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ABSTRACT 

 

 CLASSIFICATION OF CELL IMAGES USING CONVOLUTIONAL 

NEURAL NETWORKS AND DIFFERENT PREPROCESSING 

TECHNIQUES 

 

Dollani, Edit 

M. Sc., Department of Computer Engineering 

Supervisor: Dr. Arban Uka 

 

 

Medical image analysis field is highly dependent on good quality research that 

can result in time, cost improvements and aid in providing faster and better diagnosis 

for patients. Machine learning and especially convolution neural networks has proven 

to efficiently achieve the previously mentioned improvements in various medical field 

tasks.  In this research we will focus on classification of cells based on their health 

level using a CNN model and several image preprocessing techniques with the goal of 

achieving high accuracy levels of predictions. The dataset used in this study has more 

than 20000 images for training and will be tested on two different datasets with each 

more than 8000 images. Several preprocessing techniques such as Wavelet denoising, 

Sobel filter, sharpening and edge enhancing filters will be tested and compared based 

on performance during the classification tasks with graphs and numerical results. The 

modified CNN model will be tested to find out the best parameters to use for training 

it and efficiently increasing the performance and precision. 

 

 

 

 

Keywords: cell samples, preprocessing, classification, convolutional neural 

networks, LeNet, deep learning  
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ABSTRAKT 

 

KLASIFIKIMI I QELIZAVE DUKE PËRDORUR CONVOLUTIONAL 

NEURAL NETWORKS DHE TEKNIKA TE NDRYSHME 

PREPROCESIMI 

 

Dollani, Edit 

Master Shkencor, Departamenti i Inxhinieri së Kompjuterike. 

Udheheqesi: Dr. Arban Uka 

 

 

Fusha e studimit te imazheve mjekesore eshte shume e varur nga kerkimet 

shkencore qe sjellin permiresim ne kosto dhe reduktim ne kohe nderkohe qe sigurojne 

nje diagnoze me te shpejte dhe me te sakte per pacientet.Mesimi automatik dhe 

specifikisht rrjetat neurale kane provuar qe kane efikasitet te larte per te arritur 

permiresimet e permenduara pak me pare.Ne kete studim fokusohemi ne klasifikimin 

e qelizave ne baze te shendetit te tyre duke perdorur nje model rrjete neurale se bashku 

me disa teknika optimizimi imazhesh me qellimin per te arritur rezultate te larta 

saktesie ne parashikim.Grupi i imazheve qe do perdoret ne kete studim ka me shume 

se 20000 imazhe qe do perdoren per trajnimin e modelit dhe testimi do te behet ne 2 

grupe te tjera imazhesh me me shume se 8000 imazhe.Teknika te ndryshme optimizimi 

imazhesh do testohen dhe krahasohen me ane te rezultateve numerike dhe grafikeve. 

Modeli i modifikuar cnn do testohet per te identifikuar parametrat e trajnimit qe do te 

sjellin rritje te performances dhe precizionin e modelit. 

 

 

 

Fjalët kyçe: imazhe qelizash, optimizim imazhesh, klasifikim, rrjetat neurale, 

LeNet,mesimi i thelle i strukturuar 
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CHAPTER 1 

INTRODUCTION 

 

1.1  Background & Motivation 

Medical field depends heavily on high quality research that can not only result 

in time and cost improvements but also provide better and faster diagnosis. Image 

processing and machine learning have been of major help in improving healthcare in 

terms of making predictions with accuracy and reducing a huge amount of tedious 

work that would require many human resources. Recently, deep learning and 

especially convolutional neural network is emerging as a prime machine learning 

method in computer vision. Over the last few years, several convolutional neural 

network architectures have been presented and achieved significant improvement in 

results. Contributions such as LeNet-5, AlexNet and other CNN architectures were 

proven to be efficient in various tasks including image recognition and image 

classification [21] 

 An important role in the medical field is the detection, counting and 

classification of various types of cells. However, this work can be very difficult 

considering the variety of the biological variability and the limitations in quality of cell 

samples. [20] In this work the images were obtained using a brightfield microscope 

when being in contact with various biomaterials and the classification is done based 

on the health level of the cells. 

1.2  Thesis Objective 

In this research we focus on cells and attaining higher accuracy levels when 

classifying the cells into three different classes: Healthy, Unhealthy and severely 

disintegrated. Considering the state of the cell samples which are exposed to various 

deformations compared to their original form during the image acquisition we will be 

using different image preprocessing techniques with the purpose of getting satisfactory 
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results. These results combined with the different assessments made to the deep 

learning model will result in the high accuracy predictions that we want to achieve. 

1.3  Organization of Thesis 

The thesis will be organized as follows. We will start with literature review 

from previous research conducted related to the field. Following that we will describe 

the dataset used along with the methodology in which will be included the CNN 

architecture and different preprocessing techniques used. Later on, the results and 

discussions will be reported and, in the end, we will state future objectives. 

The details of each chapter are shown below: 

− Chapter 1 is about the introduction which includes the motivation behind the 

research along with the thesis objectives. 

− Chapter 2 explains in more details the previous work done related to the field of 

study from other researchers. 

− Chapter 3 presents the methodology in which first is introduced the dataset that 

will be used for classification, then it is continued with the image preprocessing 

techniques used on the dataset along with the before & after sample images and in 

the end the model architecture is explained. 

− Chapter 4 describes the results of the training and the testing and shows a 

comparison of the results. 

− Chapter 5 discusses the conclusions of the research and suggests what can be done 

as future work. 

Furthermore, the thesis contains a list of tables, list of figures, table of contents, 

references and the code used for this study. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Deep Learning 

Deep Learning is a particular type of supervised learning whose base is artificial 

neural networks, inspired by the structure of biological nervous systems. 

Every artificial neuron in a network receives several inputs, computes the sum 

of those inputs, passes the result through a nonlinear function and uses this result as an 

input to other artificial neurons. A deep neural network has 3 or more layers in which 

neurons are arranged and do the process of receiving inputs from previous layers, 

processing the inputs and passing the output to the next layer. The weights aka 

connections between the artificial neurons determine the weight of each feature in the 

weighted sum and are the parameters of the model that are trained. 

 In a fully connected layer, every neuron receives input from all neurons in the 

previous layer while in convolutional layers, every neuron is connected to only a small 

portion of the nearby neurons in the previous layer and the weights detect a pattern in 

that portion of the neurons. The parameters of a neural network aka the weights 

determine how it renders its inputs into outputs so training a neural network means 

fixing the weights for each neuron so that the desired output is archived. To adjust 

these parameters, a measure of the difference between the current output of the 

network and the desired output is calculated, this measure of discrepancy is called the 

loss function. [22]  

The high accuracy of DL compared to other machine learning techniques makes 

it applicable to many complex problems. 

2.2 Convolutional Neural Networks 

Convolutional Neural Networks (CNN) is one of the deep learning models 

which has greatly contributed to computer vision. CNNs are able to detect certain 

features in images, being this way helpful and commonly used in the fields of image 

recognition, image classification and medical image analysis. 
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When it comes to image analysis and classification, Convolutional Neural 

Networks outperforms most of the deep learning methods. [21] “Convolution” in this 

case stands for a mathematical function of convolution, a linear operation in which one 

image and one kernel (filter) are pairwise multiplied resulting in an output useful in 

extracting features from the image. 

The CNN architecture, as it can be seen in Figure 1, is mainly divided into two 

parts: Feature Extraction and Classification. Feature Extraction as we mentioned 

before is the part that detects the features of the images while the classification part is 

the layer which uses the output of the convolution part to predict and classify the 

images based on the features extracted previously. 

 

Figure 1. Two major stages of CNN 

 

2.3 Convolution Layers  

There are three types of layers that make up the CNN which are the 

convolutional layers, pooling layers, and fully-connected (FC) layers. [21] When these 

layers are stacked, a CNN architecture will be constructed. In addition to these three 

layers, there are two more important parameters which are the dropout layer and the 

activation function. 

2.3.1 Convolution Layer 

The purpose of the convolution layer is to extract the features from a sample or 

to be more precise to extract the features from the matrix representing the image. The 

process of convolution takes the image matrix and slides a filter matrix called kernel 
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with a step size that depends on the size of the kernel along the image. For a 3x3 filter, 

a step size of around 1 pixel is acceptable. By sliding we describe the process of 

multiplying the filter values with the image values and summing up the products. This 

resulting sum corresponds to a new value that will be allocated at the center of the 

kernel.  The above-mentioned procedure is represented in the Fig 2 below. 

 

Figure 2. Convolution Layer 

2.3.2 Pooling Layer 

In CNN-s a pooling layer is generally added amid convolution layers. The 

pooling layer’s purpose is to speed up the computation and to reduce the possibility of 

overfitting by reducing the size of the parameter matrix and parameters number in the 

last fully connected layer. Max pooling is the most used pooling form. In the Fig 3 

below we have an example which shows max pooling of a matrix. 

 

Figure 3. Pooling Layer 

2.3.3 Fully Connected Layer 

The last piece in the CNN is the fully connected layer which gets the outputs of 

the layers as inputs and maps them into targets of classification tasks. 

Fully connected layers which are often used in classification tasks are the final 

part of a convolutional neural network. This layer takes the outputs of the previous 
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layers as inputs, and maps them into the targets of the classification task. As an 

example, as seen in Fig 4 below there are 5 outputs from previous layers which are 

mapped into three classes to determine which input sample belongs to which class. 

 

Figure 4. Fully Connected Layer 

2.4 Related Research 

As mentioned in [1] the analysis of the cell images can be affected from 

different conditions such as non-uniform illumination, gray shades because of low 

contrast, translucency of the cytoplasm of the cell. Another issue is that deep learning 

algorithms require a large number of samples which is a restriction for any researcher 

since the medical labor to get those samples is a tedious and time-consuming job. 

 Other than that, the samples show cells of different sizes and structures which 

can be confusing for the training of the deep learning model. These microscopy cell 

samples are crucial in the medical field to initially decide the health state of the cell 

and later determine the efficacy of various treatments. The dataset they use which is 

obtained using brightfield microscopy with no staining is the same one that will be 

used in this research. The difference will be augmentation of the dataset and the 

addition of one extra class turning this from binary to a multi-class classification. In 

this research by using CNN we classify cell samples converted using several 

preprocessing techniques with the purpose of achieving high accuracy.  

High performance computing based on GPU is crucial for image processing in 

the medical field. This is because the most important aspects image processing is based 

on are image size, speed and resolution. GPU has data processing capacity that exceeds 

that of CPU and makes it easier to work on high-performance computing on ordinary 
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computers. [12] The model was trained in a workstation with high performing units 

(GPU) as it is needed to reduce time when training deep learning models. [3,4] 

Studying the previous research, we see that other researchers have used LeNet 

Convolutional Neural Network (CNN) to classify two different types of bacteria. [2] 

LeNet which was originally presented by LeCun et al. in their 1998 paper, Gradient-

Based Learning Applied to Document Recognition entails two sets of convolutional, 

activation, and pooling layers, trailed by a fully-connected layer, activation, additional 

fully-connected, and lastly a softmax classifier. Other researchers have used multi-

class classification using Support Vector Machine (SVM) with the same purpose of 

classifying bacteria sample images and managed to reach an accuracy of 97%. [3] 

SVM is a multiclass linear supervised technique used for classification especially in 

cases where the number of dimensions is bigger than the number of samples. 

 The LeNet-5 convolutional model was also used as a base model for other 

convolution neural network models. An example of that is in paper [4] where the 

authors added an extra convolutional layer along with a pooling layer to deepen the 

network. Another difference made to this model was the connection of the backward 

propagation of the first two pooling layers to the last pooling layer through 

convolution. The purpose of this modification is to make the most of the low-level 

features extracted by the network. The experimental results of the classification were 

good. 

“Our main motivation was to demonstrate the potential improvement of 

exploiting the higher classification accuracy on smaller number of merged classes in 

a multi-class scenario and our empirical results have justified these expectations” [5] 

In [5] the authors propose the idea of having a CNN multi-class classification 

framework used for dermoscopy samples. They use to as an upper hand the fact that 

those multiple classes can be later united into two classes and turn the classification 

into a binary one. The CNN used in [5] is GoogLeNet Inception-v3 and the results on 

the multi-class classification show an impressive increase of accuracy of 7%.  

In [17] the authors have reviewed Hep-2 cell classification using different deep 

learning methods and compared them on the basis of performance. The classification 

as the authors of the paper described is done at two extents, the cell and the specimen. 

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
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Furthermore, they also compare existing datasets and look at the possibilities for future 

research. 

It is recognized the fact that cell datasets are small sized since they are difficult 

to obtain and considering deep learning usually requires a large number of samples the 

problem in overfitting may arise. A solution for this in the absence of the opportunity 

to have a larger dataset is using data augmentation approaches. These techniques 

which are simple and effective are more commonly cropping, rotating, and flipping of 

sample images. Except for data augmentation, other solutions could be batch 

normalizations and dropout. Although having a larger dataset is expensive in 

computation time, it accelerates deep learning in terms of development. 

In different papers, cells have been classified using different features.Main 

features focused on are: color, geometric and texture. Color feature is generally 

connected to visual appearance of the cells. In focus are taken characteristics such as 

hue, saturation and brightness. A very important technique to consider for this is the 

histogram of the sample which shows a graphical representation of the number of 

pixels as a function of their intensity. Geometric features are best described by 

different characteristics such as area and perimeter of cells, shape of nucleus or 

cytoplasm in cells and other details pointed out by medical experts. Textures feature 

is focused on patterns of material, color or intensity that can be visually detected. [15] 

In [17] the authors focus on the classification based on the pattern feature which 

according to them is a difficult task because of the subtle category differences and 

since it is a job originally done by specialists who observe cells in slides under the 

microscope and detect patterns based on their experience. We should keep in mind that 

these results are not consistent. 

The authors of [17] present an Optimal Feature Selection for medical images 

using deep learning with the purpose of bringing more attention to feature selection 

and classification. The aim of their work to attain an optimal feature selection 

classification was successfully reached with an accuracy of 95.22%. 

In our research we will focus on classifying cells based on their health state: 

healthy, Severely Disintegrated and unhealthy. The focus will firstly be on 

preprocessing the samples. Different techniques can be used for preprocessing images 

such as grayscale, histogram equalization, etc. [8,9] 
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Every image preprocessing technique has its own advantages and 

disadvantages. The effectiveness of an image processing technique also varies from 

the images of the dataset to be processed and their properties. Different methods of 

preprocessing have different resolution or noise levels.  

Filters that can be used for image processing can be grouped as nonlinear and 

linear. [22]. Nonlinear are the filters whose output is not a linear function of its input. 

Examples of nonlinear filters are median filter, bilateral filter, etc. When using Linear 

filters, the value of output pixels is expressed as a linear combination of the values of 

the pixels in the neighborhood of the input pixel. A disadvantage of linear filters is the 

risk that since they act as low pass filters, linear filters can smoothen the edges rather 

than enhancing them and amplify the noise. Examples of linear filters are Gaussian 

filters. 

In previous studies as image preprocessing techniques on cell samples have 

been used: soft clustering using Gaussian mixture models, various color components. 

Watershed transform application permits the locating of 3 regions of interest: the 

nucleus of the cell, the entire cell and the area surrounding it. [17] Often histogram 

equalization is exploited to enhance the quality of the input sample. [17]  

Edge detection is also a very used and crucial technique in image processing. 

However, it is often difficult to use in medical images because of the sample conditions 

which vary to the exposure to other aspects. Previous work has been creating a high-

pass filter for edge detection which while it is similar to the conventional edge 

detection has a mathematical shape of local variance and is more adaptive. This is 

expressed as a quadratic form of the Toeplitz matrix which is more robust to noise and 

is able to extract crucial edge features. [16] 

Several testing along with different preprocessing techniques were made with 

the trained model, with the purpose of reaching the goal of getting the higher accuracy 

in classification. 
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2.5 Challenges of this research 

A main challenge in this study would be dealing with the difficulties of 

unstained images since more often they suffer from nonuniform illumination, low 

contrast and transparency of the cytoplasm. To this challenge can be added the fact 

that datasets with a large amount of cell data are difficult to find considering they 

require a huge amount of work done by the medical staff providing them. Furthermore, 

the CNN model should be adapted to deal with the difficulties of unstained images as 

mentioned above and should be trained carefully in order to make reliable predictions. 

[1]  



11 

 

 

CHAPTER 3 

METHODOLOGY 

3.1 Dataset 

The dataset used in this study is divided into other datasets, this way fulfilling 

the need of having different datasets to use for training and testing the classification 

task. 

The main dataset used for training has sample images of size 128 x 128 pixels. 

Initially the dataset is divided into two classes Healthy and Unhealthy cells.  

Later on, the paper, the classification will be done for three classes: Healthy, 

Unhealthy and Severely Disintegrated. The Severely Disintegrated class represents 

cells that are in a really bad condition, disintegrated cells. The training earlier in the 

research was done using this dataset with the purpose of the training being done in a 

shorter amount of time and to lessen the complexity for the neural network model since 

the images are only 128x128 pixels. In most of the 128 x 128 samples there should be 

at least one cell. Some samples which contained no cells were removed because later 

on during the training they can reduce the accuracy obtained. 

 

Figure 5. Healthy Samples 
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Figure 6. Unhealthy Samples 

Later on, to measure the performance of the trained model larger images of size 

1280 x 1024 pixels were cropped into 80 sample images of size 128 x 128 pixels and 

these crops were tested for accuracy. 

 

 

Figure 7. 1280 x 1024 sample image 
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Figure 8. Crops of 1280 x 1024 sample 

Experiments were done with different datasets with the goal of seeing the 

difference in the performance of the model. The ratio of the division was kept 80% for 

training and 20% for testing. 

 

3.2 Image Processing on the dataset 

3.2.1 Preprocessing Techniques which reached highest accuracies 

during classification 

Below we will show some of the most effective preprocessing techniques 

during this research. Since the samples of the dataset are divided into three classes, we 

are showing what each filter does to three example images of each: Healthy, Unhealthy 

and Severely Disintegrated classes. The techniques that gave the best results were two 

different kernels and the sobel filter. The sobel filter is an image processing filter which 

is used for edge detection in images by emphasizing the edges. The way it works is by 

calculating the gradient of image intensity at each pixel inside the image and finding 

the direction of the transformation from light to dark and the rate of change in that 

direction. The sobel filter uses two kernels, one for each direction. 

  

    𝐾𝑥 =[
−1 0 1
−2 0 2
−1 0 1

]   and     𝐾𝑦 = [
−1 −2 −1
   0     0    0
   1     2    1

 ] 
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The convolution between the image which is converted in black and white is 

computed along with the kernels giving us for each pixel the values 𝑚𝑎𝑔𝑥 and 𝑚𝑎𝑔𝑦  

leaving the current pixel at value as in the equation 1 below:  

√𝒎𝒂𝒈²𝒙 + 𝒎𝒂𝒈²𝒚   (Equation 1) 

In image processing a kernel, alternatively called a mask or convolution matrix 

is a matrix used for purposes of blurring, sharpening edges, smoothening images etc. 

The following 2 kernels, a5 x 5 Laplacian Filter and 3 x 3 Horizontal Line Detector 

are custom kernels which were effective in increasing the accuracy when applied to 

the dataset. 

 

 
−1 −1 −1 −1 −1
−1    1   2   1 −1
−1    2   4   2 −1
−1    1   2   1 −1
−1 −1 −1 −1 −1

 

 

5x5 Laplacian Filter 

 

 

[
−1 −2 −1
  0    0   0
  1   2   1

] 

                                                  
 

  Horizontal Line Detector 
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Table 1. Healthy Samples Before & After Preprocessing 

 

 

 

 

 

 

 

Original Image/ 

Preprocessing 

Technique 

5 x 5 Laplacian Filter Horizontal Line 

Detector 

Sobel Filter 
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Table 2. Unhealthy Samples Before & After Preprocessing 

Original Image/ 

Preprocessing 

Technique 

 

5 x 5 Laplacian Filter Horizontal Line 

Detector 

Sobel Filter 
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Table 3. Severely Disintegrated Samples Before & After Preprocessing 

Original Image/ 

Preprocessing 

Technique 

5 x 5 Laplacian Filter Horizontal Line 

Detector 

Sobel 
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3.2.2 Not as effective Preprocessing Techniques 

Based on previous research, other preprocessing techniques were used to 

experiment on the accuracy. Bilateral Filter is a noise-reducing, non-linear filter which 

preserves the edges and smoothens the images. It works similarly to the Gaussian Filter 

by replacing the pixel intensities with the average of the intensity values from the 

nearby pixels. The filter was implemented with a size of 5 for time-saving purposes 

since larger filters are very slow and the sigma values for space was set to 75 so that 

farther pixels can influence each other for as long as their colors are similar. 

The median filter as mentioned previously in the literature review is a non-

linear filter used with the purpose of reducing noise from an image. The median filter 

replaces the gray level of each pixel with the median of the gray levels of the pixels 

surrounding the input pixel. The area of the median calculation is defined by a 

parameter which must be odd and greater than one. In the experiment done the 

parameter is set to be 5. 

A wavelet denoising filter represents the wavelet representation of the image in 

which the noise is represented by small values in the wavelet that are set to 0. The 

VisuShrink method employs only one universal threshold to all wavelet coefficients 

which removes Gaussian noise with high probability and functions by smoothening 

the sample appearance. BayesShrink is another method used for wavelet denoising 

where an unique threshold is estimated for each wavelet subband which is considered 

better than what can be obtained with only one threshold. 

In the table below, there are some randomly selected samples from the Healthy 

and Unhealthy class before and after preprocessing. 
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Table 4. Not as effective preprocessing techniques 

Sample image After preprocessing Filter name 

 

 
 

 

     

 

 

 

 

 

 

 

 

 

Bilateral Filter  

 

   

 
 

 

 

 

 

 

Kernel 1 

 

 

 

 
 

 
 

 

 

 

 

 

Median filter  
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Wavelet denoising 

filter: VisuShrink 

method  

 

 
 

   

 

 
 

    

 

 

 

 

 

 

Wavelet denoising 

filter: BayesShrink 

method  
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3.3 Network Architecture 

The model which we use in this paper is a Sequential model. This model is 

similar to a stack of layers where each layer has one input and one output. The 

Sequential model allows you to easily build a model adding layers one by one. As it 

can be seen from the code below to add a layer we simply use the add() function.  

 model = Sequential() 

inputShape = (height, width, depth) 

model.add(Conv2D(20, (5, 5), padding="same", input_shape=inputShape)) 

model.add(Activation("relu")) 

 

 

Figure 9. CNN architecture 

The structure of the convolutional neural network is shown in Figure 12 above. 

The architecture used was the Lenet architecture. Starting with the input layer, the 
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images are resized to be of size 128 x 128 pixels. The network has four convolutional 

layers with kernels of size 5x5 applied, followed by maxpooling layers with the 

purpose of decreasing the number of weights. The four sets of convolutional layers are 

like CONV => RELU => POOL. Dropout is applied to avoid overfitting. 
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CHAPTER 4 

RESULTS 

4.1 Reading the results 

Accuracy is one of the most important and intuitive performance measures and 

it represents the ratio of correct predictions to the total observations. Precision is an 

important measure to determine how precise the model is by representing the ratio of 

the correct predictions of the positive to the total predictions of the positive. High 

precision indicates a low false positive which is good.  

 

 The Recall metric represents how many of the true positives are predicted as 

positive from the model. 

   

F1 score is a metric which is used to seek for balance between Precision and 

Recall so it uses both false positives and false negatives. In cases of uneven class 

distribution, it is a better indicator than accuracy. 

 

The performance of the classification model can be displayed using a receiver 

operating characteristic curve also known as ROC curve which represents True 

Positive Rate vs False Positive Rate.  The TCR vs FPR are shown plotted in different 

classification thresholds.  A lower classification threshold would indicate an increase 

in both TP and FP, classifying more objects as positive. AUC is the area under the 
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ROC curve. The higher the AUC score, the better the classifier performs in a 

classification task. 

4.2 Experimenting with the parameters of the network 

4.2.1 Batch Size 

The batch size is a hyperparameter that represents the number of samples to 

work with before revising the inner model parameters. It works similar to a loop 

iterating over the samples and predicting results which when the batch is finished are 

compared to the expected output. Furthermore, an error is calculated which is used as 

an update algorithm for the model. 

There are several types of batch algorithms. Batch gradient descent is for when 

all the training samples create one batch. Stochastic gradient descent is used when one 

sample is used as the batch size. Mini-batch gradient descent is used when the batch 

size is less than the entire training samples and more than one sample. It searches for 

a balance between the efficiency of the batch gradient descent and the robustness of 

stochastic gradient descent, hence it is most often the best choice in the deep learning 

implementation.  

Most used mini-batch gradient descent which we are also going to use and test 

are: 32,64 and 128. A good default for batch size is 32 so that is the first experiment 

we will start with, then we will try batch size 64 and 128. 

 

Binary Classification 

For the purpose of comparing the results the experiments on changing the batch 

size were done with the number of epochs kept at 50.  

● The training was done on a dataset (12520 H + 7582 U)  

● The testing was done on two different datasets: 

1. Dataset 3 (5607 H + 2641 U) 

2. Dataset 2 (5617 H+5464 U) 
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Experiment 1: Batch size 32 

The results of the training are found on the table 5 in more details and the graph 

plotted from the results is in Figure 13 below. 

Table 5. Binary Classification- Batch Size 32/Epoch 50 

 Precision  Recall  F1-score   Support 

Healthy     0.98 0.94 0.96 2504 

Unhealthy     0.91 0.97 0.94 1517 

Accuracy                       

  

  0.95 4021 

  Macro avg 0.95 0.96 0.95 4021 

Weighted avg 0.95 0.95 0.95 4021 

 

The graph indicates that the model might be overfitting. The trained model is 

tested on both dataset 2 and 3 receiving an overall classification of accuracy of 79% 

and 94% respectively. 
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Figure 10. Binary Classification- Batch Size 32/Epoch 50 Graph 

Experiment 2: Batch size 64 

Table 6. Binary Classification- Batch Size 64/Epoch 50 

 precision  recall  f1-score   Support 

healthy     0.97 0.97 0.97 2504 

unhealthy     0.95 0.95 0.95 1517 

accuracy                       

  

  0.96 4021 

  macro avg 0.96 0.96 0.96 4021 

weighted avg 0.96 0.96 0.96 4021 
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Figure 11. Binary Classification- Batch Size 64/Epoch 50 Graph 

Similarly, the graph indicates that the model might be overfitting. The trained 

model is tested on both dataset 2 and 3 receiving an overall classification of accuracy 

of 80% and 94% respectively. As it can be seen the overall accuracy is 1% higher 

compared to the trained model with batch size 32 and the testing in dataset 2 resulted 

slightly more accurate. 

 

Figure 12. Binary Classification- Batch Size 64 vs Batch Size 32: Epoch 50 Graph 
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Above we can also see in a clearer view the accuracy/loss plotted graphs of the 

50-epoch binary classification model with batch size 32 and 64. 

Multiclass classification 

For the purpose of comparing the results the experiments on changing the batch 

size were done with the number of epochs kept at 50.  

● The training was done on a dataset (12520 H + 7582 U + 704 N)  

● The testing was done on two different datasets: 

3. Dataset 3 (5607 H + 2641 U + 176 N) 

4. Dataset 2 (5617 H+5464 U + 176 N 

 

Experiment 1: Batch size 32 

Table 7. Multiclass Classification- Batch Size 32/Epoch 50 

 Precision  Recall  F1-score   Support 

Healthy     0.97 0.94 0.96 2504 

Severely Disintegrated 1.00 1.00 1.00 141 

Unhealthy     0.91 0.95 0.93 1517 

Accuracy                           0.95 4162 

  Macro avg 0.96 0.96 0.96 4162 

Weighted avg 0.95 0.95 0.95 4162 
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Figure 13. Multiclass Classification- Batch Size 32/Epoch 50 Graph 

 

The training loss starts increasing around epoch 47 which is an indicator that 

45 might be a better option for the number of epochs in this case. The overall accuracy 

as 95% of the training model is good but leaves room for improvement. The model 

was tested on dataset 2 and achieved 78% while when tested on dataset 3 achieved an 

accuracy of 93%. 
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Experiment 2: Batch size 64 

Table 8: Multiclass Classification- Batch Size 64/Epoch 50 

 Precision  Recall  F1-score   Support 

Healthy     0.97 0.94 0.96 2504 

Severely Disintegrated 0.95 1.00 0.97 141 

Unhealthy     0.91 0.95 0.93 1517 

Accuracy                       

  
  0.95 4162 

  Macro avg 0.94 0.96 0.95 4162 

Weighted avg 0.95 0.95 0.95 4162 

 

 

Figure 14. Multiclass Classification- Batch Size 64/Epoch 50 Graph 
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The same can be said about the number of epochs as for the batch size 32 

experiment. The overall accuracy as 95% of the training model is exactly as it was for 

the batch size 32 experiment. The model was tested on dataset 2 and achieved 79% 

(increased by 1%) while when tested on dataset 3 achieved an accuracy of 93%. 

 

Figure 15. Multiclass Classification- Batch Size 32 vs Batch Size 64: Epoch 50 

Graph 

Comparison of results 

Based on the results for both the binary classification and the three-class 

classification we can see that the accuracy results were really similar to each other for 

both batch size 32 and 64. The experiments later on will be done with both. It was also 

noticeable that the model tended to overfit so there will also be experiments with less 

epoch numbers.  

4.2.2 No. Epochs 

The number of epochs is a hyperparameter that represents the number of times 

that the deep learning algorithm will go through the training dataset. The number of 

epochs can be a value between one and infinity. It can either be fixed in the algorithm 

or the training can stop using some other condition such as the model error over time. 

Usually training codes are accompanied with plots called learning curves which show 
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the number of epochs in the x-axis and the accuracy/loss on the y-axis. These plots are 

of great help to see if the model has over/under-learned or is fit for the training dataset. 

Multiclass classification results 

In the table below can be found all the results of the training done for the 

number of epochs: 50, 60 and 70. The batch size for each training was 32 and the 

dataset was the main dataset we mentioned in the experiments for multiclass 

classification above. The dataset contains: 12520 Healthy samples, 7582 Unhealthy 

samples and 704 Severely Disintegrated samples.  

Table 9: Model performance for different epochs 

No. Epochs  Precision Recall F1-Score Support 

 Epochs 50 Healthy 0.97 0.94 0.96 2504 

Unhealthy 0.91 0.95 0.93 1517 

Severely 

Disintegrated 

1.00 1.00 1.00 141 

Accuracy   0.95 4162 

Macro avg 0.96 0.96 0.96 4162 

Weighted avg 0.95 0.95 0.95 4162 

 Epochs 60 Healthy 0.97 0.95 0.96 2504 

Unhealthy 0.92 0.95 0.93 1517 

Severely 

Disintegrated 

1.00 1.00 1.00 141 

Accuracy   0.95 4162 
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Macro avg 0.96 0.97 0.96 4162 

Weighted avg 0.95 0.95 0.95 4162 

 Epochs 70 Healthy 0.95 0.95 0.95 2504 

Unhealthy 0.92 0.92 0.92 1517 

Severely 

Disintegrated 

1.00 1.00 1.00 141 

Accuracy   0.94 4162 

Macro avg 0.96 0.96 0.96 4162 

Weighted avg 0.94 0.94 0.94 4162 

 

 

Figure 16. Comparison by epoch 50,60,70 

Since the performance of the model with number of epochs 60 and batch size 

32 showed a good level of accuracy, the base model for the next few experiments will 

be using these parameters. As a base overall accuracy of training for the next 

experiments to be compared to will be used that of 95% reached by this model. This 
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model tested on the dataset 3 which contains 5607 Healthy samples, 2641 Unhealthy 

samples and 176 Severely Disintegrated samples resulted with an accuracy of 94%. 

Below are shown some random samples from the testing dataset and the 

predicted label. 

 

Figure 17. Classification DS 3 with model 60 ep x 32 bs 

The same model is tested on the dataset 2 which contains 5617 Healthy 

samples, 5464 Unhealthy samples and 176 Severely Disintegrated samples and results 

with an accuracy of 79%.  
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Figure 18. Classification DS 2 with model 60 ep x 32 bs 

 

Our goal is to increase this accuracy using different preprocessing techniques 

on the dataset. 

4.3 Classification with preprocessing 

The preprocessing techniques will be tested on two models with certain 

parameters which we will call model A and B. Model A has a batch size of 32 and 

number of epochs 60 and model B has a batch size of 64 and number of epochs 45. 
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4.3.1 Base model A - number of epochs 60 and batch size 32 

The model using 60 epochs and batch size 32 performed rather well with a 

training accuracy of 95%. Tested on the dataset 3 which contains 5607 Healthy 

samples, 2641 Unhealthy samples and 176 Severely Disintegrated samples resulted in 

an accuracy of 94%. 

Tested on the dataset 2 which contains 5617 Healthy samples, 5464 Unhealthy 

samples and 176 Severely Disintegrated samples the model results with an accuracy 

of 79%. The other experiments done will be compared to this as a base model. 

 

Figure 19. ROC Curve of Model A on dataset without preprocessing 
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5 x 5 Laplacian Filter 

Table 10. 5 x 5 Laplacian Filter - Training with model 60 ep x 32 bs 

 Precision  Recall  F1-score   Support 

Healthy     0.96 0.97 0.97 2504 

Severely 

Disintegrated 

0.99 1.00 0.99 141 

Unhealthy     0.94 0.94 0.94 1517 

Accuracy                       

  

  0.96 4162 

  Macro avg 0.97 0.97 0.97 4162 

Weighted avg 0.96 0.96 0.96 4162 

 

 

Testing on dataset 3 results in a model accuracy of: 95% so we have an increase 

in the accuracy compared to the base model by 1%. 
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Figure 20. ROC Curve of Model A on dataset with 5 x 5 Laplacian Filter 

 

In the plotted ROC Curve of the model there is a slightly difference in 

improvement of precision compared to the base model for the Healthy and Unhealthy 

class. The Severely Disintegrated class stands in ideal values which reflect the small 

number of samples for that class. 
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Horizontal Line Detector 

Table 11. Horizontal Line Detector - Training with model 60 ep x 32 bs 

 Precision  Recall  F1-score   Support 

Healthy     0.96 0.95 0.96 2504 

Severely 

Disintegrated 

1.00 1.00 1.00 141 

Unhealthy     0.92 0.94 0.93 1517 

Accuracy                       

  

  0.95 4162 

  Macro avg 0.96 0.96 0.96 4162 

Weighted avg 0.95 0.95 0.95 4162 

 

 

Similar to 5 x 5 Laplacian Filter, when testing on dataset 3 the model accuracy 

reaches 95%, increasing just slightly compared to the base model. 
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Figure 21. ROC Curve of Model A on dataset with Horizontal Line Detector 

 

In the plotted ROC Curve of the model we see a similar improvement as the 

previous model  with preprocessing of of 5 x 5 Laplacian Filter. There is a slightly 

difference in improvement of precision compared to the base model for the Healthy 

and Unhealthy class while the Severely Disintegrated class stands in same precision 

values. 
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Sobel filter on the whole dataset 

Table 12. Sobel - Training with model 60 ep x 32 bs 

 Precision  Recall  F1-score   Support 

Healthy     0.94 0.97 0.96 2504 

Severely Disintegrated 0.71 1.00 0.83 141 

Unhealthy     0.94 0.86 0.90 1517 

Accuracy                       

  

  0.93 4162 

  Macro avg 0.86 0.94 0.90 4162 

Weighted avg 0.94 0.93 0.94 4162 

 

 

The overall accuracy in this experiment with the whole dataset preprocessed 

with the sobel filter is actually lower than the accuracy of the classification without 

preprocessing. However, the accuracy of the healthy class is good considering the F1 

score which in some cases, especially in uneven datasets can be a better indicator than 

the accuracy. This leads to the next experiment which is classification with only the 

healthy images preprocessed with the sobel filter. 
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Sobel filter only on healthy images 

Table 13. Sobel Only Healthy- Training with model 60 ep x 32 bs 

 Precision  Recall  F1-score   Support 

Healthy     1.00 1.00 1.00 2504 

Severely 

Disintegrated 
0.64 0.99 0.98 141 

Unhealthy     1.00 0.95 0.97 1517 

Accuracy                       

  
  0.98 4162 

  Macro avg 0.88 0.98 0.92 4162 

Weighted avg 0.99 0.98 0.98 4162 

 

Judging by the table above of the results we can see that the model performed 

greatly. The F1 score is 1.00,0.97 and 0.98 for the healthy, unhealthy and severely 

disintegrated respectively. The overall training accuracy results in 98% which is so far 

the highest accuracy reached during these experiments. The model is tested on both 

datasets 2 and 3 and some random images of each dataset are shown labelled with the 

predicted result. Testing on dataset 3 results in a model accuracy of: 99% which 

indicates that the performance of the model is greatly improved.  
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Figure 22. Sobel Only Healthy- DS 3 Classification with model 60 ep x 32 bs 

 

Figure 23. Sobel Only Healthy- DS 2 Classification with model 60 ep x 32 bs 
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The very same can be said for testing on dataset 2 which results again in a model 

accuracy of: 99% which is a huge improvement considering the testing accuracy for 

the original model with no preprocessing which was only 79%. 

 

 

Figure 24. ROC Curve of Model A on dataset with Sobel on Healthy samples only 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 

 

Comparison of results 

 

 

Figure 25. Comparison Graph using model 60 ep x 32 bs and different preprocessing 

techniques 

 

As it can be seen from the graph the most stable values of accuracy and loss are 

those of 5 x 5 Laplacian Filter although the sobel preprocessing method was the one 

with the highest accuracy achieved. Overall the three preprocessing techniques show 

an improvement in the model accuracy. This can clearly be seen in the graph since 

each of the models with preprocessing reach higher accuracy and smaller loss values 

in comparison with the base one. 
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4.3.2 Base model B - number of epochs 45 and batch size 64 

This model was picked as a base model based on the testing of the parameters 

done previously in the study where we mentioned that the accuracy was slightly higher 

for batch size 64 compared to 32 and the model was overfitting so the number of 

epochs was lowered to 45. The results can be seen in the table below. The overall 

training accuracy is that of 96%. 

 

Table 14.  Training with model 45 ep x 64 bs 

 Precision  Recall  F1-score   Support 

Healthy     0.96 0.97 0.96 2504 

Severely 

Disintegrated 

1.00 1.00 1.00 141 

Unhealthy     0.94 0.94 0.94 1517 

Accuracy                       

  

  0.96 4162 

  Macro avg 0.97 0.97 0.97 4162 

Weighted avg 0.96 0.96 0.96 4162 
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Figure 26. Training with model 45 ep x 64 bs Graph 

As it can be seen in Figure 22 the problem in overfitting is solved and the 

inconsistent val_loss is more stable now. When tested on dataset 3 the accuracy of the 

model is 95% while on dataset 2 is 79% which is to some extent better compared to 

Model A. 

 

Figure 27. ROC Curve of Model B on dataset without preprocessing 
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5 x 5 Laplacian Filter 

 

Table 15. 5 x 5 Laplacian Filter - Training with model 45ep x 64 bs 

 Precision  Recall  F1-score   Support 

Healthy     0.97 0.94 0.96 2504 

Severely Disintegrated 0.95 1.00 0.98 141 

Unhealthy     0.91 0.95 0.93 1517 

Accuracy                       

  

  0.95 4162 

  Macro avg 0.94 0.96 0.95 4162 

Weighted avg 0.95 0.95 0.95 4162 

 

The training classification task accuracy is 95% which compared to the Base 

model A is lower when applied 5 x 5 Laplacian Filter mask. 

 



49 

 

 

Figure 28. ROC Curve of Model B on dataset with 5 x 5 Laplacian Filter 
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Horizontal Line Detector 

 

Table 16. Horizontal Line Detector - Training with model 45ep x 64 bs 

 Precision  Recall  F1-score   Support 

Healthy     0.97 0.95 0.96 2504 

Severely 

Disintegrated 

0.99 1.00 1.00 141 

Unhealthy     0.93 0.95 0.94 1517 

Accuracy                       

  

  0.96 4162 

  Macro avg 0.96 0.97 0.97 4162 

Weighted avg 0.96 0.96 0.96 4162 

 

The training model accuracy is 96% which is just a little better than Base model A. 
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Figure 29. ROC Curve of Model B on dataset with Horizontal Line Detector 
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Sobel filter only on healthy images 

 

Table 17. Sobel Only Healthy- Training with model 45 ep x 64 bs 

 Precision  Recall  F1-score   Support 

Healthy     1.00 1.00 1.00 2504 

Severely 

Disintegrated 
0.77 1.00 0.87 141 

Unhealthy     1.00 0.97 0.99 1517 

Accuracy                       

  

  0.99 4162 

  Macro avg 0.92 0.99 0.95 4162 

Weighted avg 0.99 0.99 0.99 4162 

 

The training accuracy 99% in this experiment is really good, it outperforms the 

model A’s accuracy of 98% in the training of the model with sobel preprocessing on 

only the healthy images.When tested on dataset 2 classification the accuracy reached 

is 99.9% which is the highest accuracy so far in the study. 

 



53 

 

 

Figure 30. ROC Curve of Model B on dataset with Sobel on Healthy samples only 

Comparison of results 

 

Figure 31. Comparison Graph using model 45 ep x 64 bs and different preprocessing 

techniques 
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From the figure above, we can see the training conducted with the base Model 

B which was not preprocessed and the models which were filtered with 5 x 5 Laplacian 

Filter, Horizontal Line Detector and Sobel only on healthy which have a higher 

accuracy in comparison. The highest accuracies are indicated by the largest accuracy 

and lowest validation loss which seems to be that of Sobel filter and 5 x 5 Laplacian 

Filter.  
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CHAPTER 5 

CONCLUSIONS 

5.1 Conclusions 

The accuracy of medical image analysis relies heavily on the availability of 

large datasets to be analyzed and on the results to be predicted in a short time. The 

medical image classification field is one that is in need for large amounts of sample 

data to be analyzed and predicted in a short time. An important part of this is the cell 

classification task which determines the health level of the cell. This research was 

focused on the combination of convolutional neural networks with several 

preprocessing techniques with the purpose of obtaining high classification accuracy. 

The study started with binary classification of cells into two groups Healthy and 

Unhealthy but since the accuracy reached for that was really good, the research was 

extended into a multiclass classification to predict three different cell health levels. 

The model was trained on a dataset with more than 20000 images and tested on two 

different datasets with each more than 8000 images. While without preprocessing the 

dataset, the highest accuracy reached was 95%, with the dataset preprocessed using 

several methods, there was a clear improvement in the classification accuracy of the 

model. The highest resulting accuracy after preprocessing only the healthy part of the 

dataset with the sobel filter was that of 99%.  

 

5.2 Future Work 

The next research goal would be extending the classification model so it uses 5 

classes. By European standards the cell health is classified in 5 classes with a gradual 

decrease in condition. This could be implemented as future work along with different 

preprocessing techniques which increased the accuracy results. More changes could 

be made to the model to improve its performance and precision. Furthermore, data 

augmentation techniques could be used on the non-healthy class to increase the number 

of samples and the classification could be tested after that. 
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APPENDIX 

 

customLenet.py 

# import the necessary packages 

from keras.models import Sequential 

from keras.layers.convolutional import Conv2D 

from keras.layers.convolutional import MaxPooling2D 

from keras.layers.core import Activation 

from keras.layers.core import Flatten 

from keras.layers.core import Dense 

from keras.layers.core import Dropout 

from keras import backend as K 

 

 

class LeNetCustom: 

    @staticmethod 

    def build(width, height, depth, classes): 

        # initialize the model 

        model = Sequential() 

inputShape = (height, width, depth) 

 

        # if we are using "channels first", update the input 

shape 

        if K.image_data_format() == "channels_first": 

inputShape = (depth, height, width) 

 

        # first set of CONV => RELU => POOL layers 

model.add(Conv2D(20, (5, 5), padding="same", 

input_shape=inputShape)) 

model.add(Activation("relu")) 

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) 

model.add(Dropout(0.1))  # adding new keras.layer 

 

        # second set of CONV => RELU => POOL layers 

model.add(Conv2D(50, (5, 5), padding="same")) 

model.add(Activation("relu")) 

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) 

model.add(Dropout(0.2))  # adding new keras.layer 

 

        # third set of CONV => RELU => POOL layers  for 64x64 

model.add(Conv2D(50, (5, 5), padding="same")) 

model.add(Activation("relu")) 

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) 
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model.add(Dropout(0.3))  # adding new keras.layer 

 

        # fourth set of CONV => RELU => POOL layers for 128 x 

128 

model.add(Conv2D(50, (5, 5), padding="same")) 

model.add(Activation("relu")) 

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) 

model.add(Dropout(0.4))  # adding new keras.layer 

 

        # first (and only) set of FC => RELU layers 

model.add(Flatten()) 

model.add(Dense(500)) 

model.add(Activation("relu")) 

 

        # softmax classifier 

model.add(Dense(classes)) 

model.add(Activation("softmax")) 

 

        # return the constructed network architecture 

        return model 

 

binary classification: trainn_model.py 

# USAGE 

# python trainn_model.py --dataset datasets/cells/Q4 --model 

output/lenet_t1.hdf5 --model_jsonoutput_to_json/model_t1.json 

--excel Q_t1ep.xlsx 

# import the necessary packages 

from sklearn.preprocessing import LabelEncoder 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import classification_report 

from keras.preprocessing.image import img_to_array 

from keras.utils import np_utils 

from pyimagesearch.nn.conv.lenet import LeNet 

from pyimagesearch.nn.conv.customLenet import LeNetCustom 

from imutils import paths 

import matplotlib.pyplot as plt 

import numpy as np 

import argparse 

import imutils 

import cv2 as cv 

import os 

import PIL 

 

os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' 
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# construct the argument parse and parse the arguments 

ap = argparse.ArgumentParser() 

ap.add_argument("-d", "--dataset", required=True, 

                help="path to input dataset of faces") 

ap.add_argument("-m", "--model", required=True, 

                help="path to output model") 

ap.add_argument("-mj", "--model_json", required=True, 

                help="path to output model to json") 

ap.add_argument("-ex", "--excel", required=True, 

                help="path to output excel") 

args = vars(ap.parse_args()) 

 

# initialize the list of data and labels 

data = [] 

labels = [] 

 

# loop over the input images 

for imagePath in 

sorted(list(paths.list_images(args["dataset"]))): 

    # load the image, pre-process it, and store it in the data 

list 

 

    # Read PNG 

    # image = cv.imread(imagePath) 

    # image = cv.cvtColor(image, cv.COLOR_BGR2GRAY) 

 

    # Read in tiff 

pil_image = PIL.Image.open(imagePath).convert('RGB') 

open_cv_image = np.array(pil_image) 

open_cv_image = open_cv_image[:, :, ::-1].copy()  # Convert 

RGB to BGR 

    image = cv.cvtColor(open_cv_image, cv.COLOR_BGR2GRAY) 

 

    # image = imutils.resize(image, width=28) 

    # image = imutils.resize(image, width=64)   # change 

between this line and the one below if input is 64 vs 128 

    image = imutils.resize(image, width=128) 

    image = img_to_array(image) 

data.append(image) 

 

    # extract the class label from the image path and update 

the 

    # labels list 

    label = imagePath.split(os.path.sep)[-2] 

    # label = "smiling" if label == "positives" else 

"not_smiling" 

    label = "healthy" if label == "healthy" else "unhealthy" 
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labels.append(label) 

 

# scale the raw pixel intensities to the range [0, 1] 

data = np.array(data, dtype="float") / 255.0 

labels = np.array(labels) 

 

# convert the labels from integers to vectors 

le = LabelEncoder().fit(labels) 

labels = np_utils.to_categorical(le.transform(labels), 2) 

 

# account for skew in the labeled data 

classTotals = labels.sum(axis=0) 

classWeight = classTotals.max() / classTotals 

 

# partition the data into training and testing splits using 

80% of 

# the data for training and the remaining 20% for testing 

(trainX, testX, trainY, testY) = train_test_split(data, 

                                                  labels, 

test_size=0.20, stratify=labels, random_state=42) 

 

# initialize the model 

print("[INFO] compiling model...") 

# model = LeNet.build(width=28, height=28, depth=1, classes=2) 

# model = LeNet.build(width=64, height=64, depth=1, classes=2) 

 

model = LeNetCustom.build(width=128, height=128, depth=1, 

classes=2) 

model.compile(loss="binary_crossentropy", optimizer="adam", 

              metrics=["accuracy"]) 

 

# train the network 

print("[INFO] training network...") 

H = model.fit(trainX, trainY, validation_data=(testX, testY), 

class_weight=classWeight, batch_size=64, epochs=2, verbose=1) 

 

# history = model.fit() 

 

# evaluate the network 

print("[INFO] evaluating network...") 

predictions = model.predict(testX, batch_size=64) 

print(classification_report(testY.argmax(axis=1), 

predictions.argmax(axis=1), target_names=le.classes_)) 

 

# save the model to disk 

print("[INFO] serializing network...") 
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model.save(args["model"]) 

 

model_json = model.to_json() 

with open(args["model_json"], 'w') as json_file: 

json_file.write(model_json) 

 

##### 

import xlsxwriter 

 

workbook = xlsxwriter.Workbook(args["excel"]) 

worksheet = workbook.add_worksheet() 

worksheet.write(0, 0, "No.Epochs") 

worksheet.write(0, 1, "Accuracy") 

worksheet.write(0, 2, "Val_accuracy") 

worksheet.write(0, 3, "Loss") 

worksheet.write(0, 4, "Val_loss") 

row = 1 

col = 0 

 

for i in range(1,50): 

worksheet.write(i, 0, i) 

for item in H.history['accuracy']: 

 

worksheet.write(row, col, item) 

    row += 1 

row = 1 

col = 1 

for item in H.history['val_accuracy']: 

 

worksheet.write(row, col, item) 

    row += 1 

row = 1 

col = 2 

for item in H.history['loss']: 

 

worksheet.write(row, col, item) 

    row += 1 

row = 1 

col = 3 

for item in H.history['val_loss']: 

 

worksheet.write(row, col, item) 

    row += 1 

 

workbook.close() 
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####### 

 

# plot the training + testing loss and accuracy 

# plt.style.use("ggplot") 

plt.figure() 

plt.plot(np.arange(0, 50), H.history["loss"], 

label="train_loss") 

plt.plot(np.arange(0, 50), H.history["val_loss"], 

label="val_loss") 

plt.plot(np.arange(0, 50), H.history["accuracy"], 

label="accuracy") 

plt.plot(np.arange(0, 50), H.history["val_accuracy"], 

label="val_accuracy") 

plt.title("Training Loss and Accuracy") 

plt.xlabel("Epoch #") 

plt.ylabel("Loss/Accuracy") 

plt.legend() 

plt.show() 

 

 

multiclass: trainn_model.py 

 
# USAGE 

# python trainn_model.py --dataset datasets/cells/Q6_sobel_nrm 

--model output/lenet_t36.hdf5 --

model_jsonoutput_to_json/model_t36.json --excel Q6_t36.xlsx  

# import the necessary packages 

from sklearn.preprocessing import LabelEncoder 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import classification_report 

from keras.preprocessing.image import img_to_array 

from keras.utils import np_utils 

from pyimagesearch.nn.conv.lenet import LeNet 

from pyimagesearch.nn.conv.customLenet import LeNetCustom 

from imutils import paths 

import matplotlib.pyplot as plt 

import numpy as np 

import argparse 

import imutils 

import cv2 as cv 

import os 

import PIL 

 

# construct the argument parse and parse the arguments 

ap = argparse.ArgumentParser() 
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ap.add_argument("-d", "--dataset", required=True, 

                help="path to input dataset of faces") 

ap.add_argument("-m", "--model", required=True, 

                help="path to output model") 

ap.add_argument("-mj", "--model_json", required=True, 

                help="path to output model to json") 

ap.add_argument("-ex", "--excel", required=False, 

default="res_excel.xlsx", 

                help="path to output excel") 

     

args = vars(ap.parse_args()) 

 

# initialize the list of data and labels 

data = [] 

labels = [] 

 

# loop over the input images 

for imagePath in 

sorted(list(paths.list_images(args["dataset"]))): 

    # load the image, pre-process it, and store it in the data 

list 

 

    # Read PNG 

    # image = cv.imread(imagePath) 

    # image = cv.cvtColor(image, cv.COLOR_BGR2GRAY) 

 

    # Read in tiff 

pil_image = PIL.Image.open(imagePath).convert('RGB') 

open_cv_image = np.array(pil_image) 

open_cv_image = open_cv_image[:, :, ::-1].copy()  # Convert 

RGB to BGR 

    image = cv.cvtColor(open_cv_image, cv.COLOR_BGR2GRAY) 

 

    # image = imutils.resize(image, width=28) 

    # image = imutils.resize(image, width=64) 

    image = imutils.resize(image, width=128) 

    image = img_to_array(image) 

    #image = np.resize(image, (128,128)) 

data.append(image) 

 

    # extract the class label from the image path and update 

the 

    # labels list 

    label = imagePath.split(os.path.sep)[-2] 

    if label == "healthy": 

        label = "healthy" 

elif label == "nonhealthy": 
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        label = "nonhealthy" 

    else: 

        "unhealthy" 

labels.append(label) 

 

# scale the raw pixel intensities to the range [0, 1] 

data = np.array(data, dtype="float") / 255.0 

labels = np.array(labels) 

 

# convert the labels from integers to vectors 

le = LabelEncoder().fit(labels) 

labels = np_utils.to_categorical(le.transform(labels), 3) 

 

# account for skew in the labeled data 

classTotals = labels.sum(axis=0) 

classWeight = classTotals.max() / classTotals 

 

# partition the data into training and testing splits using 

80% of 

# the data for training and the remaining 20% for testing 

(trainX, testX, trainY, testY) = train_test_split(data, 

                                                  labels, 

test_size=0.20, stratify=labels, random_state=42) 

# initialize the model 

print("[INFO] compiling model...") 

# model = LeNet.build(width=28, height=28, depth=1, classes=2) 

# model = LeNet.build(width=64, height=64, depth=1, classes=2) 

 

model = LeNetCustom.build(width=128, height=128, depth=1, 

classes=3) 

model.compile(loss="binary_crossentropy", optimizer="adam", 

              metrics=["accuracy"]) 

model.summary() 

print("Number of layers : ",len(model.layers)) 

 

# train the network 

print("[INFO] training network...") 

print(trainX.shape) 

classWeight=dict(enumerate(classWeight)) 

 

H = model.fit(trainX, trainY, validation_data=(testX, testY), 

class_weight=classWeight, batch_size=32, epochs=60, verbose=1) 

 

# history = model.fit() 

 

# evaluate the network 
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print("[INFO] evaluating network...") 

predictions = model.predict(testX, batch_size=32) 

print(classification_report(testY.argmax(axis=1), 

predictions.argmax(axis=1), target_names=le.classes_)) 

 

# save the model to disk 

print("[INFO] serializing network...") 

model.save(args["model"]) 

 

model_json = model.to_json() 

with open(args["model_json"], 'w') as json_file: 

json_file.write(model_json) 

##### 

import xlsxwriter 

workbook = xlsxwriter.Workbook(args["excel"]) 

worksheet = workbook.add_worksheet() 

worksheet.write(0, 0, "No.Epochs") 

worksheet.write(0, 1, "Accuracy") 

worksheet.write(0, 2, "Val_accuracy") 

worksheet.write(0, 3, "Loss") 

worksheet.write(0, 4, "Val_loss") 

row = 1 

col = 0 

 

for i in range(1,60): 

 worksheet.write(i,0, i) 

 

row = 1 

col = 1 

for item in H.history['accuracy']: 

 

worksheet.write(row, col, item) 

    row += 1 

 

row = 1 

col = 2 

for item in H.history['val_accuracy']: 

 

worksheet.write(row, col, item) 

    row += 1 

row = 1 

col = 3 

for item in H.history['loss']: 

 

worksheet.write(row, col, item) 
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    row += 1 

row = 1 

col = 4 

for item in H.history['val_loss']: 

 

worksheet.write(row, col, item) 

    row += 1 

 

workbook.close() 

####### 

# plot the training + testing loss and accuracy 

# plt.style.use("ggplot") 

plt.figure() 

plt.plot(np.arange(0, 60), np.array(H.history["loss"]), 

label="train_loss") 

plt.plot(np.arange(0, 60), np.array(H.history["val_loss"]), 

label="val_loss") 

plt.plot(np.arange(0, 60), np.array(H.history["accuracy"]), 

label="accuracy") 

plt.plot(np.arange(0, 60), 

np.array(H.history["val_accuracy"]), label="val_accuracy") 

plt.title("Training Loss and Accuracy") 

plt.xlabel("Epoch #") 

plt.ylabel("Loss/Accuracy") 

plt.legend() 

plt.show() 

binary classification: RunCustomLeNetModel.py 

# USAGE 

# python RunCustomLeNetModel.py --dataset 

dataset_old/cells/Q3_new31 

# python RunCustomLeNetModel.py --dataset datasets/img_crops -

-model output/lenet_t9.hdf5 --

model_jsonoutput_to_json/model_t9.json 

# import the necessary packages 

from sklearn.preprocessing import LabelEncoder 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import classification_report 

from keras.preprocessing.image import img_to_array 

from keras.utils import np_utils 

from pyimagesearch.nn.conv.lenet import LeNet 

from pyimagesearch.nn.conv.customLenet import LeNetCustom 

from imutils import paths 

import matplotlib.pyplot as plt 

from keras.models import model_from_json 

import numpy as np 

import argparse 
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import imutils 

import cv2 as cv 

import os 

import PIL 

from keras import backend as K 

 

os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' 

 

 

# construct the argument parse and parse the arguments 

ap = argparse.ArgumentParser() 

ap.add_argument("-d", "--dataset", required=True, 

                help="path to input dataset of faces") 

ap.add_argument("-m", "--model", required=True, 

                help="path to output model") 

ap.add_argument("-mj", "--model_json", required=True, 

                help="path to output model to json") 

args = vars(ap.parse_args()) 

 

# initialize the list of data and labels 

data = [] 

labels = [] 

a = 0 

for imagePath in 

sorted(list(paths.list_images(args["dataset"]))): 

    # load the image, pre-process it, and store it in the data 

list 

 

    # Read PNG 

    # image = cv.imread(imagePath) 

    # image = cv.cvtColor(image, cv.COLOR_BGR2GRAY) 

 

    # Read in tiff 

pil_image = PIL.Image.open(imagePath).convert('RGB') 

open_cv_image = np.array(pil_image) 

open_cv_image = open_cv_image[:, :, ::-1].copy()  # Convert 

RGB to BGR 

    image = cv.cvtColor(open_cv_image, cv.COLOR_BGR2GRAY) 

 

    # image = imutils.resize(image, width=28) 

    # image = imutils.resize(image, width=64) 

    image = imutils.resize(image, width=128) 

    image = img_to_array(image) 

data.append(image) 

 

    # extract the class label from the image path and update 

the 
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    # labels list 

    label = imagePath.split(os.path.sep)[-2] 

    label = "healthy" if label == "healthy" else "unhealthy" 

labels.append(label) 

    a += 1 

 

# scale the raw pixel intensities to the range [0, 1] 

data = np.array(data, dtype="float") / 255.0 

labels = np.array(labels) 

 

# convert the labels from integers to vectors 

le = LabelEncoder().fit(labels) 

labels = np_utils.to_categorical(le.transform(labels), 2) 

 

# account for skew in the labeled data 

classTotals = labels.sum(axis=0) 

classWeight = classTotals.max() / classTotals 

 

trainX = data 

trainY = labels 

# Load trained CNN model 

#json_file = 

open('output_to_json/modelQ4_128x128_customLenet.json', 'r') 

json_file = open(args["model_json"], 'r') 

loaded_model_json = json_file.read() 

json_file.close() 

model = model_from_json(loaded_model_json) 

#model.load_weights('output/lenetQ4_128x128_customLenet.hdf5') 

model.load_weights(args["model"]) 

 

trainLabels = list(le.inverse_transform(trainY.argmax(1))) 

size = len(trainLabels) 

predicted = 0 

images = [] 

x = 0 

for i in np.random.choice(np.arange(0, len(trainY)), 

size=(size,)): 

 

    probs = model.predict(trainX[np.newaxis, i]) 

    # print(probs) 

    prediction = probs.argmax(axis=1) 

    label = le.inverse_transform(prediction) 

    if label[0] == trainLabels[i]: 

        predicted += 1 
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    # extract the image from the testData if using 

"channels_first" 

    # ordering 

    if K.image_data_format() == "channels_first": 

        image = (trainX[i][0] * 255).astype("uint8") 

 

    # otherwise we are using "channels_last" ordering 

    else: 

        image = (trainX[i] * 255).astype("uint8") 

 

    # merge the channels into one image 

    image = cv.merge([image] * 3) 

 

    image = cv.resize(image, (128, 128), 

interpolation=cv.INTER_LINEAR) 

 

    # show the image and prediction 

    x += 1 

    position = str(x) 

    text = position + ' ' + label[0] 

cv.putText(image, str(text), (5, 10), 

cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1) 

    print("[INFO]:{} Predicted: {}, Actual: {}".format(x, 

label[0], 

trainLabels[i])) 

images.append(image) 

 

print('Accuracy: ', 

      predicted / size) 

# # img = cv.imwrite('images.png', images) 

# images = np.concatenate(images, axis=1) 

# cv.imshow("Cell", images) 

# cv.waitKey(0) 

 

 

fig = plt.figure(figsize=(14, 14)) 

columns = 8 

rows = 3 

for i in range(0, columns * rows): 

fig.add_subplot(rows, columns, i + 1) 

plt.imshow(images[i]) 

plt.show() 

 

 

multiclass: RunCustomLeNetModel.py 
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# USAGE 

# python RunCustomLeNetModel.py --dataset 

dataset_old/cells/Q3_new31 

#python RunCustomLeNetModel.py --dataset datasets/cells/Q3_add 

--model output/lenet_t10.hdf5 --

model_jsonoutput_to_json/model_t10.json 

# python RunCustomLeNetModel.py --dataset 

datasets/cells/Q3_sobel_nrm --model output/lenet_t36.hdf5 --

model_jsonoutput_to_json/model_t36.json 

# import the necessary packages 

from sklearn.preprocessing import LabelEncoder 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import classification_report 

from keras.preprocessing.image import img_to_array 

from keras.utils import np_utils 

from pyimagesearch.nn.conv.lenet import LeNet 

from pyimagesearch.nn.conv.customLenet import LeNetCustom 

from imutils import paths 

import matplotlib.pyplot as plt 

from keras.models import model_from_json 

import numpy as np 

import argparse 

import imutils 

import cv2 as cv 

import os 

import PIL 

from keras import backend as K 

 

os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' 

 

 

# construct the argument parse and parse the arguments 

ap = argparse.ArgumentParser() 

ap.add_argument("-d", "--dataset", required=True, 

                help="path to input dataset of faces") 

ap.add_argument("-m", "--model", required=True, 

                help="path to output model") 

ap.add_argument("-mj", "--model_json", required=True, 

                help="path to output model to json") 

args = vars(ap.parse_args()) 

 

# initialize the list of data and labels 

data = [] 

labels = [] 

a = 0 
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for imagePath in 

sorted(list(paths.list_images(args["dataset"]))): 

    # load the image, pre-process it, and store it in the data 

list 

 

    # Read PNG 

    # image = cv.imread(imagePath) 

    # image = cv.cvtColor(image, cv.COLOR_BGR2GRAY) 

 

    # Read in tiff 

pil_image = PIL.Image.open(imagePath).convert('RGB') 

open_cv_image = np.array(pil_image) 

open_cv_image = open_cv_image[:, :, ::-1].copy()  # Convert 

RGB to BGR 

    image = cv.cvtColor(open_cv_image, cv.COLOR_BGR2GRAY) 

 

    # image = imutils.resize(image, width=28) 

    # image = imutils.resize(image, width=64) 

    image = imutils.resize(image, width=128) 

    image = img_to_array(image) 

data.append(image) 

 

    # extract the class label from the image path and update 

the 

    # labels list 

    label = imagePath.split(os.path.sep)[-2] 

    # label = "smiling" if label == "positives" else 

"not_smiling" 

    if label == "healthy": 

        label = "healthy" 

elif label == "nonhealthy": 

        label = "nonhealthy" 

    else: 

        "unhealthy" 

labels.append(label) 

    a += 1 

 

# scale the raw pixel intensities to the range [0, 1] 

data = np.array(data, dtype="float") / 255.0 

labels = np.array(labels) 

 

# convert the labels from integers to vectors 

le = LabelEncoder().fit(labels) 

labels = np_utils.to_categorical(le.transform(labels), 3) 

 

# account for skew in the labeled data 

classTotals = labels.sum(axis=0) 
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classWeight = classTotals.max() / classTotals 

 

trainX = data 

trainY = labels 

# Load trained CNN model 

#json_file = 

open('output_to_json/modelQ4_128x128_customLenet.json', 'r') 

json_file = open(args["model_json"], 'r') 

loaded_model_json = json_file.read() 

json_file.close() 

model = model_from_json(loaded_model_json) 

#model.load_weights('output/lenetQ4_128x128_customLenet.hdf5') 

model.load_weights(args["model"]) 

 

trainLabels = list(le.inverse_transform(trainY.argmax(1))) 

size = len(trainLabels) 

predicted = 0 

images = [] 

x = 0 

for i in np.random.choice(np.arange(0, len(trainY)), 

size=(size,)): 

 

    probs = model.predict(trainX[np.newaxis, i]) 

    # print(probs) 

    prediction = probs.argmax(axis=1) 

    label = le.inverse_transform(prediction) 

    if label[0] == trainLabels[i]: 

        predicted += 1 

 

    # extract the image from the testData if using 

"channels_first" 

    # ordering 

    if K.image_data_format() == "channels_first": 

        image = (trainX[i][0] * 255).astype("uint8") 

 

    # otherwise we are using "channels_last" ordering 

    else: 

        image = (trainX[i] * 255).astype("uint8") 

 

    # merge the channels into one image 

    image = cv.merge([image] * 3) 

 

    image = cv.resize(image, (128, 128), 

interpolation=cv.INTER_LINEAR) 

 

    # show the image and prediction 

    x += 1 
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    position = str(x) 

    text = position + ' ' + label[0] 

cv.putText(image, str(text), (5, 10), 

cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1) 

    print("[INFO]:{} Predicted: {}, Actual: {}".format(x, 

label[0], 

trainLabels[i])) 

images.append(image) 

 

print('Accuracy: ', 

      predicted / size) 

 

fig = plt.figure(figsize=(14, 14)) 

columns = 8 

rows = 3 

for i in range(0, columns * rows): 

fig.add_subplot(rows, columns, i + 1) 

plt.imshow(images[i]) 

plt.show() 

 

 

Preprocessing dataset: sobel.py 

import os 

import numpy as np 

from scipy import ndimage 

from PIL import Image 

import cv2 

from PIL import Image, ImageDraw 

from math import sqrt 

 

for filename in 

os.listdir('datasets/cells/Q6_add/unhealthy/'): 

      path='datasets/cells/Q6_add/unhealthy/'+filename 

 input_image = Image.open(path).convert('RGB') 

 input_pixels = input_image.load() 

 intensity = [[sum(input_pixels[x, y]) / 3 for y in 

range(input_image.height)] for x in range(input_image.width)] 

 kernelx = [[-1, 0, 1], 

 [-2, 0, 2], 

 [-1, 0, 1]] 

 kernely = [[-1, -2, -1], 

 [0, 0, 0], 

 [1, 2, 1]] 

 output_image = Image.new("RGB", input_image.size) 

 draw = ImageDraw.Draw(output_image) 
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 for x in range(1, input_image.width - 1): 

 for y in range(1, input_image.height - 1): 

 magx, magy = 0, 0 

 for a in range(3): 

 for b in range(3): 

 xn = x + a - 1 

 yn = y + b - 1 

magx += intensity[xn][yn] * kernelx[a][b] 

magy += intensity[xn][yn] * kernely[a][b] 

 color = int(sqrt(magx ** 2 + magy ** 2)) 

draw.point((x, y), (color, color, color)) 

 new_path = 'datasets/cells/Q6_sobel/unhealthy/' + 

filename + '.PNG' 

output_image.save(new_path) 

 

Preprocessing dataset: preprocess.py 

 
import os 

import skimage.io 

import matplotlib.pyplot as plt 

import numpy as np 

from scipy import ndimage 

from PIL import Image 

import cv2 

 

for filename in 

os.listdir('datasets/cells/Q6_add/nonhealthy/'): 

 path='datasets/cells/Q6_add/nonhealthy/'+filename 

 im = Image.open(path).convert('L') #shtova L vtm per 

nonhealthy 

 data = np.array(im, dtype=float) 

 kernel = np.array([[-1, -1, -1], 

                       [-1, 8, -1], 

                       [-1, -1, -1]]) 

 highpass = ndimage.convolve(data, kernel) 

 new_path = 'datasets/cells/Q6_k1/nonhealthy/' + filename 

+ '.PNG' 

    cv2.imwrite(new_path, highpass) 

Preprocessing dataset: denoise_wavelet.py 

import os 

from PIL import Image 

import numpy as np 

from scipy import ndimage 

import matplotlib.pyplot as plt 
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import imutils 

import cv2 

import numpy as np 

from matplotlib import pyplot as plt 

from skimage.restoration import 

(denoise_wavelet,estimate_sigma) 

from skimage.util import random_noise 

from skimage.metrics import peak_signal_noise_ratio 

import skimage.io 

 

cnt = 0 

for filename in 

os.listdir('datasets/cells/Q6_add/nonhealthy/'): 

 cnt =cnt+1 

    path='datasets/cells/Q6_add/nonhealthy/'+filename 

img=skimage.io.imread(path) 

 img=skimage.img_as_float(img) 

 sigma_est = estimate_sigma(img, average_sigmas=True) 

    

img_visushrink=denoise_wavelet(img,method='VisuShrink',mode='s

oft',sigma=sigma_est/3,wavelet_levels=1,wavelet='bior6.8',resc

ale_sigma=True) 

#img_visushrink=denoise_wavelet(img,method=’BayesShrink’,mode=

'soft',sigma=sigma_est/3,wavelet_levels=1,wavelet='bior6.8',re

scale_sigma=True) 

 new_path = 'datasets/cells/Q6_wt2/nonhealthy/'+ filename 

+'.PNG' 

 

    cv2.imwrite(new_path, img_visushrink*255.0) 

Preprocessing dataset: median.py 

import os 

from PIL import Image 

import numpy as np 

from scipy import ndimage 

import matplotlib.pyplot as plt 

import imutils 

import cv2 

import numpy as np 

from matplotlib import pyplot as plt 

cnt = 0 

for filename in 

os.listdir('datasets/cells/Q6_add/nonhealthy/'): 

 cnt =cnt+1 

    path='datasets/cells/Q6_add/nonhealthy/'+filename 

 img = cv2.imread(path) 

 kernel = np.ones((5, 5), np.float32) / 25 

 median = cv2.medianBlur(img, 3) 
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 new_path = 'datasets/cells/Q6_median/nonhealthy/'+ 

filename +'.jpg' 

    cv2.imwrite(new_path, median) 

into_80.py 

import cv2 as cv 

import os 

 

for filename in os.listdir('datasets/cells/nonhealthy_lg/'): 

imagePath = 'datasets/cells/nonhealthy_lg/' + filename 

img = cv.imread(imagePath) 

i = 0 

    for r in range(0, img.shape[0], 128): 

        for c in range(0, img.shape[1], 128): 

            

cv.imwrite(f"datasets/cells/Q6_add/nonhealthy/{filename}_{i}.p

ng", img[r:r + 128, c:c + 128, :]) 

i+=1 

prediction_crops.py 

# python prediction_crops.py --dataset 

datasets/single_cell_crops/ --model output/lenet_t9.hdf5 --

model_jsonoutput_to_json/model_t9.json 

import numpy as np 

import cv2 as cv 

import os 

import PIL 

import tensorflow as tf 

import argparse 

 

ap = argparse.ArgumentParser() 

ap.add_argument("-d", "--dataset", required=True, 

                help="path to input dataset of images") 

ap.add_argument("-m", "--model", required=True, 

                help="path to output model") 

ap.add_argument("-mj", "--model_json", required=True, 

                help="path to output model to json") 

args = vars(ap.parse_args()) 

#'output_to_json/model_t9.json' 

json_file = open(args["model_json"], 'r') 

loaded_model_json = json_file.read() 

json_file.close() 

model = tf.keras.models.model_from_json(loaded_model_json) 

#'output/lenet_t9.hdf5' 

model.load_weights(args["model"]) 

width = 128 
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height = 128 

data = [] 

from skimage import transform 

#'datasets/img_crops/' 

cnt_healthy = 0 

cnt_unhealthy = 0 

for filename in os.listdir(args["dataset"]): 

    #imagePath = 'datasets/img_crops/'+filename 

imagePath = args["dataset"] + filename 

 

pil_image = PIL.Image.open(imagePath) 

open_cv_image = np.array(pil_image) 

open_cv_image = open_cv_image[:, :, ::-1].copy()  # Convert 

RGB to BGR 

    image = cv.cvtColor(open_cv_image, cv.COLOR_BGR2GRAY) 

 

    image = transform.resize(image, (width, height)) 

    image = image.astype("float32") / 255.0 

    image = np.expand_dims(image, axis=2) 

    image = np.expand_dims(image, axis=0) 

preds = model.predict(image) 

    if preds[0][0] <= 0.7: 

        prediction = 'Unhealthy' 

cnt_unhealthy += 1 

    else: 

        prediction = 'Healthy' 

cnt_healthy += 1 

print('Image: ', filename, '- Prediction: ', preds[0][0], ' - 

', prediction) 

print('Total no. : ', cnt_unhealthy+cnt_healthy) 

print('Healthy : ', cnt_healthy) 

print('Unhealthy : ', cnt_unhealthy) 

 

 


