Forest has the ability to produce a prediction class. In reality, decision trees 
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are able to select the prediction of the model based on the class that obtains the most 

votes.  It is possible to use an algorithm of this kind for both classification and 

regression purposes. Through the use of this strategy, an extra element of 

unpredictability is added throughout the process of tree development. As opposed to 

searching for the best attribute at the moment of splitting a node, it seeks for the best 

attribute from a random selection of attributes. Because of this, the random forest 

creates a substantially wider variety of trees, which allows for a higher-level bias to be 

accommodated in exchange for a lower-level variance. As a consequence, the random 

forest often results in a significantly better model. 

 

II.3.3 The Algorithm behind Logistic Regression 

 

                                            

                                            Fig 3. The Algorithm behind Logistic Regression 

      It is standard practice to use the Logistic Regression technique in order to ascertain 

the probability that a certain sample belongs to a particular category (for instance, to 

ascertain whether or not this file contains a pathogen). If the estimated probability is 

more than fifty percent, then our training model will make the prediction that the 

provided sample is a member of the class that has been defined (the sample that 

belongs to the positive class will be labelled with the value 1). On the other hand, if 

the estimated probability is less than fifty percent, the training model will make a 

prediction that the sample that was supplied does not belong to the class that was 

specified (which is referred to as the "negative class") and will assign the value zero 
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to the sample. As a result of these calculations, Logistic Regression may be used as a 

technique for binary classification. The output of a logistic regression method is not 

the actual result itself, despite the fact that it is feasible for the algorithm to calculate 

a weighted sum of a set of input characteristics (along with a bias). In this particular 

scenario, the output is the logistic of the result. With a range of values ranging from 0 

to 1, the Logistic function, which is represented by the symbol σ(. ), is a sigmoid 

function.One way to characterise the Logistic function is as follows:             

                     𝜎(𝑡) =  
1

1+𝑒−𝑡     𝑜𝑟   𝑌 =
1

1+𝑒−𝑥            𝐸𝑞 2    

Upon receiving an input of x (or t), the function proceeds to return an output of Y (or 

σ(t)). 

II.3.4 Supporting Vector Machine algorithm 

                          

                                   Fig 4. Supporting Vector Machine algorithm  

Among the support vector machine algorithms that are used in the field of cyber 

security, Supporting Vector Machine is among the favourite methods. In order to 

divide the different classes, this technique makes use of a hyperplane, which is one of 

the significant characteristics of this approach. The technique makes use of a 

hyperplane, the degree of which is maximised in order to maximise the gap that exists 

between it and the data point that is closest to it. The method may be used in both two-

dimensional and three-dimensional planes to get the desired results. The objective of 

the Supporting Vector Machine is to accurately classify the data. A few of the benefits 
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of the Supporting Vector Machine include its simplicity of implementation, its 

demonstrated exceptionally high accuracy rate, and its capability to generate 

hyperplanes with time complexity. One drawback associated with this approach is the 

challenge in determining the most effective kernel size. This algorithm finds 

applicability in a wide range of domains, including medicine, security applications, 

pattern recognition, and more. 

II.3.5 Gaussian Naïve-Bayes algorithm 

                                  

                                           Fig 5. Gaussian Naïve-Bayer algorithm 

The Naïve-Bayes classifier is an additional probabilistic type of supervised 

algorithm. The algorithm calculates the probability of a given class given inputs for all 

attributes. The model for this algorithm is constructed using the Bayes rule. The 

alternative name for the Naïve-Bayes algorithm is the generative model. The Naïve-

Bayes classifier calculates the conditional probability of each attribute given in a class 

p (a/b) using the initial probability of all classes, p (b), in order to determine the 

probability of a class p (b/a). Generalisation of the Naive-Bayes algorithm formula:  

𝑝 (
𝑏

𝑎
) =

𝑝(𝑎, 𝑏)

𝑝(𝑏)
=

𝑝(𝑎/𝑏)𝑝(𝑎)

𝑝(𝑏)
                𝐸𝑞  3  

"b" represents the class vector, whereas "a" represents the input vector. The primary 

benefit of the Naive-Bayes classifier is its robustness when confronted with chaotic 

training data. Due to its reliance on probabilistic values for all attributes, the 

performance of a Naive-Bayes classifier remains unaffected by low-level training 
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samples. The principal drawback of the Naive-Bayes classifier is that it treats all 

attributes as independent, despite the fact that this is rarely the case in practice. 

II.3.6 K-means clustering algorithm 

                                 

                                              Figure 6. K-means clustering algorithm 

The objective of the well-known unsupervised machine learning algorithm K-

means clustering is to identify predefined clusters within a given dataset; the value of 

each cluster group is denoted by k. Clusters are generated on the basis of shared 

characteristics among all the data points within the given set. Consider an illustration 

of k-means clustering. Assigned to its nearest centroids are a number of m data points 

in accordance with Euclidean distance measures. The Euclidian distance equation is: 

                           𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  ∑ 𝑑(𝑥𝑖 , 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠(𝑥𝑖))𝑚
𝑖=1                𝐸𝑞 4  

where centoids (x_i) represents the centroid to which the data point x_i is 

assigned. Subsequently, the centroids are recalculated using the average distance 

between each data point that was assigned to the centroids. These steps are iterated 

throughout the algorithm until no data point can modify the cluster centroids.   By 

performing these operations, the distance between each centroid and the corresponding 

data points within a cluster is diminished. These algorithms are utilised to identify data 

patterns and data clusters within the context of big data, where data labelling becomes 

a laborious task. One drawback of k-means clustering is that the k value must be 
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specified in advance. For the computation of attribute similarity, k-means clustering is 

utilised in security applications. 

 

II.3.7 K-Nearest Neighbor (KNN) algorithm 

                   

                                             Fig 7. K Nearest Neighbor  

 The K-Nearest Neighbour algorithm, often known as KNN and shortened as 

KNN, is a well-known algorithm that is recognised for its simplicity throughout the 

execution of a programme. The method displays a great amount of usefulness whether 

it is used to either classification or regression problems. The supervised algorithms 

that are the most well-known to the general public. This technology is now being 

employed in a wide variety of technical fields. The scale of the dataset as well as the 

classification or regression issue that is being addressed both have a role in 

determining the k-value that is incorporated inside the K-Nearest Neighbour 

algorithm. In situations when continuous variables are being considered, the Equation 

of Euclidean Distance is often used. When calculating the distance between the data 

to be tested (x) and the data to be trained (k), the Euclidean distance is utilised. This 

allows for the determination of the elements that are located in the closest vicinity to 

one another. The following equation represents the Euclidean distance in a 

dimensional space with k dimensions, and it is based on the two characteristics 

x=[x_1,x_2,—…,x_k] and y=[y_1,y_2,… y_k]. 
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                                         𝐷(𝑥, 𝑦) = √∑ (𝑦𝑖 − 𝑥𝑖)2𝑘
𝑖=1                          Eq 5 

 Once the complete accumulation of KNN data is complete, the KNN majority 

will be utilised as a class for the data that will be evaluated.  

 

II.3.8 Network of Artificial Neural Circuits 

                                  

                                         Fig 8. Network of Artificial Neural Circuits 

 Nodes are the building blocks of Artificial Neural Networks (ANN), which are 

susceptible to the impact of neurons found in the natural brain. It is necessary for an 

Artificial Neural Network (ANN) to have a minimum of three layers, which are the 

input, the hidden, and the output layers. The architecture of its network makes it 

possible to determine whether or not it has more than one disguised layer on the inside. 

It is the buried layer that receives the output of the input layer, which is then sent to 

the output of the layer that comes after it, and so on and so forth. Throughout the 

learning process within artificial neural networks, inputs (x_1, x_2, x_3,..., x_(n-2)), 

x_(n-1), x_n) are provided with an output label denoted by the value y. The label 

assigns a weight to the information assimilated by the input, which is represented by a 

weight vector (w_1, w_2,..., w_(n-2), w_(n-1), w_n). During the entirety of the 

learning process, the weights underwent modifications that effectively mitigated the 

learning error. The formula for calculating error is as follows:   

𝐸 =  ∑|𝑑𝑖 − 𝑦𝑖|                                 𝐸𝑞  6 

𝑛

𝑖=1
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           The variable "d_i" represents the desired output, "y_i" denotes the current 

output, and "E" signifies the discrepancy between the two; this variance represents the 

error. The modification is achieved through the utilisation of back-propagation, a 

gradient algorithm wherein the learning process iteratively practices backwards and 

forwards until the model achieves an error value below a predetermined threshold. The 

weighted vector is adjusted in accordance with the following equation: 

                                           𝑤𝑖,𝑗 ← 𝑤𝑖,𝑗 + ∆𝑤𝑖,𝑗                                        𝐸𝑞 7  

where "i" represents the input node and "j" represents the concealed node. 

II.3.9 Convolutional Neural Network 

                    

                                     Fig 9. Convolutional Neural Networks  

 An additional category of algorithms utilised in deep learning is the 

Convolutional Neural Network (CNN). Generally, it is utilised to manage enormous 

training datasets through the abstraction and representation of attributes in a 

hierarchical fashion. The performance of conventional machine learning algorithms is 

negatively impacted when confronted with a very large dataset or when the data is 

dimensional. To tackle this challenge, the implementation of Deep Learning is 

supported by graphic processing units (GPUs) for the purpose of processing extensive 

datasets. Among all deep learning algorithms, convolutional neural networks are 

utilised in cyber security applications to a significant degree. There are two main layers 

that make up the convolutional neural network. These levels are the convolutional 

layer and the pooling layer. The convolutional layer is responsible for making use of 

many kernels of the same size in order to execute the convolution of the input data. In 

the event that the desired attribute is available in the input data, the convolution 
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operation will retrieve it by assigning a high value to a random place. On the other 

hand, if the desired attribute is not there, the operation will return it. This is the 

equation that is used to determine the value that is anticipated: 

                                               ℎ =  ∑ ∑ 𝑤𝑘,𝑙𝑥𝑖+𝑘−1,𝑗+𝑙−1
𝑚 
𝑙=1

𝑚
𝑘=1                   𝐸𝑞 8   

The input is denoted by x, the convolution kernel is denoted by w, and the output of 

the convolution is determined by h. The succeeding layer, which is referred to as the 

pooling layer, is used to lower the size of features by using two separate pooling 

strategies: maximum pooling and average pooling. All of these techniques are distinct 

from one another. In contrast to the method of average pooling, which determines the 

average value of the characteristics, the method of max-pooling chooses the value that 

is the highest. Additionally, convolutional neural networks make use of an activation 

layer that is known as a rectified linear unit. This activation layer combines perceptions 

by using a recognised activation function:  

                                                  𝑓(𝑥) = max(0, 𝑎)                              𝐸𝑞 9                    

The expense is one disadvantage of the convolutional neural network. The time 

required to implement this algorithm is an additional drawback, which is attributable 

to the number of layers. 
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II.3.10 Neuronal networks that are recurrent 

                 

                            Fig 10.  Neuronal networks that are recurrent 

 The performance of typical machine learning algorithms is unacceptable in a 

wide variety of applications, particularly those in which the output of the present state 

is reliant on the output of the past states of a variety of states. This problem occurs as 

a result of the lack of dependency that exists between the input and output in algorithms 

of this kind. In comparison to all other algorithms, the Recurrent Neural Network 

algorithm, which is an extra algorithm for Deep Learning, accomplishes the 

management of various sequential data kinds with an outstanding level of 

effectiveness. There are at least three levels that make up the Recurrent Neural 

Network. These layers include the hidden layer, the output layer, and the input layer. 

Recurrent neural networks are only capable of transferring data in a single way, from 

the input layer to the buried layer inside the network. This one-way data flow is mixed 

with data from a layer that came before it that was successively disguised, and then it 

is added to the layers that are now hidden. Each and every piece of information is 

stored inside the hidden layers of the recurrent neural network architecture. The vector 

sequence of the hidden layer, denoted as h=(h_1,h_2,h_3…h_(N-1),h_N), is computed 

by the Recurrent Neural Network to determine the vector of the output layer, 

y=(y_1,y_2,y_3…y_(T-1),y_T) [13]. from t=1 to t=T iteration of the given equations 

ℎ𝑡 = 𝐻(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ)       𝐸𝑞 10      

  𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦    𝐸𝑞 11 
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The symbols W (weight matrix), b (bias vector), and H (hidden layer) denote 

individual components of the model. 
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CHAPTER III 

THE METHODS AND THE MATERIALS 

 

III.1 Datasets  

 The kdd cup dataset, the nsl-kdd dataset, the Kyoto dataset, and the UNSW-

NB15 dataset were all employed in this experiment. 

 

III.1.1 Dataset KDD  

 There are roughly 4.9 million single-connection vectors that are included in the 

KDD Cup dataset. Each vector is comprised of 41 properties that may be categorised 

as either normal or harmful. There are four unique types of assaults that are included 

in the KDD Cup dataset. These are as follows: Cancellation of service (revocation)As 

a result of this kind of attack, the memory of the device becomes overloaded and 

occupied, which prevents it from responding to the request when it is received. It is 

the most effective protection against this kind of assault to turn off the device while it 

is being attacked. Attack from the User to the Root()In this kind of attack, a 

cybercriminal who has privileged access to a device makes an effort to get access to 

the router by taking advantage of weaknesses in the system. There are various 

approaches to accomplish this, including phishing attacks, sniffing (also referred to as 

packet controlling), social engineering, remote to local attacks (in which a 

cybercriminal without access to the device delivers packets from a computer device to 

a network system and exploits system vulnerabilities to gain access to the device), and 

probe attacks (in which a cybercriminal without access to the device delivers packets 

from the device to the network system and exploits the system vulnerabilities to gain 

access to the computer device).  Fundamental attributes, traffic attributes, and content 

attributes are the three categories that are used to classify the characteristics that are 

included in the kdd collection of information. The category of essential attributes 

covers all features that are capable of being deleted from an IP/TCP connection. All of 

these characteristics contribute to a complete delay in detection, and a large part of 
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them do so.  The category of traffic characteristics is comprised of attributes that are 

calculated with regard to a window interval that has been set. Additionally, it is 

subdivided into two subcategories, which are referred to as "same host attributes" and 

"same service attributes." Connections that have had the same destination host as the 

current connection for the previous two seconds are examined using the same host 

characteristics as the current connection they are examining. The capacity to compute 

statistics that are related with the behaviour of the protocol is another feature that this 

characteristic has. Exactly the same service qualities are being used by both the 

connection that is now being investigated and the connection that was examined just 

two seconds ago. Other names for these two subcategories of traffic characteristics are 

time-based and time-based characteristics. On the other hand, there are a vast number 

of slow-moving probing attacks that are able to scan ports (or hosts) by making use of 

time intervals that are longer than two seconds; for instance, one of these assaults could 

manifest itself once per minute. As a consequence of this, the intrusion patterns that 

such attacks attempt to establish within a time span of two seconds are not successful. 

As a result, in order to resolve this problem, the characteristics of the same host and 

service are recalculated, but this time they are based on the connection window of one 

hundred connections. Different names for this are connection-based traffic 

characteristics and connection-based traffic attributes. There are many other types of 

intrusions, such as User to Root Attacks and Remote to Local Attacks; yet, none of 

these types of intrusions display regular sequential patterns. The data component of 

the transmission is often where these specific types of attacks are inserted, and they 

only have a single link between them. The possession of a number of characteristics 

that are able to examine the data section for suspicious activity is very necessary in 

order to identify these types of assaults. There is another term for this, and that is 

content attributes. 

 

 

III.1.2 The dataset, NSL-KDD  

 Both the KDD dataset and the NSL-KDD dataset are comparable to one 

another. Each of the four separate subcategories that make up the dataset are as 

follows: KDDTest+, KDDTest-21, KDDTrain+, and KDDTest+. These include 
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KDDTrain+ and KDDTest+, both of which are comprehensive datasets that include 

all of the components. The KDDTest-21 and KDDTtrain-21 datasets, on the other 

hand, individually account for just twenty percent of the whole dataset. All of the NSL-

KDD datasets have a total of 43 characteristics, which are included in each dataset. 

Each dataset has a total of 41 characteristics, the first 41 of which are referred to as the 

traffic input. The remaining two attributes are referred to as Label, which indicates 

whether the traffic input is an attack or not, and Score, which indicates the severity of 

the attack traffic input. As was previously described, this dataset includes four 

categories that are identical to those found in the KDD dataset. These categories are as 

follows: denial of service attack, remote to local assault, user to root attack, and probe 

attack. A total of four categories have been established for the qualities that are 

included in the traffic problem data record. These categories are as follows: intrinsic, 

content, host-based, and time-based. These groups are employed by the intrusion 

detection system in order to successfully face the traffic that is coming in. For the 

purpose of transporting the core information that is available, the inherent 

characteristics of a packet are exploited. There are characteristics in the dataset that 

fall into the intrinsic category, and they range from 11 to 9. There is information that 

is stored in content attributes that is related to the initial segments. Rather of being 

communicated in a single chunk, these characteristics are actually conveyed in 

numerous pieces. The infrastructure of the network is able to acquire access to the 

cargo by making use of these data via their utilisation. There are twenty-two different 

qualities that fall under the content category that is included inside the document. The 

study of traffic input takes place within a two-second period, and time-based 

characteristics include this analysis. These characteristics include information such as 

the number of connections that the programme tried to make with the same host. There 

are many other properties.  Quantities and rates make up the vast bulk of the many 

qualities that fall under this category. In the same way as time-based characteristics do 

not evaluate the traffic that occurred inside the preceding two seconds, host-based 

attributes do not do so either. The traffic, on the other hand, is examined over a series 

of links that have been formed. In order to take into consideration accessing attacks 

that last for more than two seconds, host-based characteristics have been developed 

expressly for this purpose. Within the dataset, the host-based category includes 

characteristics that range from 32 to 41 in various numbers. 
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III.1.3 Kyoto dataset 

  The Kyoto dataset is a collection of data that was generated at Kyoto 

University. It was constructed utilising actual traffic data. Fourteen attributes were 

extracted from the twenty-four statistical attributes comprising this type of dataset.  A 

further ten attributes are affixed to these fourteen. The dataset exhibits a remarkable 

degree of precision. Through the utilisation of honeypots, web crawlers, darknet 

sensors, and email servers, this category of data was made accessible. 

 

III.1.4 UNSW-NB15 dataset 

 In this programme, we will also utilise the UNSW-NB15 dataset. The dataset 

comprises a total of 42 attributes. Three of the characteristics listed contain categorical 

(i.e., non-numerical) values, whereas the remaining 39 attributes exclusively contain 

numeric values. This particular dataset was selected due to its suitability for 

implementation in intrusion detection systems.. 

 

 

III.2 Machine Learning Algorithms  

 During the course of this experiment, the algorithms that were used include the 

linear and nonlinear Supporting Vector Machine (SVM) method, the Gaussian Naïve-

Bayes method, and the Logistic Regression Algorithm. Among the several neural 

network algorithms, the stochastic gradient descent algorithm, the random forest 

algorithm, the gradient boosting algorithm, the K-nearest neighbour algorithm, the 

convolutional neural network algorithm, and the recurrent neural network algorithm 

are all examples. The Multilevel Perception Algorithm, which is a subset of the 

Artificial Neural Network, is also implemented inside the Artificial Neural Network. 
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III.2.1 Gaussian Naïve Bayes Algorithm 

                      

                   Fig 11. Implementation of Naïve Bayes Algorithm in Python 

 In accordance with what was said before, the Gaussian Naïve-Bayes algorithm 

is built on the Bayes theorem. The operation of this algorithm is carried out in a 

succession of stages. Performing the calculation of the earlier probability for each of 

the class designations that have been supplied is an essential step before moving on. 

After that, we need to build a table by making use of the preceding data that we have 

available to us and determining the frequency of recurrence for each phenomena. 

Following this, the technique that follows involves determining the likelihood 

probability that is associated with each characteristic across all of the classes 

combined.  Once each of them has been finished, it is important to establish each of 

the values that have been determined inside the Bayes Formula in order to establish 

the posterior probability. This is necessary in order to calculate the posterior 

probability. Following the completion of each of these steps, the class that has the 

greatest probability is determined to be the sample output. In spite of the fact that the 

implementation of this method is very short, it has a somewhat lower accuracy rate in 

comparison to the other algorithms. 
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III.2.2 Logistic Regression  

       

 

                      Fig 12. Logistic Regression Implementation in python 

 Logistic regression is an extra classification procedure that is often employed 

in this process. This type of Python experiment employs Multinomial Logistic 

Regression due to the fact that there are more than two expected outcomes. The 

algorithm in question is a derivative form of Binary Logistic Regression. Comparable 

to the Binary Logistic Regression, the Multinomial Logistic Regression estimates the 

probability of a categorical shift using the maximal likelihood evaluation. In the 

context of Multinomial Logistic Regression, a meticulous examination of model sizes 

and consideration of enigmatic events are not required. It finds application in 

numerous disciplines, including medicine, statistics, and more. We are now going to 

examine the training process of this algorithm. The objective of the training process is 

to position the vector represented as θ; consequently, the model assigns a high 

probability to positive samples and a low probability to negative samples. The cost 

function of the trained sample x is: 

𝑐(𝜃) = {
− log(𝑝)    𝑖𝑓 𝑦 = 1

− log(1 − 𝑝)  𝑖𝑓 𝑦 = 0
                       𝐸𝑞 12  

 P represents the calculated probability, while y denotes the result. This type of 

cost function is logical due to the fact that -log⁎(x) significantly increases as the input 

value x approaches zero. Consequently, if the model computes a probability near zero 
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for a positive sample, the cost will be extremely high. However, if the model computes 

a probability near one for a negative sample, the cost will also be extremely high. 

However, since -log⁏(x) approaches 0 when x approaches 1, the cost will be 

approximately zero if the calculated probability for a negative sample is close to zero 

and for a positive sample is close to one; this is precisely what we desire. The following 

describes the cost function of logistic regression: 

𝐽(𝜃) = −
1

𝑚
∑[𝑦(𝑖) log(𝑝(𝑖)) + (1 − 𝑦(𝑖))(log(1 − 𝑝(𝑖)))]

𝑚

𝑖=1

       𝐸𝑞 13  

 Where m represents the total number of samples and ∑ [𝑦(𝑖) log(𝑝(𝑖)) +𝑚
𝑖=1

(1 − 𝑦(𝑖))(log (1 − 𝑝(𝑖)))]  is the total cost of the training sample. Regrettably, a 

closed-form equation of the kind required to compute the θ value, which is utilised to 

minimise the cost function, is not yet available. Nevertheless, this specific cost 

function has the advantage of being convex; hence, any optimisation technique should 

be able to ensure that it will locate the global minimum. It is possible to describe the 

partial derivatives of the cost function using the equation that follows: 

𝜕

𝜕𝜃𝑗
𝐽(𝜃) =

1

𝑚
∑(𝜎(𝜃𝑇 ∗ 𝑥(𝑖))

𝑚

𝑖=1

− 𝑦𝑖)𝑥𝑗
(𝑖)

                   𝐸𝑞 14 

 As shown in the equation above, the algorithm computes the prediction error 

for each sample, multiplies it by the value of the j attribute, and then computes the 

mean of all training samples. It exhibits exceptional precision on both the training and 

testing datasets, and its implementation is remarkably rapid. I made the decision to 

utilise this algorithm due to its exceptional precision. 
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III.2.3 Decision Tree Algorithm 

                       

 

                          Fig 13. Decision Tree Classifier Implementation in Python 

 From the perspective of cyber security, illicit activities may be traced back to 

a certain extent if network records are scanned. To effectively segregate legitimate 

activities from illicit ones, it is imperative to implement a classification-based strategy 

within a networking system. The Decision Tree algorithm is also among the most 

straightforward algorithms. It exhibits an exceptionally high degree of precision in 

comparison to alternative Gaussian algorithms. The fundamental principle of the 

Decision Tree is to partition the dataset according to the data gain of the attributes. The 

Python library Sickit-Learn, abbreviated sklearn, utilises the "Classification and 

Regression Tree" algorithm to train its decision trees. These trees are also referred to 

as "growing trees." The underlying principle of this algorithm is straightforward: the 

training algorithm initially partitions the set to be trained into two subsets using a 

distinct attribute k and a threshold t_k corresponding to this attribute. However, this 

prompts an inquiry into the methodology employed to determine the attribute k 

parameters and the threshold t_k. The algorithm seeks the set (k, t_k) that produces 

the subsets with the highest degree of clarity. The following is the equation 

representing the algorithm that endeavours to decrease the cost function:  

                               𝐽(𝑘, 𝑡𝑘) =  
𝑚𝑙𝑒𝑓𝑡

𝑚
𝐺𝑙𝑒𝑓𝑡 +

𝑚𝑟𝑖𝑔ℎ𝑡

𝑚
𝐺𝑟𝑖𝑔ℎ𝑡                        𝐸𝑞 15 
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 The impurity estimates for the left-wing and right-wing subsets are derived 

from m_left and m_right, respectively, while m denotes the total number of samples 

and G_left and G_right represent the sample numbers for the left-wing and right-wing 

subsets, respectively. As soon as this algorithm divides the set to be trained into two 

distinct subsets, it proceeds to divide the remaining subsets using the same logic. 

Subsequently, it divides the remaining subsets in the same fashion, and so forth, in a 

recursive fashion. The algorithm terminates the recursion when it reaches the 

maximum depth or when it is unable to identify a division capable of reducing 

impurity. 

 

III.2.4 Random Forest Algorithm 

                

                  Fig 14.  Random Forest Classifier implementation in python  

 The collective term for a collection of decision trees is "random forest 

classifier." Furthermore, its implementation typically requires only a few seconds and 

possesses an exceptionally high degree of precision.  In this instance, thirty trees are 

utilised as inputs. It performs exceptionally well within the algorithms. 
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III.2.5 Supporting Vector Machine algorithm 

             

 

                          Fig 15.  Linear SVM classifier implemented in python 

As stated in the preceding chapter, the Supporting Vector Machine utilises hyperplanes 

to partition the various component classes. Linear SVM classification algorithms are 

distinguished from non-linear SVM classification algorithms to classify SVM 

algorithms. In the linear support vector machine (SVM) classification algorithm, 

classes are divided along a straight line. Typically, this classification algorithm is 

implemented on two-dimensional planes. In Linear Support Vector Machine (SVM) 

classification, the straight line serves the dual purpose of separating distinct classes 

and maintaining a safe distance from the nearest training samples, if possible. 

Evidently, the SVM classification algorithm suits the widest possible range, which is 

contained within the various classes that it has partitioned. This is also referred to as 

classification with a wide margin. The decision boundary remains unaffected by the 

inclusion of additional training samples. This boundary is determined by the samples 

situated along the way's perimeter. The samples situated at the boundary are 

alternatively referred to as the supporting vectors, which provide the nomenclature for 

this algorithm. Classification by hard margin entails compelling every sample to be 

positioned at an extreme right angle. The implementation of rigid margin classification 

raises two fundamental concerns. To begin with, its functionality is contingent upon 

the data being separable linearly, and it exhibits a high degree of sensitivity to outliers. 

To circumvent these concerns, it is preferable to utilise a more adaptable model. The 

objective of this model is to identify a delicate equilibrium between preserving the 

path to the greatest extent possible and limiting margin violations. The term for this is 

"soft margin classification." The stability of the Supporting Vector Machine Classes 
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of Sickit-Learn is effectively managed through the utilisation of the hypermeter C.  

The benefit of this approach is that Linear SVM in Sickit-Learn achieves an impressive 

accuracy ranging from 95% to 99%; nevertheless, its implementation requires a 

significant amount of time. Despite exhibiting a high efficiency rate and performing 

exceptionally well in many scenarios, a significant proportion of datasets do not 

approach linear separability. One approach to managing these types of datasets is to 

incorporate a substantial number of additional features, such as polynomial features. 

  

                           

 

                    Fig 16. Non-Linear SVM Classifier implementation in python 

 In 3-D models, the non-linear SVM classifier is frequently implemented. In 

this classifier, the hyperplane is a two-dimensional plane, in contrast to the linear 

plane. The utilisation of SVM algorithms incorporates an exceptional mathematical 

technique referred to as the kernel trick. This approach enables one to achieve the same 

outcome as if a large number of polynomial features had been added, even if the 

polynomial in question has a very high degree, without the need to add each of these 

polynomials.An additional model that can be implemented in linear SVM is known as 

the stochastic gradient. This estimator is utilised to implement linear models (Linear 

Supporting Vector Machines in this instance) with SGD learning. SGD learning entails 

the computation of the loss gradient following each sample within a specified time 

interval, and the model is subsequently modified in accordance with a strength 

reduction schedule. It is an extremely potent classifier, and the tolerance level of this 

algorithm can be determined using it. 
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III.2.6 Gradient Boosting algorithm 

    

 

                     Fig 17.  Gradient Boosting Classifier algorithm in python 

 In the realm of boosting algorithms, the Gradient Boosting algorithm is one of 

the more influential ones. In order to perform its duties, this category of algorithms 

incorporates predictors into an ensemble in a sequential manner. The aim of each 

subsequent predictor that is added to the ensemble is to correct the mistake that was 

produced by the predictor that came before it in the sequence. This technique, on the 

other hand, makes use of the residual errors that were produced by the previous 

predictor in order to modify the current predictor. Rather than altering the sample 

weights at each iteration, this method uses the residual errors. Due to the fact that it is 

successful when applied to complex datasets, this type of algorithm is acquiring more 

and more prominence. Not only can the method gradient boosting be used to solve 

classification difficulties, but it can also solve regression problems. 
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III.2.7 K-Nearest Neighbor Classifier 

                  

              Fig 18. Implementation of K-Nearest Neighbor classifier in python 

 For supervised learning, this is an algorithm that may be used. An example of 

how the system imports the object from the Sklearn algorithm is shown in the 

preceding image. When implemented as an algorithm, it takes a significant amount of 

time to complete. The number of neighbours is represented by the variable 

n_neighbors, which is included in the code. For the purpose of making predictions, 

this variable is included into the model. The code in question has five neighbours; due 

to the fact that this is such a small number, it displays an exceptionally high level of 

accuracy. My determination of this categorization was accomplished by the use of the 

Minkowski distance. In order to compute this particular kind of distance, distances 

must be represented as vectors inside a certain space, and each vector must have a 

length that is different from the others. It is recommended that the power parameter, 

which is represented by the tiny p, be set to 2 in this particular scenario when the 

Minkowski distance is employed. The capability of the K-Nearest Neighbour classifier 

to display a high degree of accuracy is one of the most noticeable advantages of this 

classification method. On the other hand, the construction of this kind of classifier is 

time-consuming, and it performs badly when it is presented with excessively large 

datasets. 
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III.2.8 Network of Artificial Neural Circuits 

            

 

                     Fig 19. Network of Artificial Neural Circuits Classifier in Python 

 It was said in the chapter that came before this one that an artificial neural 

network (ANN) classifier is made up of nodes, which are also known as perceptions, 

and they take their inspiration from the neuronal architecture of the brain. Access to 

the Python train of this artificial neural network may be gained via the use of the keras 

package. The training of neural network algorithms is the specific aim for which this 

library is being used. An artificial neural network, often known as an ANN, is the 

algorithm that is considered to be the most fundamental of them. During the course of 

our experiment, I developed an artificial neural network (ANN) programme that has 

three layers: input, hidden, and output. Both the activation function of the layer and 

the number of dimensions that are included inside the layer are contained within each 

layer.  In this particular case, the activation function of the input layer is represented 

by the symbol relu, which is an abbreviation for Rectified Linear Unit. In the 

experiment that we conducted, the activation function of the buried layer was a 

sigmoid function, and the activation function of the output layer was a Softmax 

function. A particular activation function that is referred to as the Rectified Linear Unit 

activation function is responsible for converting all negative values to zero while 

maintaining positive values. The term "Sigmoid" refers to an activation function that 

has values that are totally contained within the range of 0 to 1. Because of this, the 

activation function in question offers a great deal of benefit when it comes to 

probability prediction. The sigmoid function's significance in the formula is as follows: 
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𝜎(𝑧) =
1

1 + 𝑒−𝑧
                       𝐸𝑞 16 

The output, denoted by σ(z), is the representation of the input, which is z. σ(z) reaches 

its highest possible value when the value of z that is being input is comparable to 

infinity. Using the Softmax activation function, an input value that is included inside 

a values vector is normalised to a probability distribution. Based on this distribution, 

the total probability is predicted to be larger than 1. The values of the output continue 

to fall within the range of 0 to 1, notwithstanding this phenomenon. One is able to 

calculate the predicted losses that take place throughout the training process of a given 

dataset by making use of this particular sort of activation function. Equation that 

represents the activation function of the Softmax algorithm: 

𝑃(𝑦 = 𝑗|𝜃(𝑖)) =
𝑒𝜃(𝑖)

∑ 𝑒𝜃𝑘
(𝑖)

𝑘
𝑗=0

                   𝐸𝑞 17 

From which: 

    𝜃=𝑤0𝑥0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑘−1𝑥𝑘−1 + 𝑤𝑘𝑥𝑘  𝐸𝑞 18.1  

               ∑ 𝑤𝑖𝑥𝑖 = 𝑤𝑇𝑥𝑘
𝑖=0       𝐸𝑞 18.2  
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                         Fig 20. Multilevel Perception Classifier implemented in python 

 MLP, which stands for Multilayer Perception, is another subclass of ANN. The MLP 

possesses the identical architecture as the Artificial Neural Network. With the 

exception of the output layer, every layer includes a bias neuron that is completely 

connected to the layer below it. Despite being a subclass of neural networks, this 

function is invoked via the Sklearn library as opposed to Keras. The MLP classifier in 

our algorithms consists of two hidden layers, whereas the initial classifier has five 

hidden layers and the second classifier has only two. Adam is the optimisation 

parameter, which is also referred to as the solver, in the programme. This optimisation 

parameter combines the most advantageous features of the RMSprop algorithm and 

the ADAgrad algorithm to produce an optimisation algorithm capable of regulating 

gradients that are sparse in noise-related problems. The activation function in this 

algorithm is also a Rectified Linear Unit, abbreviated relu. The rationale behind my 

selection of these algorithms is their exceptional performance.  

III.2.9 Convolutional Neural Network 
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                           Fig 21: Convolutional Neural Network classifier using Python 

 Convolutional Neural Network (CNN) algorithms are an additional type of 

deep learning technology. This algorithm is effective at classifying images. The CNN 

classifier in my programme consists of nine layers. Prior to commencing the CNN 

classification process, the dataset is resized from its original two dimensions to four. 

The activation function for the input layer, which is a two-dimensional convolutional 

layer, is identical to that of the preceding Rectified Linear Unit algorithms. In our 

equation, values contained within three by three dimensions are convolved. The input 

geometry is identical to the three reshaped dimensions that the dataset's reshaping has 

enabled. Padding is another term used within a convolutional network. Padding refers 

to the quantity of pixels appended within an image during kernel processing. It may 

contain two values, both of which must be legitimate. In this instance, our function 

remains unchanged. Consequently, this convolutional layer has the capability to utilise 

zero buffering if required. LeakyReLU, or Leaky Rectified Linear Unit, constitutes the 

second stratum. The distinction between Rectified Linear Unit and Leaky Rectified 

Linear Unit is that in Leaky ReLU, negative values are assigned a minor slope less 

than 1, as opposed to being set to zero. The experiment yielded a slope value of 0.1, 

despite the fact that negative inputs in this function produced minor negative values 

instead of zero. The following represents the Leaky ReLU function: 

𝑌 = 1(𝑥 < 0) ∗ (𝑎𝑥) + 1(𝑥 ≥ 0) ∗ (𝑥)           𝐸𝑞 19  

 In the context that has been presented, the output is denoted by Y, and the input 

is denoted by x. In the event that x is negative, the equation for Y is axe; otherwise, it 

is Y=x; the letter a denotes a minor constant that is always less than 0. The purpose of 

this Leaky ReLU is to address the problem of ReLUs that are about to expire. 

Subsequent to this, the Maxpooling two-dimensional layer is shown. A method known 

as maxpooling is an algorithm that can locate the highest value that is included inside 

a collection of numbers. As part of our inquiry, each of the groups has dimensions that 

are four by four. Even during maxpooling, the value of padding does not change, which 

enables the Maxpooling Layer to make use of zero padding if it is required to do so. 

The replication of these three layers is carried out in the same way as it was done 

before. The seventh tier of this method is the Flatten layer, which is the seventh 
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position. Its name gives the impression that its purpose is to arrange the inputs in a 

vertical pattern, or conversely, it may flatten the inputs according to the user's 

preferences. Following this layer is an extra Leaky ReLU layer that uses the same 0.1 

slope as the previous layer. A softmax activation function and a numeric value that 

represents the input categories are the last components of the output layer. In situations 

when the datasets are extremely huge, CNN algorithms are able to recognise a broad 

range of Distributed Denial of Service assaults as well as malware attacks. My decision 

to choose this particular algorithm was based on this particular logic. On the other 

hand, the implementation of this method calls for a period of time that is quite long. 

 

III.2.10 Recurrent Neural Network 

                       

 

                          Fig 22: Recurrent Neural Network implementation in python 

 The Recurrent Neural Network (RNN) algorithm is a kind of neural network 

algorithm that, in contrast to other RNN algorithms, adds feedback connections in 

addition to feedforward connections. This particular algorithm is used for the purpose 

of identifying irregularities. In the experimental configuration of our Recurrent Neural 

Network method, there are three separate layers as follows: an input layer for Long-

Short Term Memory, a hidden layer that makes use of the sigmoid activation function, 

and an output layer that makes use of the softmax activation function. When it comes 

to optimising speed, Long Short-Term Memory (LSTM), which is capable of handling 

two state vectors, keeps both state vectors disconnected by default. This is done in 
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order to maximise efficiency. The Long Short-Term Memory (LSTM) is broken down 

into four parts. Analysis of the current inputs x_t and the prior (short-term) state h_(t-

1) is the major purpose of the first unit, which is also the first unit. This is the only 

objective of the first unit. In certain contexts, the remaining three components are also 

referred to as gate controllers. Utilising sigmoid activation functions causes the outputs 

of these units to oscillate between 0 and 1, which is a consequence of the 

aforementioned factor.  As a result, the gate will be closed if the outputs of the units 

are determined to be zero. On the other hand, the gate will be permitted to open when 

the units provide outputs of value 1, which is the expected value. The following are 

the components that make up the gate controllers: the forget gate is responsible for 

determining which long-term sections need to be removed, the input gate is in charge 

of determining which long-term portions need to be entered, and the output gate is in 

charge of determining which long-term portions need to be read and producing the 

output y_t in this particular time step. This particular method is not only incredibly 

useful but also quite easy to put into practice. The Keras library provides access to the 

LSTM layer for users to manipulate. 

 

Fig 23: Block Scheme 
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CHAPTER IV 

DISCUSSIONS BASED ON THE RESULTS 

 

IV.1 KDD dataset results 

 The following are the outcomes extracted from the kddcup dataset: The 

training duration of Gaussian Naive Bayes is approximately 2.25 seconds. The 

estimated amount of time required for the Gaussian Naive-Bayes test is 3.42 seconds. 

The approximate training accuracy of Gaussian Naïve Bayes is 88.21%. A Gaussian 

Naive-Bayes test has an approximate 88.21% accuracy rate. Training a decision tree 

takes approximately 4.92 seconds. Testing a decision tree takes approximately 0.16 

seconds. Accuracy in decision tree training is approximately 99.1%. Tree-based 

decision assessment The accuracy is nearly 99 percent. Training with a stochastic 

gradient takes approximately 15.5 seconds. The approximate testing time for 

stochastic gradients is 0.33 seconds. Accuracy in stochastic gradient training is 

approximately 99.21%. The accuracy of stochastic gradient testing is near 99.21%. 

The approximate training time for Random Forest is 44.64 seconds. The approximate 

Random Forest trial duration is 3:55 seconds. The approximate training accuracy of 

Random Forest is 99.99%. The accuracy of Random Forest testing is approximately 

99.97%. The training duration of a Non-Linear Supporting Vector Machine classifier 

is approximately 2173.8 seconds. The trial duration for a Non-Linear Supporting 

Vector Machine classifier is approximately 226.42 seconds. The training accuracy of 

a Non-Linear Supporting Vector Machine classifier is approximately 99.89%. The 

accuracy of evaluating a non-linear support vector machine classifier is approximately 

99.88%. The training duration of a Linear Supporting Vector Machine classifier is 

approximately 48.26 seconds. The trial duration for a Linear Supporting Vector 

Machine classifier is approximately 0.23 seconds. The training accuracy of a Linear 

Supporting Vector Machine classifier is approximately 99.71%. The accuracy of 

evaluating a Linear Supporting Vector Machine classifier is approximately 99.69%. 

Training for Logistic Regression takes approximately 40.87 seconds. Testing for 

Logistic Regression takes approximately 0.23 seconds. Accuracy in logistic regression 
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training is approximately 99.35%. The accuracy of logistic regression testing is 

approximately 99.31%.  Training for Multilevel Perception takes approximately 

498.51 seconds. Testing for multilevel perception takes approximately 0.63 seconds. 

The accuracy of Multilevel Perception training is approximately 99.42%. The 

accuracy of Multilevel Perception testing is approximately 99.38%. The training 

duration for a gradient boosting classifier is approximately 1433.56 seconds. The 

approximate trial duration for a Gradient Boosting Classifier is 7.99 seconds. Training 

Classifiers with Gradient Boosting Accuracy is approximately 99.96%. The testing 

accuracy of gradient boosting classifiers is approximately 99.93%. The training period 

of an artificial neural network is approximately 371.18 seconds. The assessment 

duration for artificial neural networks is approximately 1.02 seconds. The training 

accuracy of the artificial neural network is approximately 98.47%. The assessment 

accuracy of artificial neural networks is approximately 98.47%. The training duration 

of a recurrent neural network is approximately 448.51 seconds. The trial duration for 

recurrent neural networks is approximately 1.1 seconds. The accuracy of Recurrent 

Neural Network training is approximately 98.48%. The assessment accuracy of 

recurrent neural networks is approximately 98.48%. The training period of a 

convolutional neural network is approximately 870.8 seconds. The assessment 

duration for convolutional neural networks is approximately 21.46 seconds. The 

training accuracy of the convolutional neural network is approximately 99.87%. The 

accuracy of the Convolutional Neural Network testing is approximately 99.87%.                   

The outcomes of the training and testing methods for the kddcup dataset are shown in 

Table 1. 

The Algorithms 

Used in 

Machine 

Learning 

Time of 

Training  

Time of Test Training 

Performance 

Testing 

Performance 

Gaussian 

Naïve-Bayes 

2.25 seconds  3.42 seconds 88.21% 88.21% 

Decision Tree 4.92 seconds 0.16 seconds 99.1% 99.1% 

Stochastic 

Gradient 

15.5 seconds 0.33 seconds  99.21% 99.21% 

Random Forest 44.64 

seconds 

3.55 seconds 99.99% 99.97% 
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Non-Linear 

SVM 

2173.8 

seconds 

226.42 

seconds 

99.89% 99.89% 

Linear SVM 48.26 

seconds 

0.23 seconds 99.71% 99.69% 

Logistic 

Regression  

40.87 

seconds 

0.23 seconds 99.35% 99.31% 

Multilevel 

Perception 

498.51 

seconds 

0.63 seconds 99.42% 99.38% 

Gradient 

Boosting 

1433.56 

seconds 

7.99 seconds 99.96% 99.93% 

K-Nearest Neig 312.26 

seconds 

432.7 

seconds 

98.1% 94.2% 

Artificial 

Neural Network 

371.18 

seconds 

1.02 seconds 98.47% 98.47% 

Recurrent 

Neural Network  

448.51 

seconds 

1.1 seconds 98.46% 98.48% 

Convolutional 

Neural Network  

870.8 

seconds 

21.46 

seconds 

99.87% 99.87% 

 

Fig 24: The outcomes of the training and testing methods for the kddcup dataset 

IV.2 NSL-KDD dataset results 

 The approximate Gaussian Naïve-Bayes training time for the nsl kdd dataset is 

0.12 seconds. The approximate Gaussian Naive-Bayes testing time is 0.12 seconds. 

The training accuracy of Gaussian Naive Bayes is approximately 51.28%. The 

approximate Gaussian Naïve-Bayes assessment accuracy is 51.56%. Training a 

decision tree takes approximately 0.2 seconds. Testing a decision tree takes 

approximately 0.016 seconds. Accuracy in decision tree training is approximately 

95.8%. Tree-based decision assessment The approximate accuracy rate is 95.85%. 



 

 

47 

 

Training with a stochastic gradient takes approximately 0.62 seconds. The 

approximate trial time for stochastic gradients is 0.016 seconds. The approximate 

training accuracy of stochastic gradients is 97.21%. The accuracy of stochastic 

gradient testing is approximately 97.13%. Training with Random Forest takes 

approximately 1.18 seconds. The approximate Random Forest testing time is 0.154 

seconds. The accuracy of Random Forest training is close to one hundred percent. The 

accuracy of Random Forest testing is approximately 99.64%. The training duration of 

a Non-Linear Supporting Vector Machine classifier is approximately 3.011 seconds. 

The trial duration for a Non-Linear Supporting Vector Machine classifier is 

approximately 2.04 seconds. The training accuracy of a Non-Linear Supporting Vector 

Machine classifier is approximately 99.26%. The testing accuracy of non-linear 

supporting vector machine classifiers is approximately 99.05%. The training duration 

of a Linear Supporting Vector Machine classifier is approximately 1.4 seconds. The 

trial duration for a Linear Supporting Vector Machine classifier is approximately 0.016 

seconds. The training accuracy of a Linear Supporting Vector Machine classifier is 

approximately 96.97%. The testing accuracy of linear support vector machine 

classifiers is approximately 97.13%. Training for Logistic Regression takes 

approximately 1.62 seconds. Testing for Logistic Regression takes approximately 

0.015 seconds. Accuracy in logistic regression training is approximately 96.74%. The 

accuracy of logistic regression testing is approximately 96.68%.  Training for 

Multilevel Perception takes approximately 33.53 seconds. Testing for multilevel 

perception takes approximately 0.03 seconds. The accuracy of Multilevel Perception 

instruction is approximately 97.47%. The accuracy of multilevel perception testing is 

approximately 97.5%. The approximate training duration for a gradient boosting 

classifier is 60.55 seconds. The approximate trial duration for a Gradient Boosting 

Classifier is 0.4 seconds. The training accuracy of a gradient boosting classifier is 

approximately 99.95%. The testing accuracy of gradient boosting classifiers is 

approximately 99.6%. Training the K-Nearest Neighbour classifier takes 

approximately 3.89 seconds. The approximate K-Nearest Neighbour measurement 

time is 21.32 seconds. The accuracy of K-Nearest Neighbour classifier training is 

approximately 99.48%. Approximate K-Nearest Neighbour testing precision is 

99.32%.   The training period of an artificial neural network is approximately 192.79 

seconds. The assessment duration for artificial neural networks is approximately 0.74 



 

 

48 

 

seconds. The training accuracy of the artificial neural network is approximately 

98.68%. The testing accuracy of artificial neural networks is approximately 98.49%. 

The training duration of a recurrent neural network is approximately 234.92 seconds. 

The assessment duration for recurrent neural networks is approximately 0.83 seconds. 

The accuracy of Recurrent Neural Network training is approximately 97.82%. The 

assessment accuracy of recurrent neural networks is approximately 97.61%. The 

training period of a convolutional neural network is approximately 571.16 seconds. 

The assessment duration for convolutional neural networks is approximately 2.35 

seconds. The training accuracy of the convolutional neural network is approximately 

99.16%. The accuracy of the Convolutional Neural Network testing is approximately 

98.94%. 

                       The outcomes of the training and testing methods for the nsl-kdd dataset 

are shown in Table 2. 

The Algorithms 

Used in 

Machine 

Learning 

Time of 

Training 

Time of Test Training 

Performance 

Testing 

Performance 

Gaussian N-B 0.12 seconds 0.12 seconds 51.28% 51.56% 

Dec Tree 0.2 seconds 0.016 

seconds 

95.89% 95.85% 

Stoch Gradient 0.62 seconds 0.016 

seconds 

97.21% 97.13% 

Ran Forest 1.18 seconds 0.154 

seconds 

100% 99.64% 

Non-Linear 

SVM 

3.011 seconds 2.04 seconds  99.26% 99.05% 

Linear SVM 1.4 seconds 0.016 

seconds 

96.97% 97.12% 

Logistic Reg  1.62 seconds 0.015 

seconds 

96.74% 96.68% 

M-level 

Perception 

33.53 seconds 0.03 seconds 97.47% 97.5% 

Gradient 

Boosting 

60.55 seconds 0.4 seconds 99.95% 99.6% 

K-Nearest Neig 3.89 seconds 21.32 

seconds 

99.48% 99.32% 
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Artificial N.N. 192.79 

seconds 

0.74 seconds 98.68% 98.49% 

Recurrent N.N 234.92 

seconds 

0.83 seconds 97.82% 97.61% 

Convolutional 

N.N 

571.16 

seconds 

2.35 seconds 99.16% 98.94% 

 

Fig 25: The outcomes of the training and testing methods for the nsl-kdd dataset 

IV.3 Kyoto dataset results 

 The training duration of Gaussian Naive Bayes is approximately 1.4 seconds. 

The approximate Gaussian Naive-Bayes testing time is 0.61 seconds. The training 

accuracy of Gaussian Naive Bayes is approximately 71.15%. The approximate 

Gaussian Naïve-Bayes assessment accuracy is 71.11%. Training a decision tree takes 

approximately 3.14 seconds. Testing a decision tree takes approximately 0.078 

seconds. Accuracy in decision tree training is approximately 98.21%. The assessment 

accuracy of decision trees is regarding 98.2%. Training with a stochastic gradient takes 

approximately 1.96 seconds. Testing with stochastic gradients takes approximately 0.2 

seconds. The approximate training accuracy of stochastic gradients is 94.97%. The 

typical accuracy of stochastic gradient testing is 94.84%. Training with Random Forest 

takes approximately 38.47 seconds. Testing with Random Forest takes approximately 

2.37 seconds. Random Forest has an approximate 99.95% training accuracy. The 

accuracy of Random Forest testing is approximately 99.75%. The training duration of 

a Non-Linear Supporting Vector Machine classifier is approximately 1958.71 seconds. 

The trial duration for a Non-Linear Supporting Vector Machine classifier is 

approximately 491.59 seconds. The training accuracy of a Non-Linear Supporting 

Vector Machine classifier is approximately 96.06%. The accuracy of evaluating a non-
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linear support vector machine classifier is approximately 95.89%. The training 

duration of a Linear Supporting Vector Machine classifier is approximately 39.5 

seconds. The trial duration for a Linear Supporting Vector Machine classifier is 

approximately 0.054 seconds. The training accuracy of a Linear Supporting Vector 

Machine classifier is approximately 94.91%. The testing accuracy of linear support 

vector machine classifiers is approximately 94.81%. Training for Logistic Regression 

takes approximately 10.89 seconds. Testing for Logistic Regression takes 

approximately 0.046 seconds. Accuracy in logistic regression training is 

approximately 94.86%. The accuracy of logistic regression testing is approximately 

94.79%.  Training in Multilevel Perception takes approximately 54 seconds. Testing 

for multilevel perception takes approximately 0.2 seconds. The accuracy of Multilevel 

Perception training is approximately 92.55%. The accuracy of multilevel perception 

testing is approximately 92.55%. The training duration for a gradient boosting 

classifier is approximately 173.34 seconds. The approximate trial duration for a 

Gradient Boosting Classifier is 1.06 seconds. The training accuracy of a gradient 

boosting classifier is approximately 99.42%. The testing accuracy of gradient boosting 

classifiers is approximately 99.36%. Training the K-Nearest Neighbour classifier takes 

approximately 259.34 seconds. The approximate K-Nearest Neighbour assessment 

time is 540.64 seconds. The accuracy of K-Nearest Neighbour classifier training is 

approximately 98.72%. Approximate K-Nearest Neighbour testing precision is 98.2 

percent.   The training duration of an artificial neural network is approximately 348.93 

seconds. The assessment duration for artificial neural networks is approximately 1.69 

seconds. The training accuracy of the artificial neural network is approximately 

98.46%. The assessment accuracy of artificial neural networks is approximately 

98.36%. The training duration of a recurrent neural network is approximately 294.88 

seconds. The trial duration for recurrent neural networks is approximately 1.55 

seconds. The training accuracy of the Recurrent Neural Network is approximately 

98.77%. The assessment accuracy of recurrent neural networks is approximately 

98.73%. The training period of a convolutional neural network is approximately 

703.48 seconds. The assessment duration for convolutional neural networks is 

approximately 19.54 seconds. The training accuracy of the convolutional neural 

network is approximately 96.02%. The assessment accuracy of the convolutional 

neural network is approximately 96.07%. 
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                         The outcomes of the training and testing methods for the Kyoto dataset 

are shown in Table 3. 

The Algorithms 

Used in 

Machine 

Learning 

Time of 

Training 

Time of Test Training 

Performance 

Testing 

Performance 

Gaussian N-B 1.4 seconds 0.61 seconds 71.15% 71.11% 

Dec Tree 3.14 seconds 0.078 

seconds 

98.21% 98.2% 

Stoch Gradient 1.96 seconds 0.2 seconds 94.97% 94.84% 

Ran Forest 38.47 seconds 2.37 seconds 99.95% 99.75% 

Non-Linear 

SVM 

1958.71 

seconds 

491.59 

seconds 

96.06% 95.89% 

Linear SVM 39.5 seconds 0.054 

seconds 

94.91% 94.81% 

Logistic Reg  10.89 seconds 0.046 

seconds 

94.86% 94.79% 

M-level 

Perception 

54 seconds 0.2 seconds 92.55% 92.55% 

Gradient 

Boosting 

173.34 

seconds 

1.06 seconds 99.42% 99.36% 

K-Nearest Neig 259.34 

seconds 

540.64 

seconds 

98.72% 98.2 % 

Artificial N.N. 348.93 

seconds 

1.69 seconds 98.46% 98.36% 

Recurrent N.N 294.88 

seconds 

1.55 seconds 98.77% 98.73% 

Convolutional 

N.N 

703.48 

seconds 

19.54 

seconds 

96.02% 96.07% 

 

Fig 26: The outcomes of the training and testing methods for the Kyoto dataset 
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IV.4 UNSW-NB15 

 The training duration of Gaussian Naive Bayes is approximately 1.24 seconds. 

The approximate Gaussian Naive-Bayes testing time is 0.995 seconds. The Gaussian 

Naive Bayes algorithm has an accuracy of roughly 87.95% when it comes to training. 

Gaussian Naive-Bayes testing has an approximate accuracy of 86.05%. Training a 

decision tree takes approximately 2.94 seconds. Testing a decision tree takes 

approximately 0.1 seconds. The accuracy of decision tree training is at least 96.76%. 

The accuracy of decision tree testing is approximately 96.82%. Training with a 

stochastic gradient takes approximately 1.49 seconds. Testing with stochastic 

gradients takes approximately 0.14 seconds. The approximate training accuracy of 

stochastic gradients is 95.09%. The accuracy of stochastic gradient testing is 

approximately 95.13%. Training in Random Forest takes approximately 24.6 seconds. 

Testing with Random Forest takes approximately 1.6 seconds. Random Forest has an 

approximate 99.98% training accuracy. The accuracy of Random Forest testing is 

approximately 98.71%. The training duration for a Non-Linear Supporting Vector 

Machine classifier is approximately 471.77 seconds. The trial duration for a Non-

Linear Supporting Vector Machine classifier is approximately 308.58 seconds. The 

training accuracy of a Non-Linear Supporting Vector Machine classifier is 

approximately 95.46%. The accuracy of evaluating a non-linear support vector 

machine classifier is approximately 94.24%. The training duration of a Linear 

Supporting Vector Machine classifier is approximately 9.47 seconds. The trial 

duration for a Linear Supporting Vector Machine classifier is approximately 0.116 

seconds. The training accuracy of a Linear Supporting Vector Machine classifier is 

approximately 95.1%. The accuracy of evaluating a Linear Supporting Vector 

Machine classifier is approximately 93.89%. Training for Logistic Regression takes 

approximately 6.79 seconds. Testing for Logistic Regression takes approximately 

0.072 seconds. Accuracy in logistic regression training is approximately 95.08%. The 

accuracy of logistic regression testing is approximately 94.23%.  Training for 

Multilevel Perception takes approximately 656.31 seconds. Testing for multilevel 

perception takes approximately 0.178 seconds. The accuracy of Multilevel Perception 

instruction is approximately 97.37%. The accuracy of Multilevel Perception testing is 

approximately 95.25%. The training duration for a gradient boosting classifier is 

approximately 186.66 seconds. The approximate trial duration for a Gradient Boosting 
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Classifier is 1.06 seconds. The training accuracy of a gradient boosting classifier is 

approximately 98.03%. The testing accuracy of gradient boosting classifiers is 

approximately 98.03%. The training duration of a K-Nearest Neighbour classifier is 

approximately 162.62 seconds. The approximate K-Nearest Neighbour assessment 

time is 540.64 seconds. The accuracy of K-Nearest Neighbour classifier training is 

approximately 97.8%. Approximate K-Nearest Neighbour testing precision is 96.6%.   

The training period of an artificial neural network is approximately 206.17 seconds. 

The assessment period for artificial neural networks is approximately 0.51 seconds. 

The training accuracy of the artificial neural network is approximately 96.54%. The 

assessment accuracy of artificial neural networks is approximately 95.77%. The 

training duration of a recurrent neural network is approximately 294.88 seconds. The 

trial duration for recurrent neural networks is approximately 1.55 seconds. The 

accuracy of Recurrent Neural Network training is approximately 96.73%. The 

assessment accuracy of recurrent neural networks is approximately 96.78%. The 

training period of a convolutional neural network is approximately 703.48 seconds. 

The assessment duration for convolutional neural networks is approximately 19.54 

seconds. The training accuracy of the convolutional neural network is approximately 

95.5%. The assessment accuracy of the convolutional neural network is approximately 

95.58%. 

 

          Table 4:  Result for training and testing algorithm for UNSW-NB15 dataset 

Machine 

Learning 

Algorithms 

Training Time 

Seconds (s) 

Testing Time 

Seconds (s)  

Training 

Accuracy 

Testing 

Accuracy 

Gaussian N-B 1.24 seconds 0.995 seconds 87.95% 86.05% 

Dec Tree 2.94 seconds 0.1 seconds 96.76% 96.82% 

Stoch Gradient 1.49 seconds 0.14 seconds 95.09% 95.13% 

Ran Forest 24.6 seconds 1.6 seconds 99.98% 98.71% 

Non-Linear 

SVM 

471.77 

seconds 

308.58 

seconds 

95.46% 94.24% 

Linear SVM 9.47 seconds 0.116 seconds 95.1% 93.89% 

Logistic Reg  6.79 seconds 0.072 seconds 95.08% 94.23% 

M-level 

Perception 

656.31 

seconds 

0.178 seconds 97.38% 95.25% 
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Gradient 

Boosting 

186.66 

seconds 

1.06 seconds 98.03% 98.03% 

K-Nearest Neig 162.62 

seconds 

540.64 

seconds 

97.8% 96.6 % 

Artificial N.N. 206.17 

seconds 

0.51 seconds 96.54% 95.77% 

Recurrent N.N 294.88 

seconds 

1.55 seconds 96.73% 96.78% 

Convolutional 

N.N 

703.48 

seconds 

19.54 seconds 95.5% 95.58% 

 

Fig 27: The outcomes of the training and testing methods for the UNSW-NB15 dataset 

 

In the graphs below, you can see the comparison of the values in % of the training 

accuracy and testing accuracy of the 13 algorithms for the 4 tested datasets. 

 

Fig 28: Training accuracy values for all algorithms 
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Fig 29: Testing accuracy values for all algorithms 

 

Table 5 :   RESULTS FOR TRAINING TIME, TESTING TIME, TRAINING ACCURACY AND TESTING ACCURACY FOR ALL 

4 DATASETS TESTED 

Machine 
Learning 

Algorithms 

Training Time Seconds (s) Testing Time Seconds (s) Training Accuracy Percentage 
(%) 

Testing Accuracy Percentage 
(%) 

 D 1 D 2 D 3 D 4 D 1 D 2 D 3 D 4 D 1 D 2 D 3 D 4 D 1 D 2 D 3 D 4 

Gaussian 

Naïve-Bayes 

2.25 0.12 1.4 1.24 3.42 0.12 0.61  0.99
5 

88.2
1 

51.2
8 

71.1
5 

87.9
5 

88.2
1 

51.5
6 

71.1
1 

86.0
5 

Decision 

Tree 

4.92 0.2 3.14 2.94 0.16 0.01
6 

0.07
8  

0.1 99.1 95.8
9 

98.2
1 

96.7
6 

99.1 95.8
5 

98.2 96.8
2 

Stochastic 

Gradient 
15.5 0.62 1.96 1.49 0.33  0.01

6 
0.2 0.14 99.2

1 
97.2
1 

94.9
7 

95.0
9 

99.2
1 

97.1
3 

94.8
4 

95.1
3 

Random 

Forest 
44.6
4 

1.18 38.4
7 

24.6 3.55 0.15
4 

2.37 1.6 99.9
9 

100 99.9
5 

99.9
8 

99.9
7 

99.6
4 

99.7
5 

98.7
1 

Non-Linear 

SVM 

2173
.8 

3.01
1 

1958
.71 

471.
77 

226.
42 

2.04  491.
59 

308.
58 

99.8
9 

99.2
6 

96.0
6 

95.4
6 

99.8
9 

99.0
5 

95.8
9 

94.2
4 

Linear SVM 48.2
6 

1.4 39.5 9.47 0.23 0.01
6 

0.05
4 

0.11
6 

99.7
1 

96.9
7 

94.9
1 

95.1 99.6
9 

97.1
2 

94.8
1 

93.8
9 

Logistic 

Regression  

40.8
7 

1.62 10.8
9 

6.79 0.23 0.01
5 

0.04
6 

0.07
2 

99.3
3 

96.7
4 

94.8
6 

95.0
8 

99.3
1 

96.6
8 

94.7
9 

94.2
3 

Multilevel 

Perception 

498.
51 

33.5
3 

54 656.
31 

0.63 0.03 0.2 0.17
8 

99.4
2 

97.4
7 

92.5
5 

97.3
8 

99.3
8 

97.5 92.5
5 

95.2
5 

Gradient 

Boosting 

1433
.56 

60.5
5 

173.
34 

186.
66 

7.99 0.4 1.06 1.06 99.9
6 

99.9
5 

99.4
2 

98.0
3 

99.9
3 

99.6 99.3
6 

98.0
3 

K-Nearest 

Neig 

312.

26 

3.89 259.

34 

162.

62   

432.

7 

21.3

2 

540.

64 

540.

64 

98.1 99.4

8 

98.7

2 

97.8 94.2 99.3

2 

98.2 96.6 

Artificial 

Neural 

Network 

371.
18 

192.
79 

348.
93 

206.
17 

1.02 0.74 1.69 0.51 98.4
7 

98.6
8 

98.4
6 

96.5
4 

98.4
7 

98.4
9 

98.3
6 

95.7
7 

Recurrent 

Neural 

Network  

448.
51 

234.
92 

294.
88 

294.
88 

1.1 0.83 1.55 1.55 98.4
6 

97.8
2 

98.7
7 

96.7
3 

98.4
8 

97.6
1 

98.7
3 

96.7
8 

Convolution
al Neural 

Network  

870.
8 

571.
16 

703.
48 

703.
48 

21.4
6 

2.35 19.5
4 

19.5
4 

99.8
7 

99.1
6 

96.0
2 

95.5 99.8
7 

98.9
4 

96.0
7 

95.5
8 
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D 1 – KDD cup dataset 

D 2 – NSL-KDD dataset 

D 3 – Kyoto dataset 

D 4 – UNSW-NB15 dataset 

Gaussian Naïve-Bayes, Decision Tree and Stochastic Gradient have a short time of 

training and testing because of the credentials they have make them able to be 

implemented quickly. Thay have different accuracies because Gaussian Naïve-Bayes 

is based on probability, Decision Tree is an hierarchical algorithm and Stochastic 

Gradient is an optimization algorithm. 

Random Forest, Linear SVM and Logistic Regression take a little more time to be 

implemented than algorithms mentioned above because there structure is a little bit 

more complex. Random forest has a great accuracy since it is a set of hierarchical 

structures (Decision Trees), Linear SVM which divides different types of cyber attacks 

using hyper planes and Logistic Regression which is a classification algorithm, in this 

case an multinomial statistical algorithm. 

The other algorithms have a much more complex structure especially ANNs 

algorithms in different from machine learning algorithms is composed from more than 

one layer. Since they have a complex structure there accuracy is great. 

Preprocessing of datasets: First we take the datasets and delete the unnecessary 

columns from the dataset. We take the cyber attacks column as output and other 

columns as input. If the columns are numbers we leave them as they are, if they are a 

combination of letters or a group of number and letters we Map them as integers. 

By implementing supervised ML algorithms, we have been able to detect what types 

of output are a cyber attacks and what types are not.  

Table 6 :   THE RESULT FOR SENSITIVITY AND SPECIFICITY FOR EACH ALGORITHM IN THE 4 DATASETS TESTED 

Machine 
Learning 

Algorithms 

Sensitivity (%) Specificity (%) 

 D 1 D 2 D 3 D 4 D 1 D 2 D 3 D 4 

Gaussian Naïve-
Bayes 

88.21 51.56 71.11 86.05 87.23 52.44 69.2 85.2 

Decision Tree 99.1 95.85 98.2 96.82 98.9 95.65 97.9 95.95 

Stochastic 
Gradient 

99.21 97.13 94.84 95.13 98.51 96.3 92.99 93.2 
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Random Forest 99.97 99.64 99.75 98.71 98.99 97.88 98.2 97.1 

Non-Linear 

SVM 

99.89 99.05 95.89 94.24 98.71 97.06 94.83 92.32 

Linear SVM 99.69 97.12 94.81 93.89 97.86 95.32 92.11 90.63 

Logistic 

Regression  
99.31 96.68 94.79 94.23 96.81 92.54 92.23 92.33 

Multilevel 
Perception 

99.38 97.5 92.55 95.25 98.02 96.06 90.66 93.96 

Gradient 

Boosting 

99.93 99.6 99.36 98.03 98.02 98.04 97.85 96.96 

K-Nearest Neig 94.2 99.32 98.2 96.6 92.35 97.2 96.92 95.66 

Artificial Neural 

Network 

98.47 98.49 98.36 95.77 97.36 97.36 97.05 94.27 

Recurrent Neural 

Network  

98.48 97.61 98.73 96.78 96.26 96.53 96.37 94.69 

Convolutional 

Neural Network  
99.87 98.94 96.07 95.58 97.78 96.52 94.56 93.06 

D 1 – KDD cup dataset 

D 2 – NSL-KDD dataset 

D 3 – Kyoto dataset 

D 4 – UNSW-NB15 dataset 

 

D 1 – KDD cup dataset 

D 2 – NSL-KDD dataset 

D 3 – Kyoto dataset 

D 4 – UNSW-NB15 dataset 
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Fig 30: Sensitivity and Specificity of the 12 algorithms for all tested datasets 

CHAPTER V 

SUMMARY AND SUGGESTIONS FOR FUTURE WORK 

    V.1 Summary 

The purpose of these studies was to identify separate categories of malware that were 

present within the datasets. To do this, a variety of machine learning and deep learning 

methods were applied. As the algorithm for deep learning is taught more, it will 

generate findings that are more accurate. The great majority of the algorithms that were 

used in the detection of malware had an accuracy that was somewhat comparable to 

acceptable. On the other hand, one must exert a considerable amount of work in order 

to enhance the efficiency of these algorithms. The technical frontier of the future is 

represented by the incorporation of machine learning algorithms into a wide variety of 

fields, including cyber security. Within the scope of this thesis, we identified malware 

by using a number of different classification techniques across four different datasets. 

We have noticed that different machine learning algorithms have varying degrees of 

accuracy and different amounts of time required to apply them. According to the 

findings presented in this research, the amount of time required to develop algorithms 

like the Gaussian Naive-Bayes classifier, Logistic Regression, and Decision Tree 

classifier is very short. With the exception of the Gaussian Naïve-Bayes classifier 

algorithm, which achieves an accuracy ranging from 51% to 88%, all other algorithms 

surpass 90% in terms of accuracy.The implementation process for alternative 

classification algorithms, including Multilevel Perception, non-linear SVM, and 

Gradient Boosting, is considerably protracted. The algorithm that has achieved the 

highest level of accuracy among all the algorithms considered is the Random Forest 

Classification algorithm. However, each of them operates flawlessly. We have 

constructed a sophisticated system with an exceptional level of performance. This 

intelligent system is extremely potent and useful for identifying a great number of 

cyber threats. 
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      V.2 Future Work 

  A prospective work proposal calls for the application of natural language 

processing and reinforcement learning algorithms to malware detection. They are 

exceptionally effective approaches. 
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                                      APPENDIX 

Kyoto dataset 

# -*- coding: utf-8 -*-""" 

Created on Sun Jun 20 16:34:53 2021 

 

@author: User""" 

 

import pandas as pd 

 

import time 

df = pd.read_csv("kyoto.csv") 

 

df.drop('Source_IP_Address', axis = 1, inplace = True) 

df.drop('Destination_IP_address', axis = 1, inplace = True ) 

df.drop('Start_time', axis = 1, inplace = True) 

df.drop('IDS_detection', axis = 1, inplace = True) 

 

fmap = {'OTH':0, 'REJ':1, 'RSTO':2, 'RSTOS0':3, 'RSTR':4, 'RSTRH':5, 'S0':6, 

'S1':7, 'SF':8, 

        'SHR':9} 

df['Flag'] = df['Flag'].map(fmap) 

 

 

 

pmap = {'icmp':0, 'tcp':1, 'udp':2}  

df['Protocol'] = df['Protocol'].map(pmap) 

 

 

smap = {'other':0, 'dns':1, 'smtp':2, 'snmp':3, 'ssh':4,'rdp':5, 'sip':6, 'http':7 ,'dhcp':8, 

'ssl' : 9} 

df['Service'] = df['Service'].map(smap) 

 

lmap = {1: 'normal', -1: 'attack', -2:'unknown'} 

df['Label'] = df['Label'].map(lmap) 

y = df['Label'] 
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X = df.drop(['Label'], axis = 1) 

 

from sklearn.preprocessing import MinMaxScaler  

sc = MinMaxScaler()  

X = sc.fit_transform(X)  

   

 

from sklearn.model_selection import train_test_split  

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33)  

print(X_train.shape, X_test.shape)  

print(y_train.shape, y_test.shape)  

 

 

from sklearn.naive_bayes import GaussianNB  

from sklearn.metrics import accuracy_score  

   

clfg = GaussianNB()  

start_time = time.time()  

clfg.fit(X_train, y_train.values.ravel()) 

end_time = time.time()  

print("Gaussian Naive-Bayes Training time: ", end_time-start_time)  

 

start_time = time.time()  

y_test_pred = clfg.predict(X_train)  

end_time = time.time()  

print("Gaussian Naive-Bayes Testing time: ", end_time-start_time)  

  

print("Gaussian Naive-Bayes Train score is:", clfg.score(X_train, y_train))  

print("Gaussian Naive-Bayes Test score is:", clfg.score(X_test, y_test))  

  

from sklearn.tree import DecisionTreeClassifier  

   

clfd = DecisionTreeClassifier(criterion ="entropy", max_depth = 4)  

start_time = time.time()  
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clfd.fit(X_train, y_train.values.ravel())  

end_time = time.time()  

print("Decision Tree Training time: ", end_time-start_time)  

 

start_time = time.time()  

y_test_pred = clfd.predict(X_train)  

end_time = time.time()  

print("Decision Tree Testing time: ", end_time-start_time)  

 

print("Decision Tree Train score is:", clfd.score(X_train, y_train))  

print("Decision Tree Test score is:", clfd.score(X_test, y_test))  

 

from sklearn.linear_model import SGDClassifier 

clfsg = SGDClassifier(loss = 'hinge', max_iter = 10, tol = 0.0000000001) 

start_time = time.time() 

clfsg.fit(X_train, y_train.values.ravel()) 

end_time = time.time() 

print("Stochastic Gradient Training time: ", end_time-start_time) 

start_time = time.time() 

y_test_pred = clfsg.predict(X_train) 

end_time = time.time() 

print("Stochastic Gradient Testing time: ", end_time-start_time) 

print("Stochastic Gradient Train score is:", clfsg.score(X_train, y_train)) 

print("Stochastic Gradient Test score is:", clfsg.score(X_test, y_test)) 

 

from sklearn.ensemble import RandomForestClassifier  

   

clfr = RandomForestClassifier(n_estimators = 30)  

start_time = time.time()  

clfr.fit(X_train, y_train.values.ravel())  

end_time = time.time()  

print("Random Forest Training time: ", end_time-start_time)  

 

start_time = time.time()  

y_test_pred = clfr.predict(X_train)  
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end_time = time.time()  

print("Random Forest Testing time: ", end_time-start_time) 

 

print("Random Forest Train score is:", clfr.score(X_train, y_train))  

print("Random Forest Test score is:", clfr.score(X_test, y_test)) 

 

from sklearn.svm import SVC  

   

clfs = SVC(gamma = 'scale')  

start_time = time.time()  

clfs.fit(X_train, y_train.values.ravel())  

end_time = time.time()  

print("Non-Linear SVM Training time: ", end_time-start_time)  

 

start_time = time.time()  

y_test_pred = clfs.predict(X_train)  

end_time = time.time()  

print("Non-Linear SVM Testing time: ", end_time-start_time)  

 

print("Non-Linear SVM Train score is:", clfs.score(X_train, y_train))  

print("Non-Linear SVM Test score is:", clfs.score(X_test, y_test))  

 

from sklearn.svm import LinearSVC 

clfls = LinearSVC(max_iter = 1000)  

start_time = time.time()  

clfls.fit(X_train, y_train.values.ravel())  

end_time = time.time()  

print("Linear SVM Training time: ", end_time-start_time)  

 

start_time = time.time()  

y_test_pred = clfls.predict(X_train)  

end_time = time.time()  

print("Linear SVM Testing time: ", end_time-start_time)  

print("Linear SVM Train score is:", clfls.score(X_train, y_train))  

print("Linear SVM Test score is:", clfls.score(X_test, y_test))  
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from sklearn.linear_model import LogisticRegression  

   

clfl = LogisticRegression(max_iter = 1200000)  

start_time = time.time()  

clfl.fit(X_train, y_train.values.ravel())  

end_time = time.time()  

print("Logistic Regression Training time: ", end_time-start_time)  

 

start_time = time.time()  

y_test_pred = clfl.predict(X_train)  

end_time = time.time()  

print("Logistic Regression Testing time: ", end_time-start_time)  

 

print("Logistic Regression Train score is:", clfl.score(X_train, y_train))  

print("Logistic Regression Test score is:", clfl.score(X_test, y_test))  

 

from sklearn.neural_network import MLPClassifier 

 

 

mlp_clf = MLPClassifier(solver='adam', alpha=1e-5, hidden_layer_sizes=(5, 2), 

random_state=42) 

start_time = time.time() 

mlp_clf.fit(X_train, y_train.values.ravel()) 

end_time = time.time() 

print("Multilevel Perception Training time: ", end_time-start_time) 

 

start_time = time.time() 

y_test_pred = mlp_clf.predict(X_train) 

end_time = time.time() 

print("Multilevel Perception Testing time: ", end_time-start_time) 

 

print("Multilevel Perception Train score is: ", mlp_clf.score(X_train, y_train)) 

print("Multilevel PerceptionTest score is: ", mlp_clf.score(X_test, y_test)) 
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from sklearn.ensemble import GradientBoostingClassifier  

   

clfg = GradientBoostingClassifier(random_state = 0)  

start_time = time.time()  

clfg.fit(X_train, y_train.values.ravel())  

end_time = time.time()  

print("Gradient Boosting Training time: ", end_time-start_time)  

 

start_time = time.time()  

y_test_pred = clfg.predict(X_train)  

end_time = time.time()  

print("Gradient Boosting Testing time: ", end_time-start_time)  

 

print("Gradient Boosting Train score is:", clfg.score(X_train, y_train))  

print("Gradient Boosting Test score is:", clfg.score(X_test, y_test)) 

 

 

from sklearn.neighbors import KNeighborsClassifier 

clfk= KNeighborsClassifier(n_neighbors=5, metric='minkowski', p=2 )   

start_time = time.time()  

clfk.fit(X_train, y_train.values.ravel())  

end_time = time.time()  

print("KNN Training time: ", end_time-start_time)  

 

start_time = time.time()  

y_test_pred = clfk.predict(X_train)  

end_time = time.time()  

print("KNN Testing time: ", end_time-start_time)  

 

print("KNN Train score is:", clfk.score(X_train,y_train))  

print("KNN Test score is:", clfk.score(X_test,y_test))  

 

from keras.models import Sequential 

from keras.layers import Dense  

from keras.wrappers.scikit_learn import KerasClassifier 



 

 

68 

 

 

     

 

 

def ANNClassifier(): 

    annclassifier = Sequential() 

    annclassifier.add(Dense(19, activation = 'relu', kernel_initializer = 

"random_uniform")) 

    annclassifier.add(Dense(1, activation = 'sigmoid', kernel_initializer = 

"random_uniform")) 

    annclassifier.add(Dense(2, activation = 'softmax')) 

    annclassifier.compile(optimizer = 'adam', loss = 'categorical_crossentropy', 

metrics = ['accuracy']) 

    return annclassifier 

 

annclassifier = KerasClassifier(build_fn = ANNClassifier, 

epochs=100,batch_size=1000) 

 

start_time = time.time() 

annclassifier.fit(X_train, y_train) 

end_time = time.time() 

print("Artificial Neural Network Training time ", end_time - start_time) 

 

 

start_time = time.time() 

y_test_pred = annclassifier.predict(X_test) 

end_time = time.time() 

print("Artificial Neural Network Testing time ", end_time - start_time) 

 

start_time = time.time() 

y_train_pred = annclassifier.predict(X_train) 

end_time = time.time() 

print("Artificial Neural Network Training accuracy", accuracy_score(y_train, 

y_train_pred)) 

print("Artificial Neural Network Testing accuracy", accuracy_score(y_test, 

y_test_pred)) 

from keras.layers import LSTM 
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def RNNClassifier(): 

    rnnclassifier = Sequential() 

    rnnclassifier.add(LSTM(19)) 

    rnnclassifier.add(Dense(1, activation = 'sigmoid')) 

    rnnclassifier.add(Dense(2, activation = 'softmax')) 

    rnnclassifier.compile(optimizer = 'adam', loss = 'categorical_crossentropy', 

metrics = ['accuracy']) 

    return rnnclassifier 

 

rnnclassifier = KerasClassifier(build_fn = RNNClassifier, epochs=100 

,batch_size=1000) 

start_time = time.time() 

annclassifier.fit(X_train, y_train) 

end_time = time.time() 

print("Recurrent Neural Network Training time ", end_time - start_time) 

 

 

start_time = time.time() 

y_test_pred = annclassifier.predict(X_test) 

end_time = time.time() 

print("Recurrent Neural Network Testing time ", end_time - start_time) 

 

start_time = time.time() 

y_train_pred = annclassifier.predict(X_train) 

end_time = time.time() 

 

print("Recurrent Neural Network Training accuracy", accuracy_score(y_train, 

y_train_pred)) 

print("Recurrent Neural Network Testing accuracy", accuracy_score(y_test, 

y_test_pred)) 

 

from keras.layers import Conv2D, MaxPooling2D 

from keras.layers.advanced_activations import LeakyReLU 

from keras.layers import Flatten 
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X_train = X_train.reshape(X_train.shape[0],19,1,1) 

X_test = X_test.reshape(X_test.shape[0],19,1,1) 

 

 

def CNNClassifier(): 

    cnnclassifier = Sequential()#add input layer and first hidden layer  

    cnnclassifier.add(Conv2D(32, (3, 3), activation='relu', input_shape=(19, 1, 1), 

padding='same')) 

    cnnclassifier.add(LeakyReLU(alpha = 0.1)) 

    cnnclassifier.add(MaxPooling2D(pool_size=(4, 4), padding = 'same')) 

    cnnclassifier.add(Conv2D(64, (3, 3), activation = 'relu', padding = 'same')) 

    cnnclassifier.add(LeakyReLU(alpha = 0.1)) 

    cnnclassifier.add(MaxPooling2D(pool_size = (4,4), padding = 'same')) 

    cnnclassifier.add(Flatten()) 

    cnnclassifier.add(LeakyReLU(alpha = 0.1)) 

    cnnclassifier.add(Dense(2, activation = 'softmax')) 

    cnnclassifier.compile(optimizer = 'adam', loss='categorical_crossentropy', 

metrics=['accuracy']) 

    return cnnclassifier 

 

cnnclassifier = KerasClassifier(build_fn = CNNClassifier, epochs=10, 

batch_size=1000) 

 

start_time = time.time() 

cnnclassifier.fit(X_train, y_train.values.ravel()) 

end_time = time.time() 

 

print("Convolutional Neural Network Training time:", end_time-start_time) 

 

start_time = time.time() 

y_test_pred = cnnclassifier.predict(X_test) 

end_time = time.time() 

print("Convolutional Neural Network Testing time ", end_time - start_time) 

 

start_time = time.time() 

y_train_pred = cnnclassifier.predict(X_train) 
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end_time = time.time() 

 

print("Convolutional Neural Network Training accuracy", accuracy_score(y_train, 

y_train_pred)) 

print("Convolutional Neural Network Testing accuracy", accuracy_score(y_test, 

y_test_pred)) 

 


