
MACHINE LEARNING ALGORITHMS FOR CYBER ATTACK DETECTION

AND CLASSIFICATION

A THESIS SUBMITTED TO

THE FACULTY OF ARCHITECTURE AND ENGINEERING

OF

EPOKA UNIVERSITY

BY

ERINDI MULLALLI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

MARCH, 2024

i

MACHINE LEARNING ALGORITHMS FOR CYBER ATTACK DETECTION

AND CLASSIFICATION

A THESIS SUBMITTED TO

THE FACULTY OF ARCHITECTURE AND ENGINEERING

OF

EPOKA UNIVERSITY

BY

ERINDI MULLALLI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

 MARCH, 2024

i

Approval sheet of the Thesis

This is to certify that we have read this thesis entitled “Machine Learning

Algorithms for Cyber Attack Detection and Classification” and that in our opinion

it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Arban Uka

Head of Department

 Date: March, 01, 2024

Examining Committee Members:

Assoc.Prof.Dr. Dimitrios Karras (Computer Engineering) ________________

Prof.Dr. Gëzim Karapici (Computer Engineering) ________________

Prof.Dr. Betim Çiço (Computer Engineering) ________________

ii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

 Name Surname: Erindi Mullalli

Signature: ______________

iii

 ABSTRACT

MACHINE LEARNING ALGORITHMS FOR CYBER ATTACK DETECTION

AND CLASSIFICATION

Mullalli, Erindi

Master of Science, Department of Computer Engineering

Supervisor: Prof.Dr. Betim Çiço

 As a result of the accelerated development and expansion of technology in the

present day, a new concern has emerged: cyberattacks. This has generated significant

concern across various domains globally, leading to considerable disruption in

networks and presenting PC users with a multitude of challenges. Presently, a

multitude of organisations are striving to combat these types of cyber-attacks through

the implementation of novel detection and subsequent destruction methods. The

domain of machine learning enables computers to acquire knowledge and skills

without requiring explicit programming. There are an abundance of implementation

strategies for this technology. This study aims to demonstrate a diverse array of

algorithms utilised in the defence against various cyber-attacks. This paper will

examine various classification algorithms utilised to defend against diverse cyber-

attacks, as well as the methods of defence against these attacks. The implementation,

accuracy, and testing time of these algorithms will vary depending on the classification

of the attack. This thesis will discuss various varieties of these algorithms.

Keywords: Performance, cyber-attack, cyber-defense, machine learning, and deep learning

iv

ABSTRAKT

Algoritmet e mësimit të makinerisë për zbulimin dhe klasifikimin e

sulmeve kibernetike

Mullalli, Erindi

Master of Science, Department of Computer Engineering

Udhëheqësi: Prof.Dr. Betim Çiço

Si rezultat i zhvillimit të përshpejtuar dhe zgjerimit të teknologjisë në ditët e sotme,

është shfaqur një shqetësim i ri: sulmet kibernetike. Kjo ka krijuar shqetësim të madh

në fusha të ndryshme globalisht, duke çuar në ndërprerje të konsiderueshme në rrjete

dhe duke i paraqitur përdoruesit e PC me një mori sfidash. Aktualisht, një mori

organizatash po përpiqen të luftojnë këto lloje të sulmeve kibernetike përmes zbatimit

të metodave të reja të zbulimit dhe shkatërrimit të mëvonshëm. Fusha e mësimit të

makinerive u mundëson kompjuterëve të fitojnë njohuri dhe aftësi pa kërkuar

programim të qartë. Ka një bollëk strategjish zbatimi për këtë teknologji. Ky studim

synon të demonstrojë një grup të larmishëm algoritmesh të përdorura në mbrojtjen

kundër sulmeve të ndryshme kibernetike. Ky punim do të shqyrtojë algoritme të

ndryshme klasifikimi të përdorura për t'u mbrojtur kundër sulmeve të ndryshme

kibernetike, si dhe metodat e mbrojtjes kundër këtyre sulmeve. Zbatimi, saktësia dhe

koha e testimit të këtyre algoritmeve do të ndryshojnë në varësi të klasifikimit të

sulmit. Kjo tezë do të diskutojë varietete të ndryshme të këtyre algoritmeve.

Fjalë kyce: Performanca, sulmi kibernetik, mbrojtja kibernetike, mësimi i makinerive

dhe mësimi i thellë

v

Dedication

I dedicate this work to my family who supported me, to my friends who encouraged me for

this work and supervisor who has always been ready to help me.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ABSTRAKT ... iv

LIST OF TABLES .. ix

LIST OF FIGURES ... x

CHAPTER 1 .. 1

INTRODUCTION ... 1

I.1 Purpose of this thesis .. 1

I.2 The thesis synopsis .. 1

CHAPTER II ... 3

REVIEW OF THE LITERATURE ... 3

II.1 Assaults on the system .. 3

II.1.1 Abuse of resources as a target of attack... 3

II.1.2 User-access compromise .. 4

II.1.3 Root access compromise .. 5

II.1.4 Web access compromise .. 5

II.1.5 Malware attack .. 5

II.1.6 Denial of Service ... 6

II.2 Security measures to ward against cyberattacks ... 7

II.2.1 Intrusion Detection Systems ... 7

II.2.2 Protection against an assault on resource misuse 8

II.2.3 Protective measures against attacks that compromise both root and

user access ... 9

II.2.4 Provides protection against attacks that compromise the web 9

II.2.5 Protection against malicious software .. 9

II.2.6 Defense against Denial of Service attacks .. 11

II.3 Artificial Intelligence (Learning Machine) ... 12

II.3.1 Decision Tree algorithm .. 13

II.3.2 Random Forest algorithm ... 14

II.3.4 Supporting Vector Machine algorithm .. 16

II.3.5 Gaussian Naïve-Bayes algorithm .. 17

vii

II.3.6 K-means clustering algorithm .. 18

II.3.7 K-Nearest Neighbor (KNN) algorithm... 19

II.3.8 Network of Artificial Neural Circuits .. 20

II.3.9 Convolutional Neural Network ... 21

II.3.10 Neuronal networks that are recurrent ... 23

CHAPTER III .. 25

THE METHODS AND THE MATERIALS ... 25

III.1 Datasets .. 25

III.1.1 Dataset KDD ... 25

III.1.2 The dataset, NSL-KDD .. 26

III.1.3 Kyoto dataset .. 28

III.1.4 UNSW-NB15 dataset .. 28

III.2 Machine Learning Algorithms ... 28

III.2.1 Gaussian Naïve Bayes Algorithm .. 29

III.2.2 Logistic Regression ... 30

III.2.3 Decision Tree Algorithm .. 32

III.2.4 Random Forest Algorithm ... 33

III.2.5 Supporting Vector Machine algorithm .. 34

III.2.6 Gradient Boosting algorithm ... 36

III.2.7 K-Nearest Neighbor Classifier .. 37

III.2.8 Network of Artificial Neural Circuits ... 38

III.2.9 Convolutional Neural Network ... 40

III.2.10 Recurrent Neural Network .. 42

CHAPTER IV .. 44

DISCUSSIONS BASED ON THE RESULTS .. 44

IV.1 KDD dataset results ... 44

IV.2 NSL-KDD dataset results .. 46

IV.3 Kyoto dataset results ... 49

IV.4 UNSW-NB15 .. 52

CHAPTER V ... 58

SUMMARY AND SUGGESTIONS FOR FUTURE WORK 58

V.1 Summary .. 58

V.2 Future Work .. 59

viii

REFERENCES .. 60

APPENDIX .. 62

ix

 LIST OF TABLES

Table 1 : THE OUTCOMES OF THE TRAINING AND TESTING METHODS FOR

THE KDDCUP DATASET ……………………………………………..………

Error! Bookmark not defined.

Table 2 : THE OUTCOMES OF THE TRAINING AND TESTING METHODS FOR

THE NSL-KDD DATASET ……………………………………………..……..50

Table 3: THE OUTCOMES OF THE TRAINING AND TESTING METHODS FOR

THE KYOTO DATASET …………………………………………….………..53

Table 4 : RESULT FOR TRAINING AND TESTING ALGORITHM FOR UNSW-

NB15 DATASET …………………………………………………………..…..53

Table 5 : RESULTS FOR TRAINING TIME, TESTING TIME, TRAINING

ACCURACY AND TESTING ACCURACY FOR ALL 4 DATASETS TESTED

……………………………………………………………………………….…..53

Table 6 : THE RESULT FOR SENSITIVITY AND SPECIFICITY FOR EACH

ALGORITHM IN THE 4 DATASETS TESTED ………………………….…..53

x

LIST OF FIGURES

Figure 1. The decision Tree algorithm…………………………………………... 13

Figure 2. Random Forest algorithm………………………………………………. 14

Figure 3. Logistic Regression Algorithm………………………………………… 15

Figure 4. Supporting Vector Machine algorithm…………………………………. 16

Figure 5. Gaussian Naïve-Bayer algorithm………………………………………. 17

Figure 6. K-means clustering algorithm………………………………………….. 18

Figure 7. K Nearest Neighbor……………………………………………………..20

Figure 8. Artificial Neural Networks……………………………………………... 21

Figure 9. Convolutional Neural Networks………………………………………. 21

Figure 10. Recurrent Neural Network…………………………………………… 23

Figure 11. Implementation of Naïve Bayes Algorithm in Python………………. 30

Figure 12. Logistic Regression Implementation in python……………………… 31

Figure 13. Decision Tree Classifier Implementation in Python………………….. 32

Figure 14. Random Forest Classifier implementation in python………………… 33

Figure 15. Linear SVM classifier implemented in python………………………. 34

Figure 16. Non-Linear SVM Classifier implementation in python………………. 35

Figure 17. Gradient Boosting Classifier algorithm in python…………………… 36

Figure 18. Implementation of K-Nearest Neighbor classifier in python…………. 37

Figure 19. Artificial Neural Network Classifier in Python………………………. 38

xi

Figure 20. Multilevel Perception Classifier implemented in python…………….. 41

Figure 21 : Convolutional Neural Network classifier using Python……………... 42

Figure 22: Recurrent Neural Network implementation in python……………….. 44

Figure 23: Block Scheme…………………………………..…………………….. 45

Figure 24: The outcomes of the training and testing methods for the KDDCUP

dataset………………………………………………………………………… 48

Figure 25: The outcomes of the training and testing methods for the nsl-kdd dataset

…………………………………………………………………………………. 51

Figure 26: The outcomes of the training and testing methods for the Kyoto dataset

…………………………………………………………………………………. 54

Figure 27: The outcomes of the training and testing methods for the UNSW-NB15

dataset ... 56

Figure 28: Training accuracy values for all algorithms ... 57

Figure 29: Testing accuracy values for all algorithms ... 57

Figure 30: Sensitivity and Specificity of the 12 algorithms for all tested datasets ... 60

1

CHAPTER 1

INTRODUCTION

 Presently, scientists are devoting considerable effort to the development of an

intelligent system that can detect various types of intrusions.

I.1 Purpose of this thesis

This is to achieve theThe objective of this endeavour is to develop an intelligent

system capable of identifying various types of network anomalies and to evaluate the

efficacy of each approach we implement. Machine learning techniques were selected

due to their widespread recognition and acceptance as a preferred approach. They are

capable of acquiring knowledge independently, without requiring explicit

programming. Obtaining a more in-depth comprehension of deep learning and

machine learning classification methods is an additional goal that this endeavour aims

to accomplish. With the use of four different kinds of datasets, the purpose of this

investigation is to determine how accurate the learning algorithms are.

I.2 The thesis synopsis

Including an introduction, a literature review, materials and methods, results

and discussion, conclusions, and a section on future work are the six chapters that

make up this project. The introduction section comprises a succinct delineation of the

project, its intended objective, and an outline of the thesis. The literature review is

structured into three sections, each of which pertains to cyber-attacks and identifies

which varieties cause the most damage. The subsequent segment delineates the various

forms of safeguards against cyber-criminals and cyber-attacks. The collection of

machine learning algorithms that are utilised in the area of cyber security is presented

in the third part of this introduction. The next section provides an analysis of the

achievements of this endeavour in light of the sources that were mentioned. In the

2

section under "Materials and Methods," a comprehensive overview of the datasets that

were utilised for the research is included, along with an explanation of the reasons

behind their selection. The structure is divided into two distinct portions. In the first

part of the presentation, an overview of the datasets that were used is presented.

Detailed information on the results of the training time, testing time, training accuracy,

and testing accuracy of the algorithms that were applied for machine learning and deep

learning may be found in the section under "Result and Discussion." Even things like

the Discussion and Results are broken up into four distinct parts for each dataset that

is being offered. In the section, "Conclusions," you will find a summary of the results

and consequences of the study, as well as some recommendations for further research

that may be conducted in the future. Finally, in the section under "References," we

provide hyperlinks to the many sources that we have relied on during our research.

3

CHAPTER II

REVIEW OF THE LITERATURE

II.1 Assaults on the system

 A method that is used to compromise the data that is kept on a computer that is

the subject of an assault is referred to as a cyber-attack. This may be accomplished by

unauthorised access, theft, acquisition, alteration, or disabling. There is another way

to describe a cyber-attack, which is an incursion that targets the system of a computer

with the purpose of compromising the integrity, availability, and confidentiality of the

data. In addition to that, it is also known as the CIA trinity. The protection of data from

being accessed by those who are not permitted to do so is an example of secrecy. When

a person who is not permitted to do so acquires your credit card information or

password, this is a breach of confidence. Integrity refers to the guarantee that data

cannot be altered by anyone who are not permitted to do so. The provision of permitted

users with access to the data whenever it is necessary is what we mean by

"availability." The deletion of each and every file on your computer is an example of

a circumstance in which the availability is lost. It is possible to launch a broad range

of cyberattacks.

II.1.1 Abuse of resources as a target of attack

Employees of an organisation may, on occasion, inadvertently allow access to

information belonging to the institution to persons who are not permitted to have

access to it. A Man-in-the-Middle attack, often known as a MitM assault, is an example

of an attack that takes advantage of resource mismanagement. An instance of this kind

of intrusion takes place when a criminal places oneself in the middle of a client and a

server's connection that requires reliability. In this kind of attack, the cybercriminal

makes changes to the communication that takes place between the server and the

corresponding client. Both the server and the client are unaware of the fact that a third

party is acting as an intermediary between them and is aware of all of the

communications that are being sent back and forth between them. When it comes to

4

ModM attacks, session hijacking is one kind. During this kind of attack, a

cybercriminal inserts themselves into the middle of a session that is taking place

between the server and the client (the client in this case being the victim). After this,

the cybercriminal will change the Internet Protocol (IP) address of the client to a

different one of his choice. As a consequence of this, he resumes the connection with

the server, which, ignorant to the circumstances, identifies the cybercriminal's IP

address as that of a trusted client. After this, the device used by the cybercriminal

creates a link with the computer belonging to the client, who is the victim, and then

forges the sequence number and internal data of the client's machine.

II.1.2 User-access compromise

 Presently, a prevalent form of attack involves the compromise of personally

identifiable information (Passwords, Credit Card Numbers, and so forth). Personal

information can be compromised through a variety of means, including social

engineering, surveillance, brute force, dictionary, phishing, spearfishing, and so forth.

Sniffing is a technique by which a cybercriminal can intercept data during its wireless

transmission from one personal computer to another. Numerous gratis software

programmes, including Wireshark, aid cybercriminals in conducting surveillance.

Typically, this type of assault is employed in public areas with wireless access, such

as cafeterias. This type of attack enables the cybercriminal to observe the content that

is submitted on the website as well as the requests that are returned. Social engineering

is a form of attack in which a cybercriminal manipulates a victim psychologically into

divulging sensitive information. There exist numerous methods by which this may be

accomplished. In class, for instance, when the instructor inquired as to how each

student had entered the Facebook password, they began to demonstrate it individually.

A brute force attack occurs when a cybercriminal attempts to deduce the password of

an account by trying each possible combination of characters until they succeed. The

dictionary assault is a more sophisticated form of intrusion than the brute force attack.

Similar to the brute force attack, the cybercriminal endeavours to discover the

passwords by trying every possible combination of characters. However, in this

instance, he possesses a list consisting of the most frequently used passwords,

including '1234' and others. Phishing is a form of cyberattack in which a target is duped

into divulging sensitive information. Phishing, also referred to as the theft of sensitive

5

personal information like credit card numbers and passwords, is executed by a

cybercriminal.

II.1.3 Root access compromise

 This form of attack bears significant resemblance to user access compromise;

nevertheless, in contrast to the latter, the cybercriminal gains access to the

administrator account rather than the specific host. The administrator account

possesses distinct privileges that distinguish it from the majority of other accounts

within the network system.

II.1.4 Web access compromise

 This form of intrusion is carried out through the exploitation of vulnerabilities

present on various websites. Web compromise assaults are frequently executed

through the utilisation of SQL (structured query language) injection and XSS (cross-

site scripting).SQL injection is a form of injection that enables cybercriminals to

compromise data, disrupt operations, or cause damage to information by

impersonating their identities or rendering it ineffective, among other things.

 II.1.5 Malware attack

Malware (short for malicious software) refers to a type of software that is

capable of causing damage to a computer system. Malware has been utilised by

hackers for decades to achieve a variety of goals, including disabling or destroying

cyber-systems, compromising systems or networks, stealing massive amounts of data,

injecting malicious programmes, and so forth. On the basis of their propagation

frequency and intended use, malware can be categorised into various categories.

Among this category, the most prevalent are ransomware, spyware, viruses, Trojans,

and worms.

Virus assault: Comparable to how a biological virus replicates within the

human body, a computer virus can also duplicate itself. It can infect other files on your

computer after cloning itself and may be attached to a software application. Numerous

varieties of viruses exist, including the Elk Cloner virus and the Melissa virus.

6

Worms: Unlike viruses, worms can replicate without the assistance of

software. Self-cloning is possible via propagation across the network. The solitary

worm is capable of cloning itself via email attachments. Worms are incapable of

infecting computer files. Worms are capable of executing Denial-of-Service (DoS)

attacks by replicating themselves across all contacts in the victim's email and by

utilising all available network resources.Trojans are fundamentally dissimilar to

viruses and worms in essence. Trojan-launching cybercriminals typically employ

social engineering techniques to convince their targets to install the Trojan on their

own systems. A Trojan does not possess the capability to replicate or infect the files

present on a computer. Its sole purpose is to provide cybercriminals with a gateway

through which they can execute malware whenever they deem it necessary.

Spyware is a form of malicious software designed to monitor the activities of

targets instead of initiating an actual attack. Without the cognizance of the victim, this

type of malware steals sensitive information from them, including passwords, credit

card numbers, and logon credentials.

Ransomware is a form of malicious software that obstructs a collection of

applications on a system with the intention of extracting a ransom, which is typically

monetary. Typically, such assaults are executed with the assistance of a Trojan.

Ransomware is illustrated by the name Wannacry.

II.1.6 Denial of Service

The primary objective of this category of cyber-attack is to disrupt the typical

functioning state of a system or network. Distributed Denial of Service attacks,

network-based attacks, and host-based attacks are the three primary classifications of

denial of service attacks.

Host-based assault: This category of attacks involves the installation of viruses

and malware within computer systems with the purpose of carrying out their payload

or operation, which is to inundate the entire network system with an infinite number

of host requests.

Network-based attack: In contrast to the aforementioned form of attack, which

requires a specific computer system as its target, cybercriminals infiltrate the entire

7

network with the intention of executing their payload and subsequently disrupting the

network's regular operations.

A Distributed Denial of Service (DDoS) attack is typically executed by a

computer system or network with the intention of entirely deactivating the victim's

network.

II.2 Security measures to ward against cyberattacks

 As a result of the existence of several defensive mechanisms, the system is

protected, either totally or partly, from the aforementioned types of attack. As an

alternative, these measures are often referred to as Intrusion Detection Systems, or IDS

for short.

II.2.1 Intrusion Detection Systems

An intrusion prevention mechanism and an intrusion detection mechanism are

both components of the intrusion detection system. In order to identify and regulate

network activities that are taking place inside the network, an intrusion detection

system, also known as an IDS, is developed by using a mix of hardware and software

components. There are two separate categories that make up the Intrusion Detection

System. These categories are determined by the detection technique and the aim.

detection-based and data source-based classification techniques are the two types of

classification methods that are employed by an intrusion detection system. A misuse-

based detection and an anomaly-based detection are the two unique subgroups that fall

under the category of detection-based methods. The source-based techniques and the

network-based methods are the two subcategories that fall under the umbrella of the

data source approach.

Technique that is based on detection: Other names for signature-based

detection are misuse detection and signature-based detection. The preservation of

8

recognisable attack behaviours, such as database signatures, is the overriding objective

of this strategy. In addition to being extraordinarily rapid, the abuse approach generates

an extremely low amount of false alerts. This technique, on the other hand, has a

significant false alarm rate when it comes to situations in which there are no attacks or

when there are attacks that have not been discovered.

Method that is depending on the source of the data: Without much difficulty,

the host-based technique is able to identify intrusions that originate from a particular

machine. In addition to being able to accurately identify the behaviour of network

objects like programmes, ports, and files, this approach also has the power to do so.

On the other hand, the host-based strategy is dependent on host resources, which in

this case are computers, and as a result, it is unable to recognise instances of network

abnormalities or assaults. When compared to host-based techniques, network-based

methods are able to function independently of the resources provided by the host, such

as computers. By and large, routers and switches are the devices that are used to

implement network-based approaches. This system is not reliant on any particular

operating system and is able to differentiate between many types of network protocols.

One of the limitations is that its use is limited to monitoring the flow of data inside a

particular network and not beyond it.

II.2.2 Protection against an assault on resource misuse

A network intrusion detection system based on anomalies is required to prevent

attacks involving the exploitation of resources. A system that falls into this category is

able to monitor network flows and will raise the alarm in the event that an attempt is

made to take control of a network session. This specific kind of system will produce a

high number of false alerts in the event that zero-day threats are present, despite the

fact that it has shown remarkable performance against known network assaults. It is

advised that businesses use preventative measures, such as a Virtual Private Network

(VPN), while accessing resources inside their network in order to maintain network

security against zero-day attacks. This is done in order to protect the network from

being compromised.

9

II.2.3 Protective measures against attacks that compromise both root

and user access

 The term "phishing" refers to a situation in which both root and user access

have been effectively compromised. Furthermore, this indicates that the prevention

and protection against spoofing attacks may be used to ensure that both root and user

access to a particular system are protected. Utilising a strategy that is based on email

as a defence mechanism against phishing attempts is one option that can be used to

ensure its security.

II.2.4 Provides protection against attacks that compromise the web

 SQL injection and cross-site scripting attacks are two methods that

cybercriminals use to launch a web access compromise attack against a particular

website address. These attacks are carried out when this vulnerability is discovered.

Anomaly detection and signature-based detection are the two separate detection

approaches that are used in order to protect the system from assaults that are aimed at

compromising the web. In addition to this, it is necessary to establish a secure coding

practice, keep an up-to-date knowledge of vulnerabilities inside the database, and

apply updates for programmes that are capable of preventing vulnerabilities of this

kind.

II.2.5 Protection against malicious software

The current worldwide epidemic that has affected the whole digital

environment is malware, which is a kind of malicious software. Cybercriminals use

this strategy to their advantage in order to secure computer systems and get access to

sensitive information. Malware detection methods are an essential part of the defensive

system since they serve as the first line of defence against assaults that are carried out

by malicious software. There are three distinct categories that make up the detection

mechanism. These categories are based on the method in which the malware detection

process will be carried out.

Signature-based: This technique is used rather often in the detection of

malicious software. Companies that specialise in anti-malware techniques do malware

analysis and then proceed to produce signatures, which are made up of a string of

bytes. A pattern-matching algorithm is implemented, and signatures are used to assure

10

the safety of their customers. This is accomplished via the use of signatures. The most

significant disadvantage of this technique, on the other hand, is that it is possible for

malicious actors to modify a section of code and the programme that came before it in

order to avoid detection by signature-based systems. It is also not possible to use this

strategy to defend against zero-day attacks.

The notion of behavior-based malware detection is strongly tied with

signature-based detection; however, it utilises a different process for extracting

characteristics. Signature-based detection is closely related to behavior-based malware

detection. By using a detection method that examines the behaviours of the virus rather

than its vocal communication, this approach is able to identify malicious software.

Identification of malware that is capable of obfuscation and aberrant malware may be

accomplished via the use of behavior-based malware detection, which is an appropriate

approach. Malware that displays characteristics that are similar to one another is

categorised under a single signature rather than establishing separate signatures for

each individual byte code sequence. A considerable reduction in the number of false

alarms generated by behavior-based approaches is achieved as a result of this. The

behavior-based detection approach is distinguished by the presence of three separate

components. The first component, which is identified as the data collector, is used for

the purpose of collecting data that is associated with executable element information.

In order to transform the data that has been acquired, the alternative component acts

as a medium that acts as an intermediate. The last step in the process of generating the

output involves comparing the representations to the database that contains the

behaviour signature.

Although the behavior-based detection strategy is far more effective than the

signature-based approach, cybercriminals are nevertheless able to defeat this method

by using tough countermeasures. This is the case despite the fact that the signature-

based approach is significantly more effective. Researchers in the modern day use a

heuristic strategy, which is a combination of machine learning and data mining

methods, in order to solve this difficulty.

11

II.2.6 Defense against Denial of Service attacks

Defending a system from DoS (Denial of Service) attacks constitutes an extensive area

of study. Defending against a DoS attack requires the implementation of two distinct

strategies: attack prevention and detection.

Preventing attacks: This technique is predominantly implemented in networking

routers to identify malicious traffic based on signatures. An assault prevention method

is also the initial line of defence in the event of a DoS attack. The following are some

techniques utilised to filter packets:

Ingress and egress filtering (a) The filtration packet grants access to internal network

traffic contingent upon the equivalence of ingress (traffic entering the local network)

and egress (traffic leaving the local network) traffic with the expected traffic from the

originating IP.

b. Router-based packet filtering: This form of packet filtering operates based on

routing information pertaining to the source and destination IP addresses of the

incoming packets.

c. Packet-filtering by Hop Count: The hop count refers to the discrepancy between the

initial value and the Time to Live (TTL) value of a packet in network traffic. Through

this process, a network router generates a database table that contains the hop count of

each user in relation to a particular destination. As a result, should the router detect an

irregularity in the expected step counts, it will discard the packet and generate an alert

to safeguard the network from potential threats or attacks.

This category of detection mechanisms employed to thwart DoS attacks is comprised

of the following two groups:

a. Detection based on signatures: Malicious traffic is identified using this method by

analysing the signatures of attack traffic data.

b. DoS detection based on anomalies: This method is widely employed today for DoS

detection due to the fact that attack patterns are significantly more complex than they

were previously. In general, machine learning techniques are applied to this method.

12

This approach consists of two fundamental components. Initially, network

characteristics such as Time to Live (TTL), IP packet length, and so forth, are extracted

from network traffic data using Data Mining (DM) techniques. Subsequently, a

detection model is built upon this feature representation. Second, incoming traffic is

evaluated by this model to determine whether or not it is malevolent, based on the

value of a predetermined threshold.

II.3 Artificial Intelligence (Learning Machine)

Machine learning is an umbrella term that is used to represent computational

techniques that try to duplicate the learning processes of people via the use of

computers in order to gain information automatically. These approaches are used in

order to acquire knowledge. It includes a wide range of fields, some of which are

computer science, statistics, psychology, and neurology, amongst others. It is a very

large area of research. Significant progress has been made in the way that learning

algorithms are implemented in the current day. This is the result of recent

developments in the performance of processors and the storage of expansive amounts

of data. Supervised learning, unsupervised learning, and reinforcement learning are

the three separate categories that machine learning algorithms fall into. These

categories are dependent on the learning strategies that they apply. During the training

process of supervised learning algorithms, models are trained to the degree that they

are mapped to the actual output labels. This allows the models to understand the

connection that exists between the labels and the feature value that corresponds to

them. Supporting Vector Machines, Logistic Regression, Random Forest, Decision

Tree, and K-Nearest Neighbours are all examples of supervised learning algorithms.

Neural networks, such as Convolutional Neural Networks, Recurrent Neural

Networks, and Artificial Neural Networks (which also include Multilevel Perception),

are also included in this category of neural networks. Unsupervised learning

algorithms, on the other hand, are able to gain information from the complete training

dataset without being aware of the outcome for individual inputs. Data that does not

include any labels is used to train algorithms that are used for unsupervised learning.

13

The K-means clustering technique is only one of the many examples of an

unsupervised learning algorithm that is now available. The purpose of a reinforcement

learning (RL) algorithm is to learn from the environment in which it deploys an agent.

This is the aim of the algorithm. The agent is able to gain knowledge by the activities

that it does within the environment, and it uses this information to decide whether it

will make a mistake or achieve success. A combination of supervised and unsupervised

learning strategies is what makes up the algorithms that make up reinforcement

learning.

II.3.1 Decision Tree algorithm

 Fig 1. The decision Tree algorithm

The Decision Tree algorithm is a classification model based on rules. It is

represented by a tree structure in which each feature is represented by a vertex, and

the feature value is determined by each branch. The vertex positioned at the apex

of the tree is referred to as the root. The component in question retains the largest

proportion of the information gain (entropy differences) among all the features and

is utilised to divide the training data appropriately. The term "leaves" refers to the

vertices located at the bottom of the algorithm. The class is represented by a leaf.

Throughout the classification process, the decision tree transitions to a top-down

methodology to satisfy the classification instance. The following equation

describes the information gain utilised in a decision tree to precisely divide samples

in a tree-structured method:The Decision Tree algorithm is a classification model

based on rules. It is represented by a tree structure in which each feature is

represented by a vertex, and the feature value is determined by each branch. The

14

vertex positioned at the apex of the tree is referred to as the root. The component

in question retains the largest proportion of the information gain (entropy

differences) among all the features and is utilised to divide the training data

appropriately. The term "leaves" refers to the vertices located at the bottom of the

algorithm. The class is represented by a leaf. Throughout the classification process,

the decision tree transitions to a top-down methodology to satisfy the classification

instance. The following equation describes the information gain utilised in a

decision tree to precisely divide samples in a tree-structured method:

𝐺𝑎𝑖𝑛(𝑃, 𝑄) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃) − ∑
𝑃𝑣

𝑃
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃𝑣) 𝐸𝑞 1

𝑣∈𝐷𝑄

 When applied to this scenario, Gain(P,Q) represents the entropy reduction that

was applied in order to sort P according to feature Q. In a strategy that works from the

top down, nodes are defined by characteristics that have an information gain value that

is always growing. The uncomplicated implementation of the decision tree method and

the high classification accuracy it offers are the two key advantages of using this

technique. The complexity of the decision tree classifier's computations is, on the other

hand, the most significant disadvantage related to it.

II.3.2 Random Forest algorithm

 Fig 2. Random Forest algorithm

The algorithm known as random forest is made up of a collection of many

different decision trees coming together. Every single tree that is still a part of the

Random Forest has the ability to produce a prediction class. In reality, decision trees

15

are able to select the prediction of the model based on the class that obtains the most

votes. It is possible to use an algorithm of this kind for both classification and

regression purposes. Through the use of this strategy, an extra element of

unpredictability is added throughout the process of tree development. As opposed to

searching for the best attribute at the moment of splitting a node, it seeks for the best

attribute from a random selection of attributes. Because of this, the random forest

creates a substantially wider variety of trees, which allows for a higher-level bias to be

accommodated in exchange for a lower-level variance. As a consequence, the random

forest often results in a significantly better model.

II.3.3 The Algorithm behind Logistic Regression

 Fig 3. The Algorithm behind Logistic Regression

 It is standard practice to use the Logistic Regression technique in order to ascertain

the probability that a certain sample belongs to a particular category (for instance, to

ascertain whether or not this file contains a pathogen). If the estimated probability is

more than fifty percent, then our training model will make the prediction that the

provided sample is a member of the class that has been defined (the sample that

belongs to the positive class will be labelled with the value 1). On the other hand, if

the estimated probability is less than fifty percent, the training model will make a

prediction that the sample that was supplied does not belong to the class that was

specified (which is referred to as the "negative class") and will assign the value zero

16

to the sample. As a result of these calculations, Logistic Regression may be used as a

technique for binary classification. The output of a logistic regression method is not

the actual result itself, despite the fact that it is feasible for the algorithm to calculate

a weighted sum of a set of input characteristics (along with a bias). In this particular

scenario, the output is the logistic of the result. With a range of values ranging from 0

to 1, the Logistic function, which is represented by the symbol σ(.), is a sigmoid

function.One way to characterise the Logistic function is as follows:

 𝜎(𝑡) =
1

1+𝑒−𝑡 𝑜𝑟 𝑌 =
1

1+𝑒−𝑥 𝐸𝑞 2

Upon receiving an input of x (or t), the function proceeds to return an output of Y (or

σ(t)).

II.3.4 Supporting Vector Machine algorithm

 Fig 4. Supporting Vector Machine algorithm

Among the support vector machine algorithms that are used in the field of cyber

security, Supporting Vector Machine is among the favourite methods. In order to

divide the different classes, this technique makes use of a hyperplane, which is one of

the significant characteristics of this approach. The technique makes use of a

hyperplane, the degree of which is maximised in order to maximise the gap that exists

between it and the data point that is closest to it. The method may be used in both two-

dimensional and three-dimensional planes to get the desired results. The objective of

the Supporting Vector Machine is to accurately classify the data. A few of the benefits

17

of the Supporting Vector Machine include its simplicity of implementation, its

demonstrated exceptionally high accuracy rate, and its capability to generate

hyperplanes with time complexity. One drawback associated with this approach is the

challenge in determining the most effective kernel size. This algorithm finds

applicability in a wide range of domains, including medicine, security applications,

pattern recognition, and more.

II.3.5 Gaussian Naïve-Bayes algorithm

 Fig 5. Gaussian Naïve-Bayer algorithm

The Naïve-Bayes classifier is an additional probabilistic type of supervised

algorithm. The algorithm calculates the probability of a given class given inputs for all

attributes. The model for this algorithm is constructed using the Bayes rule. The

alternative name for the Naïve-Bayes algorithm is the generative model. The Naïve-

Bayes classifier calculates the conditional probability of each attribute given in a class

p (a/b) using the initial probability of all classes, p (b), in order to determine the

probability of a class p (b/a). Generalisation of the Naive-Bayes algorithm formula:

𝑝 (
𝑏

𝑎
) =

𝑝(𝑎, 𝑏)

𝑝(𝑏)
=

𝑝(𝑎/𝑏)𝑝(𝑎)

𝑝(𝑏)
 𝐸𝑞 3

"b" represents the class vector, whereas "a" represents the input vector. The primary

benefit of the Naive-Bayes classifier is its robustness when confronted with chaotic

training data. Due to its reliance on probabilistic values for all attributes, the

performance of a Naive-Bayes classifier remains unaffected by low-level training

18

samples. The principal drawback of the Naive-Bayes classifier is that it treats all

attributes as independent, despite the fact that this is rarely the case in practice.

II.3.6 K-means clustering algorithm

 Figure 6. K-means clustering algorithm

The objective of the well-known unsupervised machine learning algorithm K-

means clustering is to identify predefined clusters within a given dataset; the value of

each cluster group is denoted by k. Clusters are generated on the basis of shared

characteristics among all the data points within the given set. Consider an illustration

of k-means clustering. Assigned to its nearest centroids are a number of m data points

in accordance with Euclidean distance measures. The Euclidian distance equation is:

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∑ 𝑑(𝑥𝑖 , 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠(𝑥𝑖))𝑚
𝑖=1 𝐸𝑞 4

where centoids (x_i) represents the centroid to which the data point x_i is

assigned. Subsequently, the centroids are recalculated using the average distance

between each data point that was assigned to the centroids. These steps are iterated

throughout the algorithm until no data point can modify the cluster centroids. By

performing these operations, the distance between each centroid and the corresponding

data points within a cluster is diminished. These algorithms are utilised to identify data

patterns and data clusters within the context of big data, where data labelling becomes

a laborious task. One drawback of k-means clustering is that the k value must be

19

specified in advance. For the computation of attribute similarity, k-means clustering is

utilised in security applications.

II.3.7 K-Nearest Neighbor (KNN) algorithm

 Fig 7. K Nearest Neighbor

 The K-Nearest Neighbour algorithm, often known as KNN and shortened as

KNN, is a well-known algorithm that is recognised for its simplicity throughout the

execution of a programme. The method displays a great amount of usefulness whether

it is used to either classification or regression problems. The supervised algorithms

that are the most well-known to the general public. This technology is now being

employed in a wide variety of technical fields. The scale of the dataset as well as the

classification or regression issue that is being addressed both have a role in

determining the k-value that is incorporated inside the K-Nearest Neighbour

algorithm. In situations when continuous variables are being considered, the Equation

of Euclidean Distance is often used. When calculating the distance between the data

to be tested (x) and the data to be trained (k), the Euclidean distance is utilised. This

allows for the determination of the elements that are located in the closest vicinity to

one another. The following equation represents the Euclidean distance in a

dimensional space with k dimensions, and it is based on the two characteristics

x=[x_1,x_2,—…,x_k] and y=[y_1,y_2,… y_k].

20

 𝐷(𝑥, 𝑦) = √∑ (𝑦𝑖 − 𝑥𝑖)2𝑘
𝑖=1 Eq 5

 Once the complete accumulation of KNN data is complete, the KNN majority

will be utilised as a class for the data that will be evaluated.

II.3.8 Network of Artificial Neural Circuits

 Fig 8. Network of Artificial Neural Circuits

 Nodes are the building blocks of Artificial Neural Networks (ANN), which are

susceptible to the impact of neurons found in the natural brain. It is necessary for an

Artificial Neural Network (ANN) to have a minimum of three layers, which are the

input, the hidden, and the output layers. The architecture of its network makes it

possible to determine whether or not it has more than one disguised layer on the inside.

It is the buried layer that receives the output of the input layer, which is then sent to

the output of the layer that comes after it, and so on and so forth. Throughout the

learning process within artificial neural networks, inputs (x_1, x_2, x_3,..., x_(n-2)),

x_(n-1), x_n) are provided with an output label denoted by the value y. The label

assigns a weight to the information assimilated by the input, which is represented by a

weight vector (w_1, w_2,..., w_(n-2), w_(n-1), w_n). During the entirety of the

learning process, the weights underwent modifications that effectively mitigated the

learning error. The formula for calculating error is as follows:

𝐸 = ∑|𝑑𝑖 − 𝑦𝑖| 𝐸𝑞 6

𝑛

𝑖=1

21

 The variable "d_i" represents the desired output, "y_i" denotes the current

output, and "E" signifies the discrepancy between the two; this variance represents the

error. The modification is achieved through the utilisation of back-propagation, a

gradient algorithm wherein the learning process iteratively practices backwards and

forwards until the model achieves an error value below a predetermined threshold. The

weighted vector is adjusted in accordance with the following equation:

 𝑤𝑖,𝑗 ← 𝑤𝑖,𝑗 + ∆𝑤𝑖,𝑗 𝐸𝑞 7

where "i" represents the input node and "j" represents the concealed node.

II.3.9 Convolutional Neural Network

 Fig 9. Convolutional Neural Networks

 An additional category of algorithms utilised in deep learning is the

Convolutional Neural Network (CNN). Generally, it is utilised to manage enormous

training datasets through the abstraction and representation of attributes in a

hierarchical fashion. The performance of conventional machine learning algorithms is

negatively impacted when confronted with a very large dataset or when the data is

dimensional. To tackle this challenge, the implementation of Deep Learning is

supported by graphic processing units (GPUs) for the purpose of processing extensive

datasets. Among all deep learning algorithms, convolutional neural networks are

utilised in cyber security applications to a significant degree. There are two main layers

that make up the convolutional neural network. These levels are the convolutional

layer and the pooling layer. The convolutional layer is responsible for making use of

many kernels of the same size in order to execute the convolution of the input data. In

the event that the desired attribute is available in the input data, the convolution

22

operation will retrieve it by assigning a high value to a random place. On the other

hand, if the desired attribute is not there, the operation will return it. This is the

equation that is used to determine the value that is anticipated:

 ℎ = ∑ ∑ 𝑤𝑘,𝑙𝑥𝑖+𝑘−1,𝑗+𝑙−1
𝑚
𝑙=1

𝑚
𝑘=1 𝐸𝑞 8

The input is denoted by x, the convolution kernel is denoted by w, and the output of

the convolution is determined by h. The succeeding layer, which is referred to as the

pooling layer, is used to lower the size of features by using two separate pooling

strategies: maximum pooling and average pooling. All of these techniques are distinct

from one another. In contrast to the method of average pooling, which determines the

average value of the characteristics, the method of max-pooling chooses the value that

is the highest. Additionally, convolutional neural networks make use of an activation

layer that is known as a rectified linear unit. This activation layer combines perceptions

by using a recognised activation function:

 𝑓(𝑥) = max(0, 𝑎) 𝐸𝑞 9

The expense is one disadvantage of the convolutional neural network. The time

required to implement this algorithm is an additional drawback, which is attributable

to the number of layers.

23

II.3.10 Neuronal networks that are recurrent

 Fig 10. Neuronal networks that are recurrent

 The performance of typical machine learning algorithms is unacceptable in a

wide variety of applications, particularly those in which the output of the present state

is reliant on the output of the past states of a variety of states. This problem occurs as

a result of the lack of dependency that exists between the input and output in algorithms

of this kind. In comparison to all other algorithms, the Recurrent Neural Network

algorithm, which is an extra algorithm for Deep Learning, accomplishes the

management of various sequential data kinds with an outstanding level of

effectiveness. There are at least three levels that make up the Recurrent Neural

Network. These layers include the hidden layer, the output layer, and the input layer.

Recurrent neural networks are only capable of transferring data in a single way, from

the input layer to the buried layer inside the network. This one-way data flow is mixed

with data from a layer that came before it that was successively disguised, and then it

is added to the layers that are now hidden. Each and every piece of information is

stored inside the hidden layers of the recurrent neural network architecture. The vector

sequence of the hidden layer, denoted as h=(h_1,h_2,h_3…h_(N-1),h_N), is computed

by the Recurrent Neural Network to determine the vector of the output layer,

y=(y_1,y_2,y_3…y_(T-1),y_T) [13]. from t=1 to t=T iteration of the given equations

ℎ𝑡 = 𝐻(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) 𝐸𝑞 10

 𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦 𝐸𝑞 11

24

The symbols W (weight matrix), b (bias vector), and H (hidden layer) denote

individual components of the model.

25

CHAPTER III

THE METHODS AND THE MATERIALS

III.1 Datasets

 The kdd cup dataset, the nsl-kdd dataset, the Kyoto dataset, and the UNSW-

NB15 dataset were all employed in this experiment.

III.1.1 Dataset KDD

 There are roughly 4.9 million single-connection vectors that are included in the

KDD Cup dataset. Each vector is comprised of 41 properties that may be categorised

as either normal or harmful. There are four unique types of assaults that are included

in the KDD Cup dataset. These are as follows: Cancellation of service (revocation)As

a result of this kind of attack, the memory of the device becomes overloaded and

occupied, which prevents it from responding to the request when it is received. It is

the most effective protection against this kind of assault to turn off the device while it

is being attacked. Attack from the User to the Root()In this kind of attack, a

cybercriminal who has privileged access to a device makes an effort to get access to

the router by taking advantage of weaknesses in the system. There are various

approaches to accomplish this, including phishing attacks, sniffing (also referred to as

packet controlling), social engineering, remote to local attacks (in which a

cybercriminal without access to the device delivers packets from a computer device to

a network system and exploits system vulnerabilities to gain access to the device), and

probe attacks (in which a cybercriminal without access to the device delivers packets

from the device to the network system and exploits the system vulnerabilities to gain

access to the computer device). Fundamental attributes, traffic attributes, and content

attributes are the three categories that are used to classify the characteristics that are

included in the kdd collection of information. The category of essential attributes

covers all features that are capable of being deleted from an IP/TCP connection. All of

these characteristics contribute to a complete delay in detection, and a large part of

26

them do so. The category of traffic characteristics is comprised of attributes that are

calculated with regard to a window interval that has been set. Additionally, it is

subdivided into two subcategories, which are referred to as "same host attributes" and

"same service attributes." Connections that have had the same destination host as the

current connection for the previous two seconds are examined using the same host

characteristics as the current connection they are examining. The capacity to compute

statistics that are related with the behaviour of the protocol is another feature that this

characteristic has. Exactly the same service qualities are being used by both the

connection that is now being investigated and the connection that was examined just

two seconds ago. Other names for these two subcategories of traffic characteristics are

time-based and time-based characteristics. On the other hand, there are a vast number

of slow-moving probing attacks that are able to scan ports (or hosts) by making use of

time intervals that are longer than two seconds; for instance, one of these assaults could

manifest itself once per minute. As a consequence of this, the intrusion patterns that

such attacks attempt to establish within a time span of two seconds are not successful.

As a result, in order to resolve this problem, the characteristics of the same host and

service are recalculated, but this time they are based on the connection window of one

hundred connections. Different names for this are connection-based traffic

characteristics and connection-based traffic attributes. There are many other types of

intrusions, such as User to Root Attacks and Remote to Local Attacks; yet, none of

these types of intrusions display regular sequential patterns. The data component of

the transmission is often where these specific types of attacks are inserted, and they

only have a single link between them. The possession of a number of characteristics

that are able to examine the data section for suspicious activity is very necessary in

order to identify these types of assaults. There is another term for this, and that is

content attributes.

III.1.2 The dataset, NSL-KDD

 Both the KDD dataset and the NSL-KDD dataset are comparable to one

another. Each of the four separate subcategories that make up the dataset are as

follows: KDDTest+, KDDTest-21, KDDTrain+, and KDDTest+. These include

27

KDDTrain+ and KDDTest+, both of which are comprehensive datasets that include

all of the components. The KDDTest-21 and KDDTtrain-21 datasets, on the other

hand, individually account for just twenty percent of the whole dataset. All of the NSL-

KDD datasets have a total of 43 characteristics, which are included in each dataset.

Each dataset has a total of 41 characteristics, the first 41 of which are referred to as the

traffic input. The remaining two attributes are referred to as Label, which indicates

whether the traffic input is an attack or not, and Score, which indicates the severity of

the attack traffic input. As was previously described, this dataset includes four

categories that are identical to those found in the KDD dataset. These categories are as

follows: denial of service attack, remote to local assault, user to root attack, and probe

attack. A total of four categories have been established for the qualities that are

included in the traffic problem data record. These categories are as follows: intrinsic,

content, host-based, and time-based. These groups are employed by the intrusion

detection system in order to successfully face the traffic that is coming in. For the

purpose of transporting the core information that is available, the inherent

characteristics of a packet are exploited. There are characteristics in the dataset that

fall into the intrinsic category, and they range from 11 to 9. There is information that

is stored in content attributes that is related to the initial segments. Rather of being

communicated in a single chunk, these characteristics are actually conveyed in

numerous pieces. The infrastructure of the network is able to acquire access to the

cargo by making use of these data via their utilisation. There are twenty-two different

qualities that fall under the content category that is included inside the document. The

study of traffic input takes place within a two-second period, and time-based

characteristics include this analysis. These characteristics include information such as

the number of connections that the programme tried to make with the same host. There

are many other properties. Quantities and rates make up the vast bulk of the many

qualities that fall under this category. In the same way as time-based characteristics do

not evaluate the traffic that occurred inside the preceding two seconds, host-based

attributes do not do so either. The traffic, on the other hand, is examined over a series

of links that have been formed. In order to take into consideration accessing attacks

that last for more than two seconds, host-based characteristics have been developed

expressly for this purpose. Within the dataset, the host-based category includes

characteristics that range from 32 to 41 in various numbers.

28

III.1.3 Kyoto dataset

 The Kyoto dataset is a collection of data that was generated at Kyoto

University. It was constructed utilising actual traffic data. Fourteen attributes were

extracted from the twenty-four statistical attributes comprising this type of dataset. A

further ten attributes are affixed to these fourteen. The dataset exhibits a remarkable

degree of precision. Through the utilisation of honeypots, web crawlers, darknet

sensors, and email servers, this category of data was made accessible.

III.1.4 UNSW-NB15 dataset

 In this programme, we will also utilise the UNSW-NB15 dataset. The dataset

comprises a total of 42 attributes. Three of the characteristics listed contain categorical

(i.e., non-numerical) values, whereas the remaining 39 attributes exclusively contain

numeric values. This particular dataset was selected due to its suitability for

implementation in intrusion detection systems..

III.2 Machine Learning Algorithms

 During the course of this experiment, the algorithms that were used include the

linear and nonlinear Supporting Vector Machine (SVM) method, the Gaussian Naïve-

Bayes method, and the Logistic Regression Algorithm. Among the several neural

network algorithms, the stochastic gradient descent algorithm, the random forest

algorithm, the gradient boosting algorithm, the K-nearest neighbour algorithm, the

convolutional neural network algorithm, and the recurrent neural network algorithm

are all examples. The Multilevel Perception Algorithm, which is a subset of the

Artificial Neural Network, is also implemented inside the Artificial Neural Network.

29

III.2.1 Gaussian Naïve Bayes Algorithm

 Fig 11. Implementation of Naïve Bayes Algorithm in Python

 In accordance with what was said before, the Gaussian Naïve-Bayes algorithm

is built on the Bayes theorem. The operation of this algorithm is carried out in a

succession of stages. Performing the calculation of the earlier probability for each of

the class designations that have been supplied is an essential step before moving on.

After that, we need to build a table by making use of the preceding data that we have

available to us and determining the frequency of recurrence for each phenomena.

Following this, the technique that follows involves determining the likelihood

probability that is associated with each characteristic across all of the classes

combined. Once each of them has been finished, it is important to establish each of

the values that have been determined inside the Bayes Formula in order to establish

the posterior probability. This is necessary in order to calculate the posterior

probability. Following the completion of each of these steps, the class that has the

greatest probability is determined to be the sample output. In spite of the fact that the

implementation of this method is very short, it has a somewhat lower accuracy rate in

comparison to the other algorithms.

30

III.2.2 Logistic Regression

 Fig 12. Logistic Regression Implementation in python

 Logistic regression is an extra classification procedure that is often employed

in this process. This type of Python experiment employs Multinomial Logistic

Regression due to the fact that there are more than two expected outcomes. The

algorithm in question is a derivative form of Binary Logistic Regression. Comparable

to the Binary Logistic Regression, the Multinomial Logistic Regression estimates the

probability of a categorical shift using the maximal likelihood evaluation. In the

context of Multinomial Logistic Regression, a meticulous examination of model sizes

and consideration of enigmatic events are not required. It finds application in

numerous disciplines, including medicine, statistics, and more. We are now going to

examine the training process of this algorithm. The objective of the training process is

to position the vector represented as θ; consequently, the model assigns a high

probability to positive samples and a low probability to negative samples. The cost

function of the trained sample x is:

𝑐(𝜃) = {
− log(𝑝) 𝑖𝑓 𝑦 = 1

− log(1 − 𝑝) 𝑖𝑓 𝑦 = 0
 𝐸𝑞 12

 P represents the calculated probability, while y denotes the result. This type of

cost function is logical due to the fact that -log⁎(x) significantly increases as the input

value x approaches zero. Consequently, if the model computes a probability near zero

31

for a positive sample, the cost will be extremely high. However, if the model computes

a probability near one for a negative sample, the cost will also be extremely high.

However, since -log⁏(x) approaches 0 when x approaches 1, the cost will be

approximately zero if the calculated probability for a negative sample is close to zero

and for a positive sample is close to one; this is precisely what we desire. The following

describes the cost function of logistic regression:

𝐽(𝜃) = −
1

𝑚
∑[𝑦(𝑖) log(𝑝(𝑖)) + (1 − 𝑦(𝑖))(log(1 − 𝑝(𝑖)))]

𝑚

𝑖=1

 𝐸𝑞 13

 Where m represents the total number of samples and ∑ [𝑦(𝑖) log(𝑝(𝑖)) +𝑚
𝑖=1

(1 − 𝑦(𝑖))(log (1 − 𝑝(𝑖)))] is the total cost of the training sample. Regrettably, a

closed-form equation of the kind required to compute the θ value, which is utilised to

minimise the cost function, is not yet available. Nevertheless, this specific cost

function has the advantage of being convex; hence, any optimisation technique should

be able to ensure that it will locate the global minimum. It is possible to describe the

partial derivatives of the cost function using the equation that follows:

𝜕

𝜕𝜃𝑗
𝐽(𝜃) =

1

𝑚
∑(𝜎(𝜃𝑇 ∗ 𝑥(𝑖))

𝑚

𝑖=1

− 𝑦𝑖)𝑥𝑗
(𝑖)

 𝐸𝑞 14

 As shown in the equation above, the algorithm computes the prediction error

for each sample, multiplies it by the value of the j attribute, and then computes the

mean of all training samples. It exhibits exceptional precision on both the training and

testing datasets, and its implementation is remarkably rapid. I made the decision to

utilise this algorithm due to its exceptional precision.

32

III.2.3 Decision Tree Algorithm

 Fig 13. Decision Tree Classifier Implementation in Python

 From the perspective of cyber security, illicit activities may be traced back to

a certain extent if network records are scanned. To effectively segregate legitimate

activities from illicit ones, it is imperative to implement a classification-based strategy

within a networking system. The Decision Tree algorithm is also among the most

straightforward algorithms. It exhibits an exceptionally high degree of precision in

comparison to alternative Gaussian algorithms. The fundamental principle of the

Decision Tree is to partition the dataset according to the data gain of the attributes. The

Python library Sickit-Learn, abbreviated sklearn, utilises the "Classification and

Regression Tree" algorithm to train its decision trees. These trees are also referred to

as "growing trees." The underlying principle of this algorithm is straightforward: the

training algorithm initially partitions the set to be trained into two subsets using a

distinct attribute k and a threshold t_k corresponding to this attribute. However, this

prompts an inquiry into the methodology employed to determine the attribute k

parameters and the threshold t_k. The algorithm seeks the set (k, t_k) that produces

the subsets with the highest degree of clarity. The following is the equation

representing the algorithm that endeavours to decrease the cost function:

 𝐽(𝑘, 𝑡𝑘) =
𝑚𝑙𝑒𝑓𝑡

𝑚
𝐺𝑙𝑒𝑓𝑡 +

𝑚𝑟𝑖𝑔ℎ𝑡

𝑚
𝐺𝑟𝑖𝑔ℎ𝑡 𝐸𝑞 15

33

 The impurity estimates for the left-wing and right-wing subsets are derived

from m_left and m_right, respectively, while m denotes the total number of samples

and G_left and G_right represent the sample numbers for the left-wing and right-wing

subsets, respectively. As soon as this algorithm divides the set to be trained into two

distinct subsets, it proceeds to divide the remaining subsets using the same logic.

Subsequently, it divides the remaining subsets in the same fashion, and so forth, in a

recursive fashion. The algorithm terminates the recursion when it reaches the

maximum depth or when it is unable to identify a division capable of reducing

impurity.

III.2.4 Random Forest Algorithm

 Fig 14. Random Forest Classifier implementation in python

 The collective term for a collection of decision trees is "random forest

classifier." Furthermore, its implementation typically requires only a few seconds and

possesses an exceptionally high degree of precision. In this instance, thirty trees are

utilised as inputs. It performs exceptionally well within the algorithms.

34

III.2.5 Supporting Vector Machine algorithm

 Fig 15. Linear SVM classifier implemented in python

As stated in the preceding chapter, the Supporting Vector Machine utilises hyperplanes

to partition the various component classes. Linear SVM classification algorithms are

distinguished from non-linear SVM classification algorithms to classify SVM

algorithms. In the linear support vector machine (SVM) classification algorithm,

classes are divided along a straight line. Typically, this classification algorithm is

implemented on two-dimensional planes. In Linear Support Vector Machine (SVM)

classification, the straight line serves the dual purpose of separating distinct classes

and maintaining a safe distance from the nearest training samples, if possible.

Evidently, the SVM classification algorithm suits the widest possible range, which is

contained within the various classes that it has partitioned. This is also referred to as

classification with a wide margin. The decision boundary remains unaffected by the

inclusion of additional training samples. This boundary is determined by the samples

situated along the way's perimeter. The samples situated at the boundary are

alternatively referred to as the supporting vectors, which provide the nomenclature for

this algorithm. Classification by hard margin entails compelling every sample to be

positioned at an extreme right angle. The implementation of rigid margin classification

raises two fundamental concerns. To begin with, its functionality is contingent upon

the data being separable linearly, and it exhibits a high degree of sensitivity to outliers.

To circumvent these concerns, it is preferable to utilise a more adaptable model. The

objective of this model is to identify a delicate equilibrium between preserving the

path to the greatest extent possible and limiting margin violations. The term for this is

"soft margin classification." The stability of the Supporting Vector Machine Classes

35

of Sickit-Learn is effectively managed through the utilisation of the hypermeter C.

The benefit of this approach is that Linear SVM in Sickit-Learn achieves an impressive

accuracy ranging from 95% to 99%; nevertheless, its implementation requires a

significant amount of time. Despite exhibiting a high efficiency rate and performing

exceptionally well in many scenarios, a significant proportion of datasets do not

approach linear separability. One approach to managing these types of datasets is to

incorporate a substantial number of additional features, such as polynomial features.

 Fig 16. Non-Linear SVM Classifier implementation in python

 In 3-D models, the non-linear SVM classifier is frequently implemented. In

this classifier, the hyperplane is a two-dimensional plane, in contrast to the linear

plane. The utilisation of SVM algorithms incorporates an exceptional mathematical

technique referred to as the kernel trick. This approach enables one to achieve the same

outcome as if a large number of polynomial features had been added, even if the

polynomial in question has a very high degree, without the need to add each of these

polynomials.An additional model that can be implemented in linear SVM is known as

the stochastic gradient. This estimator is utilised to implement linear models (Linear

Supporting Vector Machines in this instance) with SGD learning. SGD learning entails

the computation of the loss gradient following each sample within a specified time

interval, and the model is subsequently modified in accordance with a strength

reduction schedule. It is an extremely potent classifier, and the tolerance level of this

algorithm can be determined using it.

36

III.2.6 Gradient Boosting algorithm

 Fig 17. Gradient Boosting Classifier algorithm in python

 In the realm of boosting algorithms, the Gradient Boosting algorithm is one of

the more influential ones. In order to perform its duties, this category of algorithms

incorporates predictors into an ensemble in a sequential manner. The aim of each

subsequent predictor that is added to the ensemble is to correct the mistake that was

produced by the predictor that came before it in the sequence. This technique, on the

other hand, makes use of the residual errors that were produced by the previous

predictor in order to modify the current predictor. Rather than altering the sample

weights at each iteration, this method uses the residual errors. Due to the fact that it is

successful when applied to complex datasets, this type of algorithm is acquiring more

and more prominence. Not only can the method gradient boosting be used to solve

classification difficulties, but it can also solve regression problems.

37

III.2.7 K-Nearest Neighbor Classifier

 Fig 18. Implementation of K-Nearest Neighbor classifier in python

 For supervised learning, this is an algorithm that may be used. An example of

how the system imports the object from the Sklearn algorithm is shown in the

preceding image. When implemented as an algorithm, it takes a significant amount of

time to complete. The number of neighbours is represented by the variable

n_neighbors, which is included in the code. For the purpose of making predictions,

this variable is included into the model. The code in question has five neighbours; due

to the fact that this is such a small number, it displays an exceptionally high level of

accuracy. My determination of this categorization was accomplished by the use of the

Minkowski distance. In order to compute this particular kind of distance, distances

must be represented as vectors inside a certain space, and each vector must have a

length that is different from the others. It is recommended that the power parameter,

which is represented by the tiny p, be set to 2 in this particular scenario when the

Minkowski distance is employed. The capability of the K-Nearest Neighbour classifier

to display a high degree of accuracy is one of the most noticeable advantages of this

classification method. On the other hand, the construction of this kind of classifier is

time-consuming, and it performs badly when it is presented with excessively large

datasets.

38

III.2.8 Network of Artificial Neural Circuits

 Fig 19. Network of Artificial Neural Circuits Classifier in Python

 It was said in the chapter that came before this one that an artificial neural

network (ANN) classifier is made up of nodes, which are also known as perceptions,

and they take their inspiration from the neuronal architecture of the brain. Access to

the Python train of this artificial neural network may be gained via the use of the keras

package. The training of neural network algorithms is the specific aim for which this

library is being used. An artificial neural network, often known as an ANN, is the

algorithm that is considered to be the most fundamental of them. During the course of

our experiment, I developed an artificial neural network (ANN) programme that has

three layers: input, hidden, and output. Both the activation function of the layer and

the number of dimensions that are included inside the layer are contained within each

layer. In this particular case, the activation function of the input layer is represented

by the symbol relu, which is an abbreviation for Rectified Linear Unit. In the

experiment that we conducted, the activation function of the buried layer was a

sigmoid function, and the activation function of the output layer was a Softmax

function. A particular activation function that is referred to as the Rectified Linear Unit

activation function is responsible for converting all negative values to zero while

maintaining positive values. The term "Sigmoid" refers to an activation function that

has values that are totally contained within the range of 0 to 1. Because of this, the

activation function in question offers a great deal of benefit when it comes to

probability prediction. The sigmoid function's significance in the formula is as follows:

39

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 𝐸𝑞 16

The output, denoted by σ(z), is the representation of the input, which is z. σ(z) reaches

its highest possible value when the value of z that is being input is comparable to

infinity. Using the Softmax activation function, an input value that is included inside

a values vector is normalised to a probability distribution. Based on this distribution,

the total probability is predicted to be larger than 1. The values of the output continue

to fall within the range of 0 to 1, notwithstanding this phenomenon. One is able to

calculate the predicted losses that take place throughout the training process of a given

dataset by making use of this particular sort of activation function. Equation that

represents the activation function of the Softmax algorithm:

𝑃(𝑦 = 𝑗|𝜃(𝑖)) =
𝑒𝜃(𝑖)

∑ 𝑒𝜃𝑘
(𝑖)

𝑘
𝑗=0

 𝐸𝑞 17

From which:

 𝜃=𝑤0𝑥0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑘−1𝑥𝑘−1 + 𝑤𝑘𝑥𝑘 𝐸𝑞 18.1

 ∑ 𝑤𝑖𝑥𝑖 = 𝑤𝑇𝑥𝑘
𝑖=0 𝐸𝑞 18.2

40

 Fig 20. Multilevel Perception Classifier implemented in python

 MLP, which stands for Multilayer Perception, is another subclass of ANN. The MLP

possesses the identical architecture as the Artificial Neural Network. With the

exception of the output layer, every layer includes a bias neuron that is completely

connected to the layer below it. Despite being a subclass of neural networks, this

function is invoked via the Sklearn library as opposed to Keras. The MLP classifier in

our algorithms consists of two hidden layers, whereas the initial classifier has five

hidden layers and the second classifier has only two. Adam is the optimisation

parameter, which is also referred to as the solver, in the programme. This optimisation

parameter combines the most advantageous features of the RMSprop algorithm and

the ADAgrad algorithm to produce an optimisation algorithm capable of regulating

gradients that are sparse in noise-related problems. The activation function in this

algorithm is also a Rectified Linear Unit, abbreviated relu. The rationale behind my

selection of these algorithms is their exceptional performance.

III.2.9 Convolutional Neural Network

41

 Fig 21: Convolutional Neural Network classifier using Python

 Convolutional Neural Network (CNN) algorithms are an additional type of

deep learning technology. This algorithm is effective at classifying images. The CNN

classifier in my programme consists of nine layers. Prior to commencing the CNN

classification process, the dataset is resized from its original two dimensions to four.

The activation function for the input layer, which is a two-dimensional convolutional

layer, is identical to that of the preceding Rectified Linear Unit algorithms. In our

equation, values contained within three by three dimensions are convolved. The input

geometry is identical to the three reshaped dimensions that the dataset's reshaping has

enabled. Padding is another term used within a convolutional network. Padding refers

to the quantity of pixels appended within an image during kernel processing. It may

contain two values, both of which must be legitimate. In this instance, our function

remains unchanged. Consequently, this convolutional layer has the capability to utilise

zero buffering if required. LeakyReLU, or Leaky Rectified Linear Unit, constitutes the

second stratum. The distinction between Rectified Linear Unit and Leaky Rectified

Linear Unit is that in Leaky ReLU, negative values are assigned a minor slope less

than 1, as opposed to being set to zero. The experiment yielded a slope value of 0.1,

despite the fact that negative inputs in this function produced minor negative values

instead of zero. The following represents the Leaky ReLU function:

𝑌 = 1(𝑥 < 0) ∗ (𝑎𝑥) + 1(𝑥 ≥ 0) ∗ (𝑥) 𝐸𝑞 19

 In the context that has been presented, the output is denoted by Y, and the input

is denoted by x. In the event that x is negative, the equation for Y is axe; otherwise, it

is Y=x; the letter a denotes a minor constant that is always less than 0. The purpose of

this Leaky ReLU is to address the problem of ReLUs that are about to expire.

Subsequent to this, the Maxpooling two-dimensional layer is shown. A method known

as maxpooling is an algorithm that can locate the highest value that is included inside

a collection of numbers. As part of our inquiry, each of the groups has dimensions that

are four by four. Even during maxpooling, the value of padding does not change, which

enables the Maxpooling Layer to make use of zero padding if it is required to do so.

The replication of these three layers is carried out in the same way as it was done

before. The seventh tier of this method is the Flatten layer, which is the seventh

42

position. Its name gives the impression that its purpose is to arrange the inputs in a

vertical pattern, or conversely, it may flatten the inputs according to the user's

preferences. Following this layer is an extra Leaky ReLU layer that uses the same 0.1

slope as the previous layer. A softmax activation function and a numeric value that

represents the input categories are the last components of the output layer. In situations

when the datasets are extremely huge, CNN algorithms are able to recognise a broad

range of Distributed Denial of Service assaults as well as malware attacks. My decision

to choose this particular algorithm was based on this particular logic. On the other

hand, the implementation of this method calls for a period of time that is quite long.

III.2.10 Recurrent Neural Network

 Fig 22: Recurrent Neural Network implementation in python

 The Recurrent Neural Network (RNN) algorithm is a kind of neural network

algorithm that, in contrast to other RNN algorithms, adds feedback connections in

addition to feedforward connections. This particular algorithm is used for the purpose

of identifying irregularities. In the experimental configuration of our Recurrent Neural

Network method, there are three separate layers as follows: an input layer for Long-

Short Term Memory, a hidden layer that makes use of the sigmoid activation function,

and an output layer that makes use of the softmax activation function. When it comes

to optimising speed, Long Short-Term Memory (LSTM), which is capable of handling

two state vectors, keeps both state vectors disconnected by default. This is done in

43

order to maximise efficiency. The Long Short-Term Memory (LSTM) is broken down

into four parts. Analysis of the current inputs x_t and the prior (short-term) state h_(t-

1) is the major purpose of the first unit, which is also the first unit. This is the only

objective of the first unit. In certain contexts, the remaining three components are also

referred to as gate controllers. Utilising sigmoid activation functions causes the outputs

of these units to oscillate between 0 and 1, which is a consequence of the

aforementioned factor. As a result, the gate will be closed if the outputs of the units

are determined to be zero. On the other hand, the gate will be permitted to open when

the units provide outputs of value 1, which is the expected value. The following are

the components that make up the gate controllers: the forget gate is responsible for

determining which long-term sections need to be removed, the input gate is in charge

of determining which long-term portions need to be entered, and the output gate is in

charge of determining which long-term portions need to be read and producing the

output y_t in this particular time step. This particular method is not only incredibly

useful but also quite easy to put into practice. The Keras library provides access to the

LSTM layer for users to manipulate.

Fig 23: Block Scheme

44

CHAPTER IV

DISCUSSIONS BASED ON THE RESULTS

IV.1 KDD dataset results

 The following are the outcomes extracted from the kddcup dataset: The

training duration of Gaussian Naive Bayes is approximately 2.25 seconds. The

estimated amount of time required for the Gaussian Naive-Bayes test is 3.42 seconds.

The approximate training accuracy of Gaussian Naïve Bayes is 88.21%. A Gaussian

Naive-Bayes test has an approximate 88.21% accuracy rate. Training a decision tree

takes approximately 4.92 seconds. Testing a decision tree takes approximately 0.16

seconds. Accuracy in decision tree training is approximately 99.1%. Tree-based

decision assessment The accuracy is nearly 99 percent. Training with a stochastic

gradient takes approximately 15.5 seconds. The approximate testing time for

stochastic gradients is 0.33 seconds. Accuracy in stochastic gradient training is

approximately 99.21%. The accuracy of stochastic gradient testing is near 99.21%.

The approximate training time for Random Forest is 44.64 seconds. The approximate

Random Forest trial duration is 3:55 seconds. The approximate training accuracy of

Random Forest is 99.99%. The accuracy of Random Forest testing is approximately

99.97%. The training duration of a Non-Linear Supporting Vector Machine classifier

is approximately 2173.8 seconds. The trial duration for a Non-Linear Supporting

Vector Machine classifier is approximately 226.42 seconds. The training accuracy of

a Non-Linear Supporting Vector Machine classifier is approximately 99.89%. The

accuracy of evaluating a non-linear support vector machine classifier is approximately

99.88%. The training duration of a Linear Supporting Vector Machine classifier is

approximately 48.26 seconds. The trial duration for a Linear Supporting Vector

Machine classifier is approximately 0.23 seconds. The training accuracy of a Linear

Supporting Vector Machine classifier is approximately 99.71%. The accuracy of

evaluating a Linear Supporting Vector Machine classifier is approximately 99.69%.

Training for Logistic Regression takes approximately 40.87 seconds. Testing for

Logistic Regression takes approximately 0.23 seconds. Accuracy in logistic regression

45

training is approximately 99.35%. The accuracy of logistic regression testing is

approximately 99.31%. Training for Multilevel Perception takes approximately

498.51 seconds. Testing for multilevel perception takes approximately 0.63 seconds.

The accuracy of Multilevel Perception training is approximately 99.42%. The

accuracy of Multilevel Perception testing is approximately 99.38%. The training

duration for a gradient boosting classifier is approximately 1433.56 seconds. The

approximate trial duration for a Gradient Boosting Classifier is 7.99 seconds. Training

Classifiers with Gradient Boosting Accuracy is approximately 99.96%. The testing

accuracy of gradient boosting classifiers is approximately 99.93%. The training period

of an artificial neural network is approximately 371.18 seconds. The assessment

duration for artificial neural networks is approximately 1.02 seconds. The training

accuracy of the artificial neural network is approximately 98.47%. The assessment

accuracy of artificial neural networks is approximately 98.47%. The training duration

of a recurrent neural network is approximately 448.51 seconds. The trial duration for

recurrent neural networks is approximately 1.1 seconds. The accuracy of Recurrent

Neural Network training is approximately 98.48%. The assessment accuracy of

recurrent neural networks is approximately 98.48%. The training period of a

convolutional neural network is approximately 870.8 seconds. The assessment

duration for convolutional neural networks is approximately 21.46 seconds. The

training accuracy of the convolutional neural network is approximately 99.87%. The

accuracy of the Convolutional Neural Network testing is approximately 99.87%.

The outcomes of the training and testing methods for the kddcup dataset are shown in

Table 1.

The Algorithms

Used in

Machine

Learning

Time of

Training

Time of Test Training

Performance

Testing

Performance

Gaussian

Naïve-Bayes

2.25 seconds 3.42 seconds 88.21% 88.21%

Decision Tree 4.92 seconds 0.16 seconds 99.1% 99.1%

Stochastic

Gradient

15.5 seconds 0.33 seconds 99.21% 99.21%

Random Forest 44.64

seconds

3.55 seconds 99.99% 99.97%

46

Non-Linear

SVM

2173.8

seconds

226.42

seconds

99.89% 99.89%

Linear SVM 48.26

seconds

0.23 seconds 99.71% 99.69%

Logistic

Regression

40.87

seconds

0.23 seconds 99.35% 99.31%

Multilevel

Perception

498.51

seconds

0.63 seconds 99.42% 99.38%

Gradient

Boosting

1433.56

seconds

7.99 seconds 99.96% 99.93%

K-Nearest Neig 312.26

seconds

432.7

seconds

98.1% 94.2%

Artificial

Neural Network

371.18

seconds

1.02 seconds 98.47% 98.47%

Recurrent

Neural Network

448.51

seconds

1.1 seconds 98.46% 98.48%

Convolutional

Neural Network

870.8

seconds

21.46

seconds

99.87% 99.87%

Fig 24: The outcomes of the training and testing methods for the kddcup dataset

IV.2 NSL-KDD dataset results

 The approximate Gaussian Naïve-Bayes training time for the nsl kdd dataset is

0.12 seconds. The approximate Gaussian Naive-Bayes testing time is 0.12 seconds.

The training accuracy of Gaussian Naive Bayes is approximately 51.28%. The

approximate Gaussian Naïve-Bayes assessment accuracy is 51.56%. Training a

decision tree takes approximately 0.2 seconds. Testing a decision tree takes

approximately 0.016 seconds. Accuracy in decision tree training is approximately

95.8%. Tree-based decision assessment The approximate accuracy rate is 95.85%.

47

Training with a stochastic gradient takes approximately 0.62 seconds. The

approximate trial time for stochastic gradients is 0.016 seconds. The approximate

training accuracy of stochastic gradients is 97.21%. The accuracy of stochastic

gradient testing is approximately 97.13%. Training with Random Forest takes

approximately 1.18 seconds. The approximate Random Forest testing time is 0.154

seconds. The accuracy of Random Forest training is close to one hundred percent. The

accuracy of Random Forest testing is approximately 99.64%. The training duration of

a Non-Linear Supporting Vector Machine classifier is approximately 3.011 seconds.

The trial duration for a Non-Linear Supporting Vector Machine classifier is

approximately 2.04 seconds. The training accuracy of a Non-Linear Supporting Vector

Machine classifier is approximately 99.26%. The testing accuracy of non-linear

supporting vector machine classifiers is approximately 99.05%. The training duration

of a Linear Supporting Vector Machine classifier is approximately 1.4 seconds. The

trial duration for a Linear Supporting Vector Machine classifier is approximately 0.016

seconds. The training accuracy of a Linear Supporting Vector Machine classifier is

approximately 96.97%. The testing accuracy of linear support vector machine

classifiers is approximately 97.13%. Training for Logistic Regression takes

approximately 1.62 seconds. Testing for Logistic Regression takes approximately

0.015 seconds. Accuracy in logistic regression training is approximately 96.74%. The

accuracy of logistic regression testing is approximately 96.68%. Training for

Multilevel Perception takes approximately 33.53 seconds. Testing for multilevel

perception takes approximately 0.03 seconds. The accuracy of Multilevel Perception

instruction is approximately 97.47%. The accuracy of multilevel perception testing is

approximately 97.5%. The approximate training duration for a gradient boosting

classifier is 60.55 seconds. The approximate trial duration for a Gradient Boosting

Classifier is 0.4 seconds. The training accuracy of a gradient boosting classifier is

approximately 99.95%. The testing accuracy of gradient boosting classifiers is

approximately 99.6%. Training the K-Nearest Neighbour classifier takes

approximately 3.89 seconds. The approximate K-Nearest Neighbour measurement

time is 21.32 seconds. The accuracy of K-Nearest Neighbour classifier training is

approximately 99.48%. Approximate K-Nearest Neighbour testing precision is

99.32%. The training period of an artificial neural network is approximately 192.79

seconds. The assessment duration for artificial neural networks is approximately 0.74

48

seconds. The training accuracy of the artificial neural network is approximately

98.68%. The testing accuracy of artificial neural networks is approximately 98.49%.

The training duration of a recurrent neural network is approximately 234.92 seconds.

The assessment duration for recurrent neural networks is approximately 0.83 seconds.

The accuracy of Recurrent Neural Network training is approximately 97.82%. The

assessment accuracy of recurrent neural networks is approximately 97.61%. The

training period of a convolutional neural network is approximately 571.16 seconds.

The assessment duration for convolutional neural networks is approximately 2.35

seconds. The training accuracy of the convolutional neural network is approximately

99.16%. The accuracy of the Convolutional Neural Network testing is approximately

98.94%.

 The outcomes of the training and testing methods for the nsl-kdd dataset

are shown in Table 2.

The Algorithms

Used in

Machine

Learning

Time of

Training

Time of Test Training

Performance

Testing

Performance

Gaussian N-B 0.12 seconds 0.12 seconds 51.28% 51.56%

Dec Tree 0.2 seconds 0.016

seconds

95.89% 95.85%

Stoch Gradient 0.62 seconds 0.016

seconds

97.21% 97.13%

Ran Forest 1.18 seconds 0.154

seconds

100% 99.64%

Non-Linear

SVM

3.011 seconds 2.04 seconds 99.26% 99.05%

Linear SVM 1.4 seconds 0.016

seconds

96.97% 97.12%

Logistic Reg 1.62 seconds 0.015

seconds

96.74% 96.68%

M-level

Perception

33.53 seconds 0.03 seconds 97.47% 97.5%

Gradient

Boosting

60.55 seconds 0.4 seconds 99.95% 99.6%

K-Nearest Neig 3.89 seconds 21.32

seconds

99.48% 99.32%

49

Artificial N.N. 192.79

seconds

0.74 seconds 98.68% 98.49%

Recurrent N.N 234.92

seconds

0.83 seconds 97.82% 97.61%

Convolutional

N.N

571.16

seconds

2.35 seconds 99.16% 98.94%

Fig 25: The outcomes of the training and testing methods for the nsl-kdd dataset

IV.3 Kyoto dataset results

 The training duration of Gaussian Naive Bayes is approximately 1.4 seconds.

The approximate Gaussian Naive-Bayes testing time is 0.61 seconds. The training

accuracy of Gaussian Naive Bayes is approximately 71.15%. The approximate

Gaussian Naïve-Bayes assessment accuracy is 71.11%. Training a decision tree takes

approximately 3.14 seconds. Testing a decision tree takes approximately 0.078

seconds. Accuracy in decision tree training is approximately 98.21%. The assessment

accuracy of decision trees is regarding 98.2%. Training with a stochastic gradient takes

approximately 1.96 seconds. Testing with stochastic gradients takes approximately 0.2

seconds. The approximate training accuracy of stochastic gradients is 94.97%. The

typical accuracy of stochastic gradient testing is 94.84%. Training with Random Forest

takes approximately 38.47 seconds. Testing with Random Forest takes approximately

2.37 seconds. Random Forest has an approximate 99.95% training accuracy. The

accuracy of Random Forest testing is approximately 99.75%. The training duration of

a Non-Linear Supporting Vector Machine classifier is approximately 1958.71 seconds.

The trial duration for a Non-Linear Supporting Vector Machine classifier is

approximately 491.59 seconds. The training accuracy of a Non-Linear Supporting

Vector Machine classifier is approximately 96.06%. The accuracy of evaluating a non-

50

linear support vector machine classifier is approximately 95.89%. The training

duration of a Linear Supporting Vector Machine classifier is approximately 39.5

seconds. The trial duration for a Linear Supporting Vector Machine classifier is

approximately 0.054 seconds. The training accuracy of a Linear Supporting Vector

Machine classifier is approximately 94.91%. The testing accuracy of linear support

vector machine classifiers is approximately 94.81%. Training for Logistic Regression

takes approximately 10.89 seconds. Testing for Logistic Regression takes

approximately 0.046 seconds. Accuracy in logistic regression training is

approximately 94.86%. The accuracy of logistic regression testing is approximately

94.79%. Training in Multilevel Perception takes approximately 54 seconds. Testing

for multilevel perception takes approximately 0.2 seconds. The accuracy of Multilevel

Perception training is approximately 92.55%. The accuracy of multilevel perception

testing is approximately 92.55%. The training duration for a gradient boosting

classifier is approximately 173.34 seconds. The approximate trial duration for a

Gradient Boosting Classifier is 1.06 seconds. The training accuracy of a gradient

boosting classifier is approximately 99.42%. The testing accuracy of gradient boosting

classifiers is approximately 99.36%. Training the K-Nearest Neighbour classifier takes

approximately 259.34 seconds. The approximate K-Nearest Neighbour assessment

time is 540.64 seconds. The accuracy of K-Nearest Neighbour classifier training is

approximately 98.72%. Approximate K-Nearest Neighbour testing precision is 98.2

percent. The training duration of an artificial neural network is approximately 348.93

seconds. The assessment duration for artificial neural networks is approximately 1.69

seconds. The training accuracy of the artificial neural network is approximately

98.46%. The assessment accuracy of artificial neural networks is approximately

98.36%. The training duration of a recurrent neural network is approximately 294.88

seconds. The trial duration for recurrent neural networks is approximately 1.55

seconds. The training accuracy of the Recurrent Neural Network is approximately

98.77%. The assessment accuracy of recurrent neural networks is approximately

98.73%. The training period of a convolutional neural network is approximately

703.48 seconds. The assessment duration for convolutional neural networks is

approximately 19.54 seconds. The training accuracy of the convolutional neural

network is approximately 96.02%. The assessment accuracy of the convolutional

neural network is approximately 96.07%.

51

 The outcomes of the training and testing methods for the Kyoto dataset

are shown in Table 3.

The Algorithms

Used in

Machine

Learning

Time of

Training

Time of Test Training

Performance

Testing

Performance

Gaussian N-B 1.4 seconds 0.61 seconds 71.15% 71.11%

Dec Tree 3.14 seconds 0.078

seconds

98.21% 98.2%

Stoch Gradient 1.96 seconds 0.2 seconds 94.97% 94.84%

Ran Forest 38.47 seconds 2.37 seconds 99.95% 99.75%

Non-Linear

SVM

1958.71

seconds

491.59

seconds

96.06% 95.89%

Linear SVM 39.5 seconds 0.054

seconds

94.91% 94.81%

Logistic Reg 10.89 seconds 0.046

seconds

94.86% 94.79%

M-level

Perception

54 seconds 0.2 seconds 92.55% 92.55%

Gradient

Boosting

173.34

seconds

1.06 seconds 99.42% 99.36%

K-Nearest Neig 259.34

seconds

540.64

seconds

98.72% 98.2 %

Artificial N.N. 348.93

seconds

1.69 seconds 98.46% 98.36%

Recurrent N.N 294.88

seconds

1.55 seconds 98.77% 98.73%

Convolutional

N.N

703.48

seconds

19.54

seconds

96.02% 96.07%

Fig 26: The outcomes of the training and testing methods for the Kyoto dataset

52

IV.4 UNSW-NB15

 The training duration of Gaussian Naive Bayes is approximately 1.24 seconds.

The approximate Gaussian Naive-Bayes testing time is 0.995 seconds. The Gaussian

Naive Bayes algorithm has an accuracy of roughly 87.95% when it comes to training.

Gaussian Naive-Bayes testing has an approximate accuracy of 86.05%. Training a

decision tree takes approximately 2.94 seconds. Testing a decision tree takes

approximately 0.1 seconds. The accuracy of decision tree training is at least 96.76%.

The accuracy of decision tree testing is approximately 96.82%. Training with a

stochastic gradient takes approximately 1.49 seconds. Testing with stochastic

gradients takes approximately 0.14 seconds. The approximate training accuracy of

stochastic gradients is 95.09%. The accuracy of stochastic gradient testing is

approximately 95.13%. Training in Random Forest takes approximately 24.6 seconds.

Testing with Random Forest takes approximately 1.6 seconds. Random Forest has an

approximate 99.98% training accuracy. The accuracy of Random Forest testing is

approximately 98.71%. The training duration for a Non-Linear Supporting Vector

Machine classifier is approximately 471.77 seconds. The trial duration for a Non-

Linear Supporting Vector Machine classifier is approximately 308.58 seconds. The

training accuracy of a Non-Linear Supporting Vector Machine classifier is

approximately 95.46%. The accuracy of evaluating a non-linear support vector

machine classifier is approximately 94.24%. The training duration of a Linear

Supporting Vector Machine classifier is approximately 9.47 seconds. The trial

duration for a Linear Supporting Vector Machine classifier is approximately 0.116

seconds. The training accuracy of a Linear Supporting Vector Machine classifier is

approximately 95.1%. The accuracy of evaluating a Linear Supporting Vector

Machine classifier is approximately 93.89%. Training for Logistic Regression takes

approximately 6.79 seconds. Testing for Logistic Regression takes approximately

0.072 seconds. Accuracy in logistic regression training is approximately 95.08%. The

accuracy of logistic regression testing is approximately 94.23%. Training for

Multilevel Perception takes approximately 656.31 seconds. Testing for multilevel

perception takes approximately 0.178 seconds. The accuracy of Multilevel Perception

instruction is approximately 97.37%. The accuracy of Multilevel Perception testing is

approximately 95.25%. The training duration for a gradient boosting classifier is

approximately 186.66 seconds. The approximate trial duration for a Gradient Boosting

53

Classifier is 1.06 seconds. The training accuracy of a gradient boosting classifier is

approximately 98.03%. The testing accuracy of gradient boosting classifiers is

approximately 98.03%. The training duration of a K-Nearest Neighbour classifier is

approximately 162.62 seconds. The approximate K-Nearest Neighbour assessment

time is 540.64 seconds. The accuracy of K-Nearest Neighbour classifier training is

approximately 97.8%. Approximate K-Nearest Neighbour testing precision is 96.6%.

The training period of an artificial neural network is approximately 206.17 seconds.

The assessment period for artificial neural networks is approximately 0.51 seconds.

The training accuracy of the artificial neural network is approximately 96.54%. The

assessment accuracy of artificial neural networks is approximately 95.77%. The

training duration of a recurrent neural network is approximately 294.88 seconds. The

trial duration for recurrent neural networks is approximately 1.55 seconds. The

accuracy of Recurrent Neural Network training is approximately 96.73%. The

assessment accuracy of recurrent neural networks is approximately 96.78%. The

training period of a convolutional neural network is approximately 703.48 seconds.

The assessment duration for convolutional neural networks is approximately 19.54

seconds. The training accuracy of the convolutional neural network is approximately

95.5%. The assessment accuracy of the convolutional neural network is approximately

95.58%.

 Table 4: Result for training and testing algorithm for UNSW-NB15 dataset

Machine

Learning

Algorithms

Training Time

Seconds (s)

Testing Time

Seconds (s)

Training

Accuracy

Testing

Accuracy

Gaussian N-B 1.24 seconds 0.995 seconds 87.95% 86.05%

Dec Tree 2.94 seconds 0.1 seconds 96.76% 96.82%

Stoch Gradient 1.49 seconds 0.14 seconds 95.09% 95.13%

Ran Forest 24.6 seconds 1.6 seconds 99.98% 98.71%

Non-Linear

SVM

471.77

seconds

308.58

seconds

95.46% 94.24%

Linear SVM 9.47 seconds 0.116 seconds 95.1% 93.89%

Logistic Reg 6.79 seconds 0.072 seconds 95.08% 94.23%

M-level

Perception

656.31

seconds

0.178 seconds 97.38% 95.25%

54

Gradient

Boosting

186.66

seconds

1.06 seconds 98.03% 98.03%

K-Nearest Neig 162.62

seconds

540.64

seconds

97.8% 96.6 %

Artificial N.N. 206.17

seconds

0.51 seconds 96.54% 95.77%

Recurrent N.N 294.88

seconds

1.55 seconds 96.73% 96.78%

Convolutional

N.N

703.48

seconds

19.54 seconds 95.5% 95.58%

Fig 27: The outcomes of the training and testing methods for the UNSW-NB15 dataset

In the graphs below, you can see the comparison of the values in % of the training

accuracy and testing accuracy of the 13 algorithms for the 4 tested datasets.

Fig 28: Training accuracy values for all algorithms

55

Fig 29: Testing accuracy values for all algorithms

Table 5 : RESULTS FOR TRAINING TIME, TESTING TIME, TRAINING ACCURACY AND TESTING ACCURACY FOR ALL

4 DATASETS TESTED

Machine
Learning

Algorithms

Training Time Seconds (s) Testing Time Seconds (s) Training Accuracy Percentage
(%)

Testing Accuracy Percentage
(%)

 D 1 D 2 D 3 D 4 D 1 D 2 D 3 D 4 D 1 D 2 D 3 D 4 D 1 D 2 D 3 D 4

Gaussian

Naïve-Bayes

2.25 0.12 1.4 1.24 3.42 0.12 0.61 0.99
5

88.2
1

51.2
8

71.1
5

87.9
5

88.2
1

51.5
6

71.1
1

86.0
5

Decision

Tree

4.92 0.2 3.14 2.94 0.16 0.01
6

0.07
8

0.1 99.1 95.8
9

98.2
1

96.7
6

99.1 95.8
5

98.2 96.8
2

Stochastic

Gradient
15.5 0.62 1.96 1.49 0.33 0.01

6
0.2 0.14 99.2

1
97.2
1

94.9
7

95.0
9

99.2
1

97.1
3

94.8
4

95.1
3

Random

Forest
44.6
4

1.18 38.4
7

24.6 3.55 0.15
4

2.37 1.6 99.9
9

100 99.9
5

99.9
8

99.9
7

99.6
4

99.7
5

98.7
1

Non-Linear

SVM

2173
.8

3.01
1

1958
.71

471.
77

226.
42

2.04 491.
59

308.
58

99.8
9

99.2
6

96.0
6

95.4
6

99.8
9

99.0
5

95.8
9

94.2
4

Linear SVM 48.2
6

1.4 39.5 9.47 0.23 0.01
6

0.05
4

0.11
6

99.7
1

96.9
7

94.9
1

95.1 99.6
9

97.1
2

94.8
1

93.8
9

Logistic

Regression

40.8
7

1.62 10.8
9

6.79 0.23 0.01
5

0.04
6

0.07
2

99.3
3

96.7
4

94.8
6

95.0
8

99.3
1

96.6
8

94.7
9

94.2
3

Multilevel

Perception

498.
51

33.5
3

54 656.
31

0.63 0.03 0.2 0.17
8

99.4
2

97.4
7

92.5
5

97.3
8

99.3
8

97.5 92.5
5

95.2
5

Gradient

Boosting

1433
.56

60.5
5

173.
34

186.
66

7.99 0.4 1.06 1.06 99.9
6

99.9
5

99.4
2

98.0
3

99.9
3

99.6 99.3
6

98.0
3

K-Nearest

Neig

312.

26

3.89 259.

34

162.

62

432.

7

21.3

2

540.

64

540.

64

98.1 99.4

8

98.7

2

97.8 94.2 99.3

2

98.2 96.6

Artificial

Neural

Network

371.
18

192.
79

348.
93

206.
17

1.02 0.74 1.69 0.51 98.4
7

98.6
8

98.4
6

96.5
4

98.4
7

98.4
9

98.3
6

95.7
7

Recurrent

Neural

Network

448.
51

234.
92

294.
88

294.
88

1.1 0.83 1.55 1.55 98.4
6

97.8
2

98.7
7

96.7
3

98.4
8

97.6
1

98.7
3

96.7
8

Convolution
al Neural

Network

870.
8

571.
16

703.
48

703.
48

21.4
6

2.35 19.5
4

19.5
4

99.8
7

99.1
6

96.0
2

95.5 99.8
7

98.9
4

96.0
7

95.5
8

56

D 1 – KDD cup dataset

D 2 – NSL-KDD dataset

D 3 – Kyoto dataset

D 4 – UNSW-NB15 dataset

Gaussian Naïve-Bayes, Decision Tree and Stochastic Gradient have a short time of

training and testing because of the credentials they have make them able to be

implemented quickly. Thay have different accuracies because Gaussian Naïve-Bayes

is based on probability, Decision Tree is an hierarchical algorithm and Stochastic

Gradient is an optimization algorithm.

Random Forest, Linear SVM and Logistic Regression take a little more time to be

implemented than algorithms mentioned above because there structure is a little bit

more complex. Random forest has a great accuracy since it is a set of hierarchical

structures (Decision Trees), Linear SVM which divides different types of cyber attacks

using hyper planes and Logistic Regression which is a classification algorithm, in this

case an multinomial statistical algorithm.

The other algorithms have a much more complex structure especially ANNs

algorithms in different from machine learning algorithms is composed from more than

one layer. Since they have a complex structure there accuracy is great.

Preprocessing of datasets: First we take the datasets and delete the unnecessary

columns from the dataset. We take the cyber attacks column as output and other

columns as input. If the columns are numbers we leave them as they are, if they are a

combination of letters or a group of number and letters we Map them as integers.

By implementing supervised ML algorithms, we have been able to detect what types

of output are a cyber attacks and what types are not.

Table 6 : THE RESULT FOR SENSITIVITY AND SPECIFICITY FOR EACH ALGORITHM IN THE 4 DATASETS TESTED

Machine
Learning

Algorithms

Sensitivity (%) Specificity (%)

 D 1 D 2 D 3 D 4 D 1 D 2 D 3 D 4

Gaussian Naïve-
Bayes

88.21 51.56 71.11 86.05 87.23 52.44 69.2 85.2

Decision Tree 99.1 95.85 98.2 96.82 98.9 95.65 97.9 95.95

Stochastic
Gradient

99.21 97.13 94.84 95.13 98.51 96.3 92.99 93.2

57

Random Forest 99.97 99.64 99.75 98.71 98.99 97.88 98.2 97.1

Non-Linear

SVM

99.89 99.05 95.89 94.24 98.71 97.06 94.83 92.32

Linear SVM 99.69 97.12 94.81 93.89 97.86 95.32 92.11 90.63

Logistic

Regression
99.31 96.68 94.79 94.23 96.81 92.54 92.23 92.33

Multilevel
Perception

99.38 97.5 92.55 95.25 98.02 96.06 90.66 93.96

Gradient

Boosting

99.93 99.6 99.36 98.03 98.02 98.04 97.85 96.96

K-Nearest Neig 94.2 99.32 98.2 96.6 92.35 97.2 96.92 95.66

Artificial Neural

Network

98.47 98.49 98.36 95.77 97.36 97.36 97.05 94.27

Recurrent Neural

Network

98.48 97.61 98.73 96.78 96.26 96.53 96.37 94.69

Convolutional

Neural Network
99.87 98.94 96.07 95.58 97.78 96.52 94.56 93.06

D 1 – KDD cup dataset

D 2 – NSL-KDD dataset

D 3 – Kyoto dataset

D 4 – UNSW-NB15 dataset

D 1 – KDD cup dataset

D 2 – NSL-KDD dataset

D 3 – Kyoto dataset

D 4 – UNSW-NB15 dataset

58

Fig 30: Sensitivity and Specificity of the 12 algorithms for all tested datasets

CHAPTER V

SUMMARY AND SUGGESTIONS FOR FUTURE WORK

 V.1 Summary

The purpose of these studies was to identify separate categories of malware that were

present within the datasets. To do this, a variety of machine learning and deep learning

methods were applied. As the algorithm for deep learning is taught more, it will

generate findings that are more accurate. The great majority of the algorithms that were

used in the detection of malware had an accuracy that was somewhat comparable to

acceptable. On the other hand, one must exert a considerable amount of work in order

to enhance the efficiency of these algorithms. The technical frontier of the future is

represented by the incorporation of machine learning algorithms into a wide variety of

fields, including cyber security. Within the scope of this thesis, we identified malware

by using a number of different classification techniques across four different datasets.

We have noticed that different machine learning algorithms have varying degrees of

accuracy and different amounts of time required to apply them. According to the

findings presented in this research, the amount of time required to develop algorithms

like the Gaussian Naive-Bayes classifier, Logistic Regression, and Decision Tree

classifier is very short. With the exception of the Gaussian Naïve-Bayes classifier

algorithm, which achieves an accuracy ranging from 51% to 88%, all other algorithms

surpass 90% in terms of accuracy.The implementation process for alternative

classification algorithms, including Multilevel Perception, non-linear SVM, and

Gradient Boosting, is considerably protracted. The algorithm that has achieved the

highest level of accuracy among all the algorithms considered is the Random Forest

Classification algorithm. However, each of them operates flawlessly. We have

constructed a sophisticated system with an exceptional level of performance. This

intelligent system is extremely potent and useful for identifying a great number of

cyber threats.

59

 V.2 Future Work

 A prospective work proposal calls for the application of natural language

processing and reinforcement learning algorithms to malware detection. They are

exceptionally effective approaches.

60

REFERENCES

[1] Y. Qin and T. Xia, “Sensi tivity analysis of ring oscillator based hardware

Trojan detection,” Int. Conf. Commun. Technol. Proceedings, ICCT, vol. 2017-

Octob, pp. 1979–1983, 2018, doi: 10.1109ICCT.2017.8359975.

[2] S. Najari, “Malware Detection Using Data Mining Techniques,” Int. J. Intell.

Inf. Syst., vol. 3, no. 6, p. 33, 2014, doi: 10.11648/j.ijiis.s.2014030601.16.

[3] D. Jacobson and J. Idziorek, Computer security literacy: staying safe in a digital

world, vol. 50, no. 10. 2013.

[4] D. Dasgupta, Z. Akhtar, and S. Sen, “Machine learning in cybersecurity: a

comprehensive survey,” J. Def. Model. Simul., 2020, doi:

10.1177/1548512920951275.

[5] R. A. Katole, “Parameter Values of SQL Query,” 2018 2nd Int. Conf. Inven.

Syst. Control, no. Icisc, pp. 736–741, 2018.

[6] H. M. Farooq and N. M. Otaibi, “Optimal machine learning algorithms for cyber

threat detection,” Proc. - 2018 UKSim-AMSS 20th Int. Conf. Model. Simulation,

UKSim 2018, pp. 32–37, 2018, doi: 10.1109/UKSim.2018.00018.

[7] V. Bhatia, S. Choudhary, and K. R. Ramkumar, “A Comparative Study on

Various Intrusion Detection Techniques Using Machine Learning and Neural

Network,” ICRITO 2020 - IEEE 8th Int. Conf. Reliab. Infocom Technol. Optim.

(Trends Futur. Dir., pp. 232–236, 2020, doi:

10.1109/ICRITO48877.2020.9198008.

[8] W. A. Ali, K. N. Manasa, M. Bendechache, M. F. Aljunaid, and P. Sandhya, “A

review of current machine learning approaches for anomaly detection in

network traffic,” J. Telecommun. Digit. Econ., vol. 8, no. 4, pp. 64–95, 2020,

doi: 10.18080/JTDE.V8N4.307.

[9] V. Mahesh and K. A. Sumithra Devi, “Prevention from Security Risks of

Spyware by the use of Ai,” 1st Int. Conf. Adv. Technol. Intell. Control. Environ.

Comput. Commun. Eng. ICATIECE 2019, pp. 131–135, 2019, doi:

10.1109/ICATIECE45860.2019.9063838.

[10] I. Sumantra and S. Indira Gandhi, “DDoS attack Detection and Mitigation in

61

Software Defined Networks,” 2020 Int. Conf. Syst. Comput. Autom.

Networking, ICSCAN 2020, 2020, doi: 10.1109/ICSCAN49426.2020.9262408.

62

 APPENDIX

Kyoto dataset

-*- coding: utf-8 -*-"""

Created on Sun Jun 20 16:34:53 2021

@author: User"""

import pandas as pd

import time

df = pd.read_csv("kyoto.csv")

df.drop('Source_IP_Address', axis = 1, inplace = True)

df.drop('Destination_IP_address', axis = 1, inplace = True)

df.drop('Start_time', axis = 1, inplace = True)

df.drop('IDS_detection', axis = 1, inplace = True)

fmap = {'OTH':0, 'REJ':1, 'RSTO':2, 'RSTOS0':3, 'RSTR':4, 'RSTRH':5, 'S0':6,

'S1':7, 'SF':8,

 'SHR':9}

df['Flag'] = df['Flag'].map(fmap)

pmap = {'icmp':0, 'tcp':1, 'udp':2}

df['Protocol'] = df['Protocol'].map(pmap)

smap = {'other':0, 'dns':1, 'smtp':2, 'snmp':3, 'ssh':4,'rdp':5, 'sip':6, 'http':7 ,'dhcp':8,

'ssl' : 9}

df['Service'] = df['Service'].map(smap)

lmap = {1: 'normal', -1: 'attack', -2:'unknown'}

df['Label'] = df['Label'].map(lmap)

y = df['Label']

63

X = df.drop(['Label'], axis = 1)

from sklearn.preprocessing import MinMaxScaler

sc = MinMaxScaler()

X = sc.fit_transform(X)

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33)

print(X_train.shape, X_test.shape)

print(y_train.shape, y_test.shape)

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import accuracy_score

clfg = GaussianNB()

start_time = time.time()

clfg.fit(X_train, y_train.values.ravel())

end_time = time.time()

print("Gaussian Naive-Bayes Training time: ", end_time-start_time)

start_time = time.time()

y_test_pred = clfg.predict(X_train)

end_time = time.time()

print("Gaussian Naive-Bayes Testing time: ", end_time-start_time)

print("Gaussian Naive-Bayes Train score is:", clfg.score(X_train, y_train))

print("Gaussian Naive-Bayes Test score is:", clfg.score(X_test, y_test))

from sklearn.tree import DecisionTreeClassifier

clfd = DecisionTreeClassifier(criterion ="entropy", max_depth = 4)

start_time = time.time()

64

clfd.fit(X_train, y_train.values.ravel())

end_time = time.time()

print("Decision Tree Training time: ", end_time-start_time)

start_time = time.time()

y_test_pred = clfd.predict(X_train)

end_time = time.time()

print("Decision Tree Testing time: ", end_time-start_time)

print("Decision Tree Train score is:", clfd.score(X_train, y_train))

print("Decision Tree Test score is:", clfd.score(X_test, y_test))

from sklearn.linear_model import SGDClassifier

clfsg = SGDClassifier(loss = 'hinge', max_iter = 10, tol = 0.0000000001)

start_time = time.time()

clfsg.fit(X_train, y_train.values.ravel())

end_time = time.time()

print("Stochastic Gradient Training time: ", end_time-start_time)

start_time = time.time()

y_test_pred = clfsg.predict(X_train)

end_time = time.time()

print("Stochastic Gradient Testing time: ", end_time-start_time)

print("Stochastic Gradient Train score is:", clfsg.score(X_train, y_train))

print("Stochastic Gradient Test score is:", clfsg.score(X_test, y_test))

from sklearn.ensemble import RandomForestClassifier

clfr = RandomForestClassifier(n_estimators = 30)

start_time = time.time()

clfr.fit(X_train, y_train.values.ravel())

end_time = time.time()

print("Random Forest Training time: ", end_time-start_time)

start_time = time.time()

y_test_pred = clfr.predict(X_train)

65

end_time = time.time()

print("Random Forest Testing time: ", end_time-start_time)

print("Random Forest Train score is:", clfr.score(X_train, y_train))

print("Random Forest Test score is:", clfr.score(X_test, y_test))

from sklearn.svm import SVC

clfs = SVC(gamma = 'scale')

start_time = time.time()

clfs.fit(X_train, y_train.values.ravel())

end_time = time.time()

print("Non-Linear SVM Training time: ", end_time-start_time)

start_time = time.time()

y_test_pred = clfs.predict(X_train)

end_time = time.time()

print("Non-Linear SVM Testing time: ", end_time-start_time)

print("Non-Linear SVM Train score is:", clfs.score(X_train, y_train))

print("Non-Linear SVM Test score is:", clfs.score(X_test, y_test))

from sklearn.svm import LinearSVC

clfls = LinearSVC(max_iter = 1000)

start_time = time.time()

clfls.fit(X_train, y_train.values.ravel())

end_time = time.time()

print("Linear SVM Training time: ", end_time-start_time)

start_time = time.time()

y_test_pred = clfls.predict(X_train)

end_time = time.time()

print("Linear SVM Testing time: ", end_time-start_time)

print("Linear SVM Train score is:", clfls.score(X_train, y_train))

print("Linear SVM Test score is:", clfls.score(X_test, y_test))

66

from sklearn.linear_model import LogisticRegression

clfl = LogisticRegression(max_iter = 1200000)

start_time = time.time()

clfl.fit(X_train, y_train.values.ravel())

end_time = time.time()

print("Logistic Regression Training time: ", end_time-start_time)

start_time = time.time()

y_test_pred = clfl.predict(X_train)

end_time = time.time()

print("Logistic Regression Testing time: ", end_time-start_time)

print("Logistic Regression Train score is:", clfl.score(X_train, y_train))

print("Logistic Regression Test score is:", clfl.score(X_test, y_test))

from sklearn.neural_network import MLPClassifier

mlp_clf = MLPClassifier(solver='adam', alpha=1e-5, hidden_layer_sizes=(5, 2),

random_state=42)

start_time = time.time()

mlp_clf.fit(X_train, y_train.values.ravel())

end_time = time.time()

print("Multilevel Perception Training time: ", end_time-start_time)

start_time = time.time()

y_test_pred = mlp_clf.predict(X_train)

end_time = time.time()

print("Multilevel Perception Testing time: ", end_time-start_time)

print("Multilevel Perception Train score is: ", mlp_clf.score(X_train, y_train))

print("Multilevel PerceptionTest score is: ", mlp_clf.score(X_test, y_test))

67

from sklearn.ensemble import GradientBoostingClassifier

clfg = GradientBoostingClassifier(random_state = 0)

start_time = time.time()

clfg.fit(X_train, y_train.values.ravel())

end_time = time.time()

print("Gradient Boosting Training time: ", end_time-start_time)

start_time = time.time()

y_test_pred = clfg.predict(X_train)

end_time = time.time()

print("Gradient Boosting Testing time: ", end_time-start_time)

print("Gradient Boosting Train score is:", clfg.score(X_train, y_train))

print("Gradient Boosting Test score is:", clfg.score(X_test, y_test))

from sklearn.neighbors import KNeighborsClassifier

clfk= KNeighborsClassifier(n_neighbors=5, metric='minkowski', p=2)

start_time = time.time()

clfk.fit(X_train, y_train.values.ravel())

end_time = time.time()

print("KNN Training time: ", end_time-start_time)

start_time = time.time()

y_test_pred = clfk.predict(X_train)

end_time = time.time()

print("KNN Testing time: ", end_time-start_time)

print("KNN Train score is:", clfk.score(X_train,y_train))

print("KNN Test score is:", clfk.score(X_test,y_test))

from keras.models import Sequential

from keras.layers import Dense

from keras.wrappers.scikit_learn import KerasClassifier

68

def ANNClassifier():

 annclassifier = Sequential()

 annclassifier.add(Dense(19, activation = 'relu', kernel_initializer =

"random_uniform"))

 annclassifier.add(Dense(1, activation = 'sigmoid', kernel_initializer =

"random_uniform"))

 annclassifier.add(Dense(2, activation = 'softmax'))

 annclassifier.compile(optimizer = 'adam', loss = 'categorical_crossentropy',

metrics = ['accuracy'])

 return annclassifier

annclassifier = KerasClassifier(build_fn = ANNClassifier,

epochs=100,batch_size=1000)

start_time = time.time()

annclassifier.fit(X_train, y_train)

end_time = time.time()

print("Artificial Neural Network Training time ", end_time - start_time)

start_time = time.time()

y_test_pred = annclassifier.predict(X_test)

end_time = time.time()

print("Artificial Neural Network Testing time ", end_time - start_time)

start_time = time.time()

y_train_pred = annclassifier.predict(X_train)

end_time = time.time()

print("Artificial Neural Network Training accuracy", accuracy_score(y_train,

y_train_pred))

print("Artificial Neural Network Testing accuracy", accuracy_score(y_test,

y_test_pred))

from keras.layers import LSTM

69

def RNNClassifier():

 rnnclassifier = Sequential()

 rnnclassifier.add(LSTM(19))

 rnnclassifier.add(Dense(1, activation = 'sigmoid'))

 rnnclassifier.add(Dense(2, activation = 'softmax'))

 rnnclassifier.compile(optimizer = 'adam', loss = 'categorical_crossentropy',

metrics = ['accuracy'])

 return rnnclassifier

rnnclassifier = KerasClassifier(build_fn = RNNClassifier, epochs=100

,batch_size=1000)

start_time = time.time()

annclassifier.fit(X_train, y_train)

end_time = time.time()

print("Recurrent Neural Network Training time ", end_time - start_time)

start_time = time.time()

y_test_pred = annclassifier.predict(X_test)

end_time = time.time()

print("Recurrent Neural Network Testing time ", end_time - start_time)

start_time = time.time()

y_train_pred = annclassifier.predict(X_train)

end_time = time.time()

print("Recurrent Neural Network Training accuracy", accuracy_score(y_train,

y_train_pred))

print("Recurrent Neural Network Testing accuracy", accuracy_score(y_test,

y_test_pred))

from keras.layers import Conv2D, MaxPooling2D

from keras.layers.advanced_activations import LeakyReLU

from keras.layers import Flatten

70

X_train = X_train.reshape(X_train.shape[0],19,1,1)

X_test = X_test.reshape(X_test.shape[0],19,1,1)

def CNNClassifier():

 cnnclassifier = Sequential()#add input layer and first hidden layer

 cnnclassifier.add(Conv2D(32, (3, 3), activation='relu', input_shape=(19, 1, 1),

padding='same'))

 cnnclassifier.add(LeakyReLU(alpha = 0.1))

 cnnclassifier.add(MaxPooling2D(pool_size=(4, 4), padding = 'same'))

 cnnclassifier.add(Conv2D(64, (3, 3), activation = 'relu', padding = 'same'))

 cnnclassifier.add(LeakyReLU(alpha = 0.1))

 cnnclassifier.add(MaxPooling2D(pool_size = (4,4), padding = 'same'))

 cnnclassifier.add(Flatten())

 cnnclassifier.add(LeakyReLU(alpha = 0.1))

 cnnclassifier.add(Dense(2, activation = 'softmax'))

 cnnclassifier.compile(optimizer = 'adam', loss='categorical_crossentropy',

metrics=['accuracy'])

 return cnnclassifier

cnnclassifier = KerasClassifier(build_fn = CNNClassifier, epochs=10,

batch_size=1000)

start_time = time.time()

cnnclassifier.fit(X_train, y_train.values.ravel())

end_time = time.time()

print("Convolutional Neural Network Training time:", end_time-start_time)

start_time = time.time()

y_test_pred = cnnclassifier.predict(X_test)

end_time = time.time()

print("Convolutional Neural Network Testing time ", end_time - start_time)

start_time = time.time()

y_train_pred = cnnclassifier.predict(X_train)

71

end_time = time.time()

print("Convolutional Neural Network Training accuracy", accuracy_score(y_train,

y_train_pred))

print("Convolutional Neural Network Testing accuracy", accuracy_score(y_test,

y_test_pred))

