SEISMIC PERFORMANCE EVALUATION OF AZEM HAJDARI ELEMENTARY SCHOOL

A THESIS SUBMITTED TO THE FACULTY OF ARCHITECTURE AND ENGINEERING OF EPOKA UNIVERSITY

BY

BESNIK RUÇI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CIVIL ENGINEERING

JULY, 2023

Approval sheet of the Thesis

This is to certify the I have read this project entitled: **"SEISMIC PERFORMANCE EVALUATION OF AZEM HAJDARI ELEMENTARY SCHOOL**, and that in my opinion it is fully adequate, in scope and quality, as project for the degree of Master degree.

> Assoc. Prof. Dr. Miriam Ndini Head of Department Date: June 2023

Examining Committee Members:

Assoc. Prof. Dr. Hüseyin Bilgin	(Civil Engineering)
Dr. Begmyrat Kulmedov	(Civil Engineering)
Dr. Marsed Leti	(Civil Engineering)

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name Surname: BESNIK RUÇI

Signature: _____

ABSTRACT

SEISMIC PERFORMANCE EVALUATION OF AZEM HAJDARI ELEMENTARY SCHOOL

Ruçi, Besnik M.Sc., Department of Civil Engineering Supervisor: Dr. Marsed Leti

Seismic performance evaluation plays a critical role in assessing the structural integrity and safety of buildings, particularly in earthquake-prone regions such as Albania. This study focuses on evaluating the seismic performance of Azem Hajdari Elementary School, a reinforced concrete building, by employing advanced analysis techniques. The research utilizes the pushover nonlinear analysis method to estimate the structural capacity and the capacity spectrum method for demand calculation, both implemented with the aid of SAP2000 software.

The study begins with the development of a finite element model of the Azem Hajdari Elementary School within the SAP2000 environment. The model is constructed based on the as-built plans and specifications, incorporating plan details. Subsequently, a pushover analysis is performed to assess the capacity of the building. Pushover analysis involves gradually increasing the base shear, simulating the distribution of lateral forces during an earthquake, and measuring the corresponding structural response. The results obtained from the pushover analysis are used to establish the capacity curve, which represents the relationship between the applied load and the corresponding deformation capacity.

Furthermore, the capacity spectrum method is employed to determine the seismic demand on the structure based on ATC-40. By analyzing the intersection points between the capacity curve and the spectrum, the corresponding demand is

estimated. This provides valuable insights into the building's ability to withstand seismic forces.

The findings of the study are presented in terms of the capacity curves, demand spectra, and the performance levels achieved by the Azem Hajdari Elementary School. The results indicate that the building exhibits adequate capacity to resist seismic forces with a satisfactory level of performance to ensure life safety limit state.

Keywords: Reinforced Concrete Building, Nonlinear Analysis, Structural Behavior, Azem Hajdari elementary school, SAP2000

ABSTRAKT

VLERËSIMI I PERFORMANCËS SISMIKE TË SHKOLLËS FILLORE "AZEM HAJDARI"

Ruçi, Besnik

Master Shkencor, Departamenti i Inxhinierisë së Ndërtimit

Udhëheqësi: Dr. Marsed Leti

Vlerësimi i performancës sizmike luan një rol kritik në vlerësimin e integritetit strukturor dhe sigurisë së ndërtesave, veçanërisht në rajonet e prirura ndaj tërmeteve si Shqipëria. Ky studim fokusohet në vlerësimin e performancës sizmike të Shkollës Fillore Azem Hajdari, një godinë prej betoni të armuar, duke përdorur teknika të avancuara analize. Hulumtimi përdor metodën e analizës jolineare pushover për të vlerësuar kapacitetin strukturor dhe metodën e spektrit të kapacitetit për llogaritjen e kërkesës, të dyja të zbatuara me ndihmën e softuerit SAP2000.

Studimi fillon me zhvillimin e një modeli me elemente të fundme të Shkollës Fillore Azem Hajdari në mjedisin SAP2000. Modeli është ndërtuar në bazë të planeve dhe specifikimeve të ndërtuara, duke përfshirë detajet e planit. Më pas, kryhet një analizë shtytëse për të vlerësuar kapacitetin e ndërtesës. Analiza shtytëse përfshin rritjen graduale të prerjes së bazës, simulimin e shpërndarjes së forcave anësore gjatë një tërmeti dhe matjen e përgjigjes strukturore përkatëse. Rezultatet e marra nga analiza shtytëse përdoren për të vendosur lakoren e kapacitetit, e cila paraqet marrëdhënien ndërmjet ngarkesës së aplikuar dhe kapacitetit përkatës të deformimit.

Për më tepër, metoda e spektrit të kapacitetit përdoret për të përcaktuar kërkesën sizmike në strukturë bazuar në ATC-40. Duke analizuar pikat e kryqëzimit ndërmjet lakores së kapacitetit dhe spektrit, vlerësohet kërkesa përkatëse. Kjo siguron njohuri të vlefshme për aftësinë e ndërtesës për t'i bërë ballë forcave sizmike.

Gjetjet e studimit janë paraqitur në lidhje me kurbat e kapacitetit, spektrat e kërkesës dhe nivelet e performancës të arritura nga Shkolla Fillore Azem Hajdari. Rezultatet tregojnë se ndërtesa shfaq kapacitetin e duhur për t'i rezistuar forcave sizmike me një nivel të kënaqshëm të performancës për të siguruar gjendjen kufitare të sigurisë së jetës.

Fjalët kyçe: Ndertesë prej betoni të armuar, Analiza jolineare, Sjellja strukturore, Shkolla fillore Azem Hajdari, SAP2000.

ACKNOWLEDGEMENTS

I would like to give a special thank you to my supervisor, Dr. Marsed Leti, for his constant direction, inspiration, and support during the entirety of my thesis. I genuinely appreciate his wide range of knowledge, attention to detail, and time, effort, and ongoing support he has provided to enhance my graduate level experience.

I am grateful for friendly atmosphere of the Civil Engineering Department and all kind and helpful professors that I have met during my course.

I would like to thank my parents and sister. Without their love, patience and support, I could not have completed this study.

Finally, I wish to thank many friends for the encouragement during these difficult years, especially, Kevin Zace, Henri Cela.

TABLE OF CONTENTS

Approval sheet of the Thesisi
ABSTRACTiii
ABSTRAKT
ACKNOWLEDGEMENTSvii
TABLE OF CONTENTS
LIST OF TABLESxii
LIST OF FIGURES
CHAPTER 1
INTRODUCTION
Background (Problem Statement)1
Problem Statement1
Objectives and Scope2
Objectives and Scope
Objectives and Scope
Objectives and Scope 2 CHAPTER 2 3 LITERATURE REVIEW 3 2.1 Introduction 3
Objectives and Scope 2 CHAPTER 2
Objectives and Scope 2 CHAPTER 2 3 LITERATURE REVIEW 3 2.1 Introduction 3 2.2 Limit State 3 2.2.1. Immediate occupancy (IO) 4
Objectives and Scope 2 CHAPTER 2 3 LITERATURE REVIEW 3 2.1 Introduction 3 2.2 Limit State 3 2.2.1. Immediate occupancy (IO) 4 2.2.2 Life Safety (LS) 4
Objectives and Scope 2 CHAPTER 2 3 LITERATURE REVIEW 3 2.1 Introduction 3 2.2 Limit State 3 2.2.1. Immediate occupancy (IO) 4 2.2.2 Life Safety (LS) 4 2.3 Collapse Prevention (CP) 5
Objectives and Scope2CHAPTER 23LITERATURE REVIEW32.1 Introduction32.2 Limit State32.2 Limit State32.2.1. Immediate occupancy (IO)42.2.2 Life Safety (LS)42.3 Collapse Prevention (CP)52.2.4 Global Instability (GI)5
Objectives and Scope 2 CHAPTER 2 3 LITERATURE REVIEW 3 2.1 Introduction 3 2.2 Limit State 3 2.2.1. Immediate occupancy (IO) 4 2.2.2 Life Safety (LS) 4 2.2.3 Collapse Prevention (CP) 5 2.2.4 Global Instability (GI) 5 2.3 P-Δ Effect 5

2.5 Nonlinear Analysis
2.6 Analysis Preformed
CHAPTER 3
CASE STUDY BUILDING
3.1 Introduction
3.2 Building Planimetry9
3.3 Beam and column cross-section10
3.4 Footing11
3.5 Construction materials specific12
CHAPTER 4
MODELLING STAGE
4.1 Introduction
4.2 Grid Modelling13
4.3 Define Material15
4.4 Define Frame Sections16
4.5 Reinforcment Detail
4.6 Add Frame Objects
4.7 Ad Restrains19
4.8 Define Load Patterns
4.9 Slabs
4.10 Constrain

4.11 Replicated	23
CHAPTER 5	25
METHODOLOGY	25
5.1 Utilization of MS Excel for load calculation	25
5.1.1 One way – Two ways slab	25
5.2 Eigen Values Analysis	
5.2.1 Mass Source	
5.2.2 Load Patterns	29
5.2.3 The Eigen Values Analysis Modelling	
5.3 Pushover Analysis	
5.3.1 Modelling Stage for Pushover Analysis	
5.3.2 Pushover Curve	
5.3.3 Hinges	40
5.3.4 Performance Levels	40
CHAPTER 6	43
CAPACITY SPECTRUM METHOD	43
6.1 Evaluation of Performance of template Design	43
6.1.1 Determination of the Performance Point	44
CHAPTER 5	50
CONCLUSIONS	
5.1 Conclusions	50
5.2 Recommendations for future research	51
REFERENCES	50
REFERENCE	

APPENDIX	54	ŀ
----------	----	---

LIST OF TABLES

Table 1: Given data to calculate the loads	26
Table 2. The load calculations for different slabs in the building	27
Table 3: Shape weight for triangular and trapezoidal shapes	28
Table 4: Performance levels, meaning in a Nonlinear Analysis	41
Table 5: Structural Performance Levels and Damages for vertical and horizon	ıtal
elements (FEMA 356)	44

LIST OF FIGURES

<i>Figure 1</i> . <i>Limit States of Building</i> 4
Figure 2. Linear Analysis obtained from Sample Graph
Figure 3. Nonlinear Analysis obtained from Sample Graph
Figure 4. Elevation View of Building8
Figure 5. Planimetry of Building9
Figure 6. Column Detail10
Figure 7. Beam Detail11
Figure 8. Foundation Detail11
Figure 9. Grid option13
Figure 10. Modify/Show System14
Figure 11. Representation of a 3D grid system in SAP200014
Figure 12. Define Materials15
Figure 13. SAP2000 window for editing the Material Property Data15
Figure 14. Created/Define Frame Properties16
Figure 15. Sample of Section Designer window in SAP200016
Figure 16. Link the material with the Section Designer
Figure 17. Illustration of a cross-section in section designer window of SAP2000 package
Figure 18. Frame properties, Modify18

Figure 19. Reinforcment detail for Longitudinal Bars
Figure 20. Reinforcment detail for Confinement Bars
Figure 21. Draw, Frame Section on Grid
Figure 22 . Plane views
Figure 23. Joint Restrains
Figure 24. Load Patterns window from SAP2000 software
Figure 25. Trapezoidal Load
Figure 26. Triangular load
Figure 27. Constrained Slab of Stories
Figure 28. Joint Constraines assigned for each slab
Figure 29. Type of Constraint
Figure 30. Add Constrain for each story
Figure 31 . Replicate
Figure 32. Labeling the slabs from the plan layout for load calculation
Figure 33. Assigning mass source data for dead and live load in SAP200029
Figure 34. Self- weight load patterns
Figure 35. Load Case Data
Figure 36 . Modal Case
Figure 37. Deformed shape
Figure 38. Frequency and Period of the building for Mode 132

Figure 39. Frequency and Period of the building for Mode 2
Figure 40. Pushover Analysis/ Define Load cases
Figure 41. Gravity Load Case /Specifics
Figure 42. Frame Sections
Figure 43. Hinges
Figure 44. Auto M3 beams, hinges
Figure 45. Hinges, Beam properties
Figure 46. Pushover Load Data Case
Figure 47. Load application option
Figure 48. Load case/Pushover
Figure 49 . Capacity curve of the building in x-direction
Figure 50. Capacity curve of the building in y-direction
Figure 51. Hinges developed during the SPO Analysis40
Figure 52: Pushover curve together with the performance levels in x-direction 42
Figure 53: Pushover curve together with the performance levels in y-direction 42
Figure 54. Response spectra shown with corner periods (EC-8)43
Figure 55: Bilinearization of the pushover curve46
Figure 56: Calculation of the performance point using the capacity spectrum method for x-direction
Figure 57: Calculation of the performance point using the capacity spectrum method for y-direction

Figure 58: Capacity curve with limit states and performance point for y-direction	F
	•••••
Figure 59: Capacity curve with limit states and performance point for y-direction	F
	•••••
	-

CHAPTER 1

INTRODUCTION

Background (Problem Statement)

One of the most often utilized building materials in the modern construction sector is concrete. After Portland cement was invented in the 19th century, it quickly gained a lot of popularity. Cement, sand, and aggregates are combined with water to create concrete.

In modern engineering, the concrete material is frequently employed in projects like buildings, bridges, dams, etc. Any shape can readily be created by molding fresh concrete because it is less expensive than other building materials, reinforced concrete construction is widely used, particularly in developing nations. Reinforced concrete has emerged as the ideal material for residential construction as a result of the rapid growth of urban populations in industrialized nations. On the other hand, external forces effect directly to the structure performance, resulting in a decrease of the element durability. This study investigates the seismic performance of Azem Hajdari elementary school located in Paskuqan, Kamez municipality, using nonlinear analyses procedures.

Problem Statement

The purpose of this study is to assess structural seismic performance using nonlinear analysis procedures. To achieve this scope, static nonlinear pushover analysis is utilized to estimate the capacity of the Azem Hajdari school. On the other hand, the demand calculations are based on the Capacity Spectrum Method from the "Seismic Evaluation and Retrofit of Concrete Buildings" guideline [ATC-40] [1]. The analysis procedures are executed in SAP2000 package while the modelling stage is conducted in 3D [SAP2000] [2]. Furthermore, based on the provisions of Eurocode-8

and FEMA guidelines, the performance points are located in the capacity curve of the building in both x- and y-directions.

Objectives and Scope

The main purpose of this study is to evaluate seismic performance of an elementary school called Azem Hajdari, located in the north of Tirana. The structure is selected as a midrise one, composed of 6 stories, reinforced concrete building constructed during 2022. The seismic performance estimation of the structure will be done using nonlinear analysis under the suggestions of modern guidelines. Therefore, eigenvalue, static pushover, capacity spectrum method is performed to achieve the objectives of this study. As a final point, the conclusions are summarized based on the findings made from the analysis results, while recommendations for future research is given in the last chapter.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Nonlinear Static Procedure (NSP) [3] of analysis also known as Pushover analysis is a simple method of non-linear behavior under seismic loads. The principle of Pushover anlysis involve the determination of the capacity of the structure. Although seismic demand provides an estimate of the ramifications of earthquakes, seismic capacity demonstrates the ability of a structure to handle these effects. With the use of software programs like SAP2000, which are known to be user friendly, (SPO) can be performed.

The PA analysis recommended in Eurocode 8 (EC8) [4] is a modified form of N2 method. Capacity Spectrum Method (CSM) procedures described in ATC-40 (later improved in FEMA 440) [5]. The method described in EC8 is a Target Displacement approach, although different from that of the Displacement Coefficient Method (DCM) described in FEMA 356 [6] (also later improved in FEMA 440). CSM has the advantage of being graphical nature, providing the ability to visualize the relationship between demand and capacity in the process of determining the point where this capacity spectrum "breaks through" the earthquake demand.

The aim of the performance-based design is to avoid the collapse of the structures and to ensure the acceptable safety factor against global instability due to expected strong ground motions. On the past experience, significant factors which influence the global collapse are the P- Δ effect and shear capacity of the element, which accordingly are initial point of the collapse.

2.2 Limit State

The phases that the building goes through during an earthquake before it completely collapses are shown by performance levels like immediate occupancy, life safety, and collapse prevention. The performance points selected for the structural assessment in this study are shown in the figure below accordingly:

- Immediate Occupancy (IO)
- Life Safety (LS)
- Collapse Prevention (CP)

Figure 1. Limit States of Building

2.2.1. Immediate occupancy (IO)

The level of the building that is safe to occupy and is still unharmed, or where minor problems may occur but are easily fixable, is indicated by the immediate occupancy limit state.

2.2.2 Life Safety (LS)

Although there should be significant post-earthquake damage to the structure at this level, it is still far from total or partial collapse. However, the state of the elements should be severely harmed as a factor in why there is a chance of endangering life. Even if the building can be repaired, doing so would not significantly reduce the overall cost compared to having it completely rebuilt.

2.2.3 Collapse Prevention (CP)

Opposite to the life safety level, the post-earthquake damage should cause the structure to completely collapse or partially collapse. The structure will suffer significant damages as a result, as well as a decline in the stiffness and strength of the seismic load. Despite the fact that the structure's thorough damages make rehabilitation impractical.

2.2.4 Global Instability (GI)

Global Instability level represents the total collapse of the structure. [FEMA-350, 2000 [7]; FEMA-351, 2000] [8].

2.3 $P-\Delta$ Effect

The seismic performance of buildings is significantly impacted by the P delta effect. Building elements and components need to be made to withstand P-impacts, according to (FEMA 356 [2000]). The P- or P-delta effect describes rapid changes in ground shear, overturning moment, and/or axial force distribution near the base when a suitably tall building or structural component is subjected to a critical lateral displacement. When analyzing tall structures, one of the most crucial aspects to take into account is the structural height. The building's structure becomes more important as the building's height increases. Numerous studies have demonstrated that the structural height significantly affects the P-Delta number [9].

2.4 Linear Analysis

Analysis is referred to as a static linear analysis when applied forces and displacements have a linear connection.

Figure 2. Linear Analysis obtained from Sample Graph

2.5 Nonlinear Analysis

When there is a nonlinear connection between the applied forces and displacements, the analysis is nonlinear. Nonlinear effects can result from geometric nonlinearities (large deformations) and material nonlinearities (elastic-plastic substance) [10].

Figure 3. Nonlinear Analysis obtained from Sample Graph

2.6 Analysis Preformed

Eigen Values: Eigenvalue analysis provides dynamic attributes of a structure by resolving the characteristic equation made up of mass and stiffness matrices. Some of

the dynamic aspects to take into account are natural modes (or mode shapes), natural periods (or frequencies), and modal participation parameters. In SAP2000 by default the first 12 modes of the building are derived from the Eigen value analysis.

Pushover Analysis: The Pushover Analysis (PA) was used in response to the need for an easy method of predicting a structure's non-linear behavior under seismic loads while evaluating its capacity. It can help to show how buildings experience increasing failure and to pinpoint the mode of eventual failure. Simply said, PA [11] is a non-linear analysis method for determining a structure's strength capacity above its elastic limit (also known as the Limit State) and up to its maximum strength in the post-elastic region.

Capacity Spectrum Method: Is a simplified non-linear static analysis method used to estimate the maximum displacement and maximum base shear for the structure under seismic load effect using pushover analysis. Considering the guidelines of ATC-40 the performance point is calculated using the spectra from Eurocode and plotted together with capacity curve of the structure in x- and y-directions.

Conlcusions: By using three analyses—eigenvalues, pushover analysis, and capacity spectrum method—this research aims to discuss the seismic performance of a template known as Building_1. At the same time, additional tools such as Microsoft Excel and SAP2000 were used to conduct the study in a correct manner.

CHAPTER 3

CASE STUDY BUILDING

3.1 Introduction

For an entire country's urbanistic planning to advance, construction history is regarded as being essential. The building considered in this thesis is of a reinforced concrete (RC) structure which is built in 2022, who the invesitor of this project is Kamza municipality. This reinforced concrete structure (RC) was constructed in accordance with the unique structural design code known as Eurocode that was carried out within the European UNION (EU) [12]. Eurocode is now widely used to specify the types of building materials that are utilized throughout Europe, and it is intended to replace all other construction codes in those regions. Overall, implementing Eurocode standards in building design and construction is crucial for producing a built environment that is more resilient and sustainable. As the world continues to face the challenges of climate change and urbanization, these standards will play a critical role in ensuring that our buildings are safe, efficient, and able to adapt to changing conditions.

Figure 4. Elevation View of Building

3.2 Building Planimetry

The building consists of 7 frames in the longitudinal direction and 10 frames in the transverse direction. The planimetry is composed of classrooms, gym, laboratory, toilets etc. It covers a building surface of 1540 m². It is designed according to Eurocode standards therefore it is expected to show a good seismic performance. The plan of the building is shown in the figure below from the project data.

Figure 5. Planimetry of Building

3.3 Beam and column cross-section

Columns are the vertical load carrying elements which play the vital role in the building performance. In this study, four element configurations are used to model the columns for structure. All elements represent different dimensions in the cross section of the columns as well as different configuration of reinforcement. Columns size 50x90, 40x80, 40x100, 40x120, 40x30 cm. As far as the reinforcement of the column is concerned, the stirrups have a diameter of 10Φ , and the longitudinal steel bars have a diameter of 22 mm.

A beam is a long and sturdy horizontal structural element that is designed to carry loads or weight from one support to another. The building consist of one kind of beam 60*40 cm. The reinforcement of beam, the stirrups have different diameters 8Φ , 10Φ and the longitudinal steel bars have a diameter that starts from 18Φ , 20Φ and 22Φ mm.

Figure 6. Column Detail

Whereas, for Building the details show that the beam cross-section is 600x400mm, as shown in figure 7.

Figure 7. Beam Detail

3.4 Footing

A mat foundation, also known as a raft foundation, [13] is a large concrete slab that is used to distribute the weight of a building or structure evenly over a large area of soil. It is useful in controlling the differential settlement. In Figure 7 red line shows the contour of the foundation, it covers 1540 m² and a thickness 0.8 m. Reinforced with steel bar diameter 20Φ and concrete grade C30/37.

Figure 8. Foundation Detail

3.5 Construction materials specific

Eurocode displays the concrete's strength and correlates to the letter C. The first number figure depicts the typical strength of a cylinder, and the second one, that of a cube. The concrete strength class displays both the characteristic tensile strength and compressive strength for a cube or cylinder sample in MPa. The scope of use of a concrete corresponds to C30/37 in Eurocode [14], is the construction of large-sized structures and heavy foundations, the construction of monolithic structures, walls. It would be a good indicator to see the real strength of concrete by considering some core drilling tests in the laboratory experiments, however taking the samples for such a new building would be a challenging task. Therefore, the material characteristics to be modelled are used those from the plan details.

CHAPTER 4

MODELLING STAGE

4.1 Introduction

The 3D structure will be developed in this chapter while accounting for the material properties, the size of the beams and columns, and all other steps necessary for SAP2000 to model the structure in all of its complexity. The method for the present study consists of three stages. In the first stage, the structure is modeled in the analysis package of SAP2000. Furthermore, the second stage involves mainly the application of pushover analysis in the structure for the derivation of capacity curve plotted as (base shear, V_b vs roof top displacement, Δ_{rt}). In the third stage, the Performance Point is obtained using the capacity spectrum method utilized to estimate the demand of the building. The sections below demonstrate a guide of the modelling stage used in this study step by step in the SAP2000 software.

4.2 Grid Modelling

• Grid Only template from the File / New Model menu and confirm that the units are in KN, m, and C.

Figure 9. Grid option

• Define/Coordinate Systems/Grid.

istems	Click to:
GLOBAL	Add New System
	Add Copy of System
	Modify/Show System
	Delete System
	Convert to General Gri

Figure 10. Modify/Show System

• The grid data can be modified in the following places using these commands: Grid ID, Spacing, Line Type, Visibility, Bubble Location, as well as the grid color. It also confirms that the KN, m, and C units are still selected. The grid in Fig. 10 can be created by setting the grid display to Spacing and entering the distance from each axis under the spacing column.

Format							
					Units		Grid Lines
System Name		GLOBAL			KN, m, C 💌		Quick Start
Grid Data	-						
	Grid ID	Spacing	Line Type	Visibility	Bubble Loc.	Grid Color 🔺	_ <u></u>
1	1	4	Primary	Show	End		
2	1'	4	Primary	Show	End		0- ++++++++++++++++++++++++++++++++++++
3	2	4	Primary	Show	End		
4	2'	4	Primary	Show	End		\circ
5	3	4	Primary	Show	End		
6	3'	4	Primary	Show	End		
7	4	4,675	Primary	Show	End		0-4111111
8	5	4,675	Primary	Show	End	· ·	
Grid Data							Display Grids as
	Grid ID	Spacing	Line Type	Visibility	Bubble Loc.	Grid Color 🔺	C Ordina es 📀 Spacin
1	A	6	Primary	Show	Start		
2	В	1,25	Primary	Show	Start		
3	В,	3,695	Primary	Show	Start		Hide All Grid Lines
4	С	5,705	Primary	Show	Start		Glue to Grid Lines
5	D	4,95	Primary	Show	Start		,
6	E	4,956	Primary	Show	Start		B (1) (0) 1 504
7	F	8,05	Primary	Show	Start		Bubble Size 1,524
8	G	0	Primary	Show	Start	•	
Grid Data							Reset to Default Color
	Grid ID	Spacing	Line Type	Visibility	Bubble Loc.	•	THOSE TO D'EI duit Color
1	Z1	3,6	Primary	Show	End		Decides Ordentes
2	Z2	3,6	Primary	Show	End		
3	Z3	3,6	Primary	Show	End		
4	Z4	3,6	Primary	Show	End		
5	Z5	3,6	Primary	Show	End		
6	Z6	3,6	Primary	Show	End		
				01	F 1		1

Figure 11. Representation of a 3D grid system in SAP2000

4.3 Define Material

• Use the Material command on the Define menu to define, add, or modify a materials attribute.

terials	Click to:
25/30 ebar	Add New Material
	Add Copy of Material
	Modify/Show Material
	Delete Material
	Show Advanced Properties
	ОК

Figure 12. Define Materials

• By selecting "add new material," the list of materials used for the structure can be created. Each mentioned material's specifications and/or qualities, such as the name, unit weight, and units, are changeable.

General Data	
Material Name and Display Color	C25/30
Material Type	Concrete
Material Notes	Modify/Show Notes
Weight and Mass	Units
Weight per Unit Volume 24,99	126 KN, m, C 💌
Mass per Unit Volume 2,548	15
sotropic Property Data	
Modulus of Elasticity, E	31000000
Poisson's Ratio, U	0,2
Coefficient of Thermal Expansion, A	1,1000E-06
Shear Modulus, G	12916667
Other Properties for Concrete Materials	
Specified Concrete Compressive Stren	gth, l'c 25000
🔲 Lightweight Concrete	
Shear Strength Reduction Factor	
Suitch To Advanced Preparty Diapla	

Figure 13. SAP2000 window for editing the Material Property Data

4.4 Define Frame Sections

• After the materials have been established, these materials can subsequently be used to specify frame parts. Define the menu/section properties/frame sections to display the frame properties from **Figure 14**.

Add New Property Add New Property Add Copy of Property Modify/Show Property Delete Property	operties	Click to:
Add New Property Add Copy of Property Modify/Show Property Delete Property	na mis property:	Import New Property
Add Copy of Property Modify/Show Property Delete Property		Add New Property
Modify/Show Property Delete Property		Add Copy of Property
Delete Property		Modify/Show Property.
		Delete Property

Figure 14. Created/Define Frame Properties

• Add new property.

Select Property Type Frame Section Property Type	Other	•
Click to Add a Section	<u>n</u>	
	Cancel	

Figure 15. Sample of Section Designer window in SAP2000

• In the section design command, the frame for beams is being modeled. As illustrated in Figure 15, define the section name, connect the material that was

previously described under the section design command, and then click Section Designer to create the beam's features.

Section Name	BEAM 0.4*0.6
Section Notes	Modify/Show Notes
Base Material	+ C25/30
Design Type	
No Check/Des	ign
c General Steel S	ection
C Concrete Colun	nn
Concrete Column Ch	eck/Design
C Reinforcement	to be Checked
C Reinforcement	to be Designed
Defin <mark>e/Edit/Show S</mark>	ection
	Section Designer
	Property Modifiers
Section Properties -	
Section Properties - Properties	Set Modifiers

Figure 16. Link the material with the Section Designer

• Define the rectangle command's cross-sectional shape according to fig. 16.

Figure 17. Illustration of a cross-section in section designer window of SAP2000 package

- The previously selected material for the cross section link dictates its dimensions, which are depicted in Figure 17, ensuring that the concrete beam's units remain KN, m, and C.
- The exact same procedure is followed to define the column frame.
- The reinforcing details can be changed by clicking Modify/Show Property at the defined frame properties.

operties	Click to:
nd this property:	Import New Property
40×80	Add New Property
40×120 50×90	Add Copy of Property
40×60	Modify/Show Property
	Delete Property

Figure 18. Frame properties, Modify

4.5 Reinforcment Detail

As explained in the previous chapters, the diameter of the confinement bars is used in the plan details as 10mm diameter while the longitudional ones as 20 mm diameter. These details are reflected in the analytical model through the steps illustrated as follows:

Clear Cover for Confinement Bars	0,0381
Number of Longit Bars Along 3-dir Face	3
Number of Longit Bars Along 2-dir Face	3

Figure 19. Reinforcment detail for Longitudinal Bars

Confinement Bar Size+	#10 💌
Longitudinal Spacing of Confinement Bars	0,1524
Number of Confinement Bars in 3-dir	3
Number of Confinement Bars in 2-dir	3

Figure 20. Reinforcment detail for Confinement Bars

4.6 Add Frame Objects

• Select Draw Frame/Cable/Tendon button.

	Line Object Type	Straight Frame
1	Section	K 40X80
£.	Moment Releases	Continuous
	XY Plane Offset Normal	0,
•	Drawing Control Type	None <space bar=""></space>

Figure 21. Draw, Frame Section on Grid

• Create the beam and column frames to simplify the view and minimize errors, then switch the plane view to a xy, xz, and yz view as necessary.

Figure 22. Plane views

4.7 Ad Restrains

The frame's supports are defined at this stage. Check to see if the X-Y Plane
 @ Z=0 view is open. The Joint Restraints form will appear after selecting the
supports using the left-to right selection method and clicking the Assign menu > Joint > Restraints command.

	aints in Joint	Loca	al Di	rections
◄	Translation	1	◄	Rotation about 1
◄	Translation	2	☑	Rotation about 2
•	Translation	3	•	Rotation about 3

Figure 23. Joint Restrains

4.8 Define Load Patterns

- Selecting the Define menu > Load Patterns command will bring up the Define Load Patterns form for fig. 22.
- After providing the load pattern's name, type, and self-weight multiplier, click Add new load.
- Remember that the self-weight multiplier for the default case is set to 1. This indicates that this load pattern will automatically incorporate the self-weight of each member at 1.0 times.

Figure 24. Load Patterns window from SAP2000 software

4.9 Slabs

- SAP2000 offers a list of elements that can be used in the modelling stage among which, slabs are also included. However, for simplicity, instead of modelling slabs, their loads are assigned directly to the beams. The calculation of the slab load is done considering one- way or two- way slab types. Their loading shape and magnitude is reflected in the mathematical model prepared in SAP2000. Figures 25, 26 shows below:
- Consider the second point as the greatest point load and the fourth point as 0 for calculating triangular loads.

oad Patter	n Name		-T	nits KN.m.C. ▼
.oad Type Force Coord Sys Direction	and Direction s C Morr GLOBAL Gravity	nents	Options C Add to E @ Replace C Delete E	xisting Loads Existing Loads
rapezoidal	Loads 1		3	4
Distance	0,	0,25	0,75	1,
Load	0,	0,	0,	0,
Relation	ative Distance	e from End-I	C Absolute D	istance from End-I
Jniform Loa	d lo	_	C. OK	Tancel

Figure 25. Trapezoidal Load

oad Patter	n Name			Units	
+ G		-	-	KN, m, 0	•
oad Type	and Direction	·	Options-		
· Force	s 🤆 Mom	ients	C Add	to Existing L	.oads
Coord Sys	GLOBAL	•	@ Rep	lace Existing	Loads
Direction	Gravity	•	⊂ Del	- ete Existing L	.oads
rapezoidal	Loads	2		1	4
Distance	0.	0.5	1		
Load	0,	0,	0,	10,	_
Rela	ative Distance	e from End-I	C Absolu	ite Distance	from End-I
Iniform Loa	d				
	0				Canad

Figure 26. Triangular load

4.10 Constrain

• Choose the slabs using the left-to-right selection. Select Assign/Joints/Constraints to switch from the body to the diaphragm and add a new constraint in the z direction.

Figure 27. Constrained Slab of Stories

	Assign	Analyze	Display	Design	Options	То	ols Help	
3	Joi	int			•	Ψ> o f€	Restraints	6
	Fra	ame			+		Constraints	
	Ca	ble			Þ	ទីក្រា	Springs	
	Te	ndon			Þ	ŧ	Masses	
	Ar	ea			Þ		Local Axes	
	So	lid			×.	াই	Panel Zones	
	Lir	nk/Support			×.		Merge Number	
						_		

Figure 28. Joint Constraines assigned for each slab

• To constrain the slab after changing from the body to the diaphragm, click add new constrain.

Constraints	Choose Constraint Type to Ad
NULL	Diaphragm 👻
	Click to:
	Add New Constraint
	Modify/Show Constraint
	Delete Constraint

Figure 29. Type of Constraint

NULL Story 1	Body 💌
Story_2 Story_3	Click to:
Story_4 Story 5	Add New Constraint
	Modify/Show Constraint
	Delete Constraint

Figure 30. Add Constrain for each story

• The other Storys in the building model are given the diaphragm according to the same process.

4.11 Replicated

• The distribution of the slab load is used as the basis for the first-floor model, which accounts for each beam and determines whether it is loaded from two slabs or just one.

Pick the frame of the floor. By choosing the Edit menu > Replicate command, the form shown in Figure 34 will be displayed.

Linear	Radial	Mirror
ncrements		Replicate Options
dx 0,		Modify/Show Replicate Options
dy 0,		12 of 12 active boxes are selected
dz 3.6		🔲 Delete Original Objects

Figure 31. Replicate

• While the increment data in "dz" shows the floor height, the increment data in "dz" defines the number of floors. The 3.6 m columns on the top floor need to be renovated.

CHAPTER 5

METHODOLOGY

5.1 Utilization of MS Excel for load calculation

This step takes into account the load calculations for each of the slab using the dead and live load. The calculations are necessary as the slabs won't be included in the analytical model done in SAP2000. Therefore, each of the slab load will be distributed into its surrounding beams as distributed loads. Considering the slab types as one way or two way, the distributed load can be uniformly lying over the beam, in the shape of triangle or trapezoidal. For this reason, the calculations are performed using MS Excel and then applied in the SAP2000 software. The following sections illustrate the calculation examples used in this thesis.

5.1.1 One way – Two ways slab

The lengths of the slab's short and long sides are taken into consideration by the Lx and Ly ratio in the given planimetry to establish if the slab is one way or two way. A slab is regarded as one way if the ratio is greater than 2, and as two ways in all other cases. [15]

-

$$\frac{Ly}{Lx} > 2$$
 Equation 1

			S3	S3	S4
			S5	S5	S6
S1	S1	S1	S5	S5	S6
S2	S2	S2	S7	S7	S8
S1	S1	S1	S5	S5	S6
			S7	S7	S9

Figure 32. Labeling the slabs from the plan layout for load calculation

Each slab has two trapezoid distributions and two triangular distributions because the slabs are two ways. The weight of each shape is transferred to the beam. The respective areas need to be taken into account when calculating the weight. Under loading, a two-way slab will exhibit trapezoidal and triangular deformation on all four of its sides.

Firstly, the weight of the slab is calculated the slab thickness and unit weight of concrete.

Concrete U.W γc	25	kN/m³
Slab thickness (t)	0.18	m
Regular Column Height	3	m
Live load	2	kN

Table 1: Given data to calculate the loads

 $Ly \bullet Lx \bullet \gamma c \bullet t$

Equation 2

Slab category	Long Side [m] [Ly]	Short Side [m] [Lx]	Slab Type	Slab Weight[kN]
S1	8	4.95	two-way slab	19.16
S 2	8	5.7	two-way slab	21.19
S3	8	4.67	two-way slab	18.35
S4	8	6.3	two-way slab	22.65
S 5	4.95	4.67	two-way slab	15.62
S 6	6.3	4.95	two-way slab	17.81
S 7	5.7	4.67	two-way slab	16.56
S 8	6.3	5.7	two-way slab	19.40
S 9	6.3	6	two-way slab	19.96

Table 2. The load calculations for different slabs in the building

Since the weight of the slab is determined without taking the weight distribution in trapezoidal and triangular shapes into account, these shapes will now be calculated, defining the loads that the slab places on the beams.

Formulas:

For triangular load:

 $\frac{(Lx)^2}{4}$ Equation 3

$$Ly \bullet (Ly - Lx) \bullet bx4$$
 Equation 4

Slab	Long Side[m]	Short Side[m]	Triangle/Trapezoid	Shape Weight [kN]
S1_Triangle	8	4.95	Triangle	8.05
S1_Trapezoid	8	4.95	Trapezoid	11.11
S2_Triangle	8	5.7	Triangle	9.26
S2_Trapezoid	8	5.7	Trapezoid	11.93
S3_Triangle	8	4.67	Triangle	7.6
S3_Trapezoid	8	4.67	Trapezoid	10.75
S4_Triangle	8	6.3	Triangle	10.24
S4_Trapezoid	8	6.3	Trapezoid	12.41
S5_Triangle	4.95	4.67	Triangle	7.6
S5_Trapezoid	4.95	4.67	Trapezoid	8.02
S6_Triangle	6.3	4.95	Triangle	8.05
S6_Trapezoid	6.3	4.95	Trapezoid	9.76
S7_Triangle	5.7	4.67	Triangle	7.6
S7_Trapezoid	5.7	4.67	Trapezoid	8.96
S8_Triangle	6.3	5.7	Triangle	9.26
S8_Trapezoid	6.3	5.7	Trapezoid	10.14
S9_Triangle	6.3	6	Triangle	9.75
S9_Trapezoid	6.3	6	Trapezoid	10.21

Table 3: Shape weight for triangular and trapezoidal shapes

5.2 Eigen Values Analysis

Analysis of Eigen values is thought of as the study of the dynamic qualities of structures under vibration. In general, it employs the structure's mass and stiffness to determine different periods while analyzing the dynamic response of the structure.

5.2.1 Mass Source

The structure's mass, or self-weight, as well as additional mass from surface loads and line loads—typically, dead load (DL) plus love load (LL)— [16]are calculated by the mass source. It is crucial to confirm the mass source in SAP2000 since the model analysis uses the structure's mass and stiffness. The name of the

mass source can be specified using the Define/Mass Source/Modify/show Mass source/ and the options to activate just Specific Load Patterns. When employing the supplied load patterns, only the specified loads at the load pattern will be taken into account.

Mass Source Na	ame		MASS		
Mass Source Element Self Specified Lo	Mass ar ad Patter	nd Adi rns	ditional Mass		
Mass Multipliers fo Load Pa	or Load P attern	'atterr	ns Multiplier		
G G		-	1.		Add
Ρ			0,3	[Modify

Figure 33. Assigning mass source data for dead and live load in SAP2000

The multiplier is 1 for dead load as it multiplies the dead load of the structure by coefficient 1, for, live load we specify it as 0.3.

5.2.2 Load Patterns

Dead load and live load are the two loads that are specified at load pattern definition. Specificate the self-weight multiplier for each load pattern.

fine Load Patterns				
Load Patterns	Туре	Self Weight Multiplier	Auto Lateral Load Pattern	Click To: Add New Load Pattern
DEAD	DEAD	• 1	T	Modify Load Pattern
DEAD Live	DEAD LIVE	1 0.3		Modify Lateral Load Pattern Delete Load Pattern
				Show Load Pattern Notes.
				OK Cancel

Figure 34. Self- weight load patterns

A self-weight multiplier controls what is included of structural self-weight in a specific load pattern. Usually, only the load pattern that represents the structure's self-weight (dead load) is given a self-weight multiplier of 1; all other load patterns are given a multiplier of 0.3.

5.2.3 The Eigen Values Analysis Modelling

Define, Load Cases, add a new Load Case named as gravity. The load case type, load pattern and scale factor as shown below in fig 32.

Load Case Name		Notes	Load Case Type	
Gravity	Set Def Name	Modify/Show	Static	👻 Design
Initial Conditions Conditions	- Start from Unstressed	I State	Analysis Type	
Important Note: Loa	ds from this previous ca ent case	e iise are included in the	C Nonlinear Stage	ed Construction
Modal Load Case All Modal Loads Applied	Use Modes from Case	MODAL -	Geometric Nonlinear	ity Parameters
Loads Applied			C P-Delta plus Lat	ge Displacements
Load Type Loa	d Name Scale Fac	tor	- Mass Course	
Load Pattern G	1.	Add	MASS	<u>-</u>
		Modify		
		Delete		
Other Parameters				
Load Application	Full Load	Modify/Show		OK
Results Saved	Final State Only	Modify/Show	C	ancel
NonFrance Recomptons	Default	Modifu/Show		

Figure 35. Load Case Data

Set the minimum and maximum number of modes when defining a new load case under the Modal Load case type. The mass source has already been established. In this instance, doing Eigen Vectors kind of Modes is of relevance.

Load Case Name	Notes	- Load Case Type
MODAL Set Def Nar	ne Modify/Show	. Modal 💌 Design
Stiffness to Use		Tune of Modes
Cero Initial Conditions - Unstressed St	ate	Eigen Vectors
C Stiffness at End of Nonlinear Case Important Note: Loads from the Nonl in the current case	inear Case are NDT include	C Ritz Vectors
Number of Modes		Mass Source
Maximum Number of Modes	12	MASS
Minimum Number of Modes	1	
Loads Applied		
Show Advanced Load Parameters		
Other Parameters		
Frequency Shift (Center)	0,	
Cutoff Frequency (Radius)	0,	
Convergence Tolerance	1,000E-09	Cancel

Figure 36. Modal Case

Run the analysis and check the deformed shape under Modal.

ols He	elp ↓ 1 🚡 🖌 🍾	•	3-D View	1 M- n
Deforme	d Shape			
Case.	/Combo ase/Combo Name	MODAL		•
- Multiv C (•	valued Options Envelope (Max or Min) Mode Number		1	-
Scalir (• ()	ng Auto Scale Factor			_
Optio	ns Wire Shadow Cubic Curve		OK Cano	el

Figure 37. Deformed shape

The deformation that a component would exhibit at its natural frequency of vibration is known as a mode shape. In the y direction, x direction, and for torsion, SAP2000 displays the phrases mode shape or natural vibration shape. After the

analysis has been run, mode shapes are displayed. Click on deform shape and check the wire shadow option, too.

Figure 38. Frequency and Period of the building for Mode 1

The period as well as the deflection in the relevant plane are shown for the first three options when the arrow next to start animation is clicked. The first mode is in the X direction, the second is in the Y direction, and the third mode is in the Z direction (torsion).

Figure 39. Frequency and Period of the building for Mode 2

5.3 Pushover Analysis

Pushover analysis identifies crucial portions likely to reach limit state during earthquakes while providing realistic estimations of deformation capacity for inelastic behavior of building models. This research is anticipated to offer important insight into the behavior of the structure after surpassing the elastic limit. Pushover analysis is first and foremost based on the presumption that the initial mode of vibration and mode shape, or the first few modes of vibration, regulate the reaction of the structure and that this form is continuous throughout the structure's elastic and inelastic response.

5.3.1 Modelling Stage for Pushover Analysis

In this subchapter the procedure followed in order to perform Pushover Analysis will be shown. After the structure has been modelled a new load case needs to be added.

Define material/ Load Cases/ Add a new load case named as gravity.

Load Cases			Click to:
Load Case Name DEAD Live I MODAL I Gravity I	Load Case Type Linear Static Inear Static Modal Nonlinear Static	•	Add New Load Case Add Copy of Load Case Add Copy of Load Case C.Modify/Show Load Case Delete Load Case Display Load Cases Show Load Case Tree
			OK Cancel

Figure 40. Pushover Analysis/ Define Load cases.

At gravity load case, the analysis type, load case, initial conditions and loads applied are specified.

Load Case Name	Notes	Load Case Type
Gravity Set Def N	ame Modify/Show	Static Static
Initial Conditions		Analysis Type
Zero Initial Conditions - Start from U	nstressed State	C Linear
C Continue from State at End of Nonli	near Case	Nonlinear
Important Note: Loads from this pro current case	evious case are included in the	O Nonlinear Staged Construction
Modal Load Case		Geometric Nonlinearity Parameters
All Modal Loads Applied Use Modes fro	m Case MODAL 💌	C None
		P-Delta
Load Tupe Load Name 9	icale Factor	C P-Delta plus Large Displacements
Load Patterr V DEAD V 1.		Mass Source
Load Pattern DEAD 1.	Add	Previous
	Modify	
	Delete	
Other Parameters		
Load Application Full Loa	ad Modify/Show	<u>ОК</u>]
Results Saved Final State	Only Modify/Show	Cancel

Figure 41. Gravity Load Case /Specifics

One of the most important steps to perform the pushover analysis is to add hinges in beams as wellas in columns.

Figure 42. Frame Sections

Select under Properties, Frame Sections the created frame sections can beselected. In this case the two defined frame sections are beams and columns which can be selected.

Assi	gn Analyze	Display	Design	Options	То	ols	Help
	Joint			F	ø	60	☆ ় 🖫 🖬 🖓 י 🗖
	Frame			+		Fran	ne Sections
	Cable			Þ		Prop	perty Modifiers
	Tendon					Mat	erial Property Overwrites
	Area			Þ		Rele	ases/Partial Fixity
	Solid			Þ		Loc	al Axes
	Link/Support					Rev	erse Connectivity
						End	(Length) Offsets
	Joint Loads			▶		Inse	Channe Channe
	Frame Loads			•		End	Skews
	Cable Loads			►.		Out	put Stations
	Tendon Loads					P-D	elta Force
	Area Loads			►		Patł	ı
	Solid Loads			Þ		Ten	sion/Compression Limits
	Link/Support L	oads				Hin	ges
	Joint Patterns					Hin	ge Overwrites
						Line	Springs
″□	Assign to Grou	р	Ctrl+Shi	ft+G		Line	Mass
	Update All Gen	erated Hir	ige Proper	ties		Mat	erial Temperatures
	Clear Display of	f Assians				Aut	omatic Frame Mesh

Figure 43. Hinges

For the beam the hinge property defines to Auto M3 hinges one in 0 and the other one on 1 relativedistance.

Frame Hinge Assignments		
Frame Hinge Assignment D	ata	
Hinge Property	Relative Distan	ce
Auto	▼ 0.	
Auto M3	0.	Add
Auto M3	1.	
		Modify
		Delete
,	,	
Auto Hinge Assignment Da	a	
Type: From Tables In FEN	1A 356 - Roome - Flowing) Itop	. i
DOF: M3	e beams - riexulej iten	11
Modify/Sł	ow Auto Hinge Assign	ment Data
	OK Ca	ancel

Figure 44. Auto M3 beams, hinges

The modified hinges can be modified defining the hinge type and the degree of freedom as well as the **Case/Combo** as **Gravity**.

Auto Hinge Type From Tables In FEI Select a FEMA356 T	MA 356	▼
Table 6-7 (Concret	e Beams - Flexure) Item i	•
Component Type Primary Secondary	Cegree of Freedom C M2 (℃ M3	-V Value From
Transverse Reinforci T ransverse Rein	forcing is Conforming	Reinforcing Ratio (p - p') / pbalanced From Current Design User Value
Deformation Controlle © Drops Load After © Is Extrapolated A	ed Hinge Load Carrying Capacity r Point E 4ter Point E	
	Πκ	Cancel

Figure 45. Hinges, Beam properties

Same procedure is followed for the next frame section, column.

Another Load Case needs to be added in order to successfully perform the analysis. Under

Define/ Load Cases/ Add a new Load case/ add the load case named as Pushover Analysis

Load Case Name		-Notes	Load Case Type
Px	Set Def Name	Modify/Show	StaticDesign
Initial Conditions			Analysis Type
C Zero Initial Conditions	s - Start from Unstressed	State	C Linear
 Continue from State a 	at End of Nonlinear Cas	Gravity 💌	 Nonlinear
Important Note: Loa curr	ds from this previous ca ent case	le are included in the	C Nonlinear Staged Construction
Modal Load Case			Geometric Nonlinearity Parameters
All Modal Loads Applied	Use Modes from Case	MODAL 💌	C None
Loads Applied			P-Delta
Load Type Loa	d Name Scale Faci	tor	C P-Delta plus Large Displacements
Mode 🔫 1	1,		Mass Source
Mode 1	1.	Add	MASS
		Modify	
		Delete	
1	1		
Other Parameters			
Load Application	Displ Control	Modify/Show	<u> </u>
Results Saved	Multiple States	Modify/Show	Cancel
		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	

Figure 46. Pushover Load Data Case

In the added load case, some parameters need to be specified so under Other Parameters section, at Load application click modify and specify the load application control. Load Application Control for Nonlinear Static Analysis

(•)	Displace	ment Control				
Con	itrol Displa	cement				
C	Use Con	ijugate Displac	ement			
œ	Use Mor	nitored Displace	ement			
57-10 	2.00 1401					
Loa	ad to a Mo	onitored Displac	cement Ma	ignitude of	0,5	
Loa Mor	ad to a Mo vitored Dis	onitored Displac placement	cement Ma	ignitude of	0,5	
Loa Mor	ad to a Mo nitored Dis DOF	phitored Displace placement U1	cement Ma	gnitude of at Joint	0,5	

Figure 47. Load application option

All loads defined are: Dead, Live, Modal, Gravity, and Pushover Analysis.

oad Cases —			- Click to:
Load Case N	ame Load Case Type	_	Add New Load Case
G MODAL P	Linear Static Modal Linear Static		Add Copy of Load Case
Gravity	Nonlinear Static		Modify/Show Load Case
Px Py	Nonlinear Static Nonlinear Static		Delete Load Case
		+	Display Load Cases
		_	Show Load Case Tree
		ļ	N 6 <u></u>

Figure 48. Load case/Pushover

Run the Analysis, under the deformed shape select pushover Analysis.

5.3.2 Pushover Curve

The displacement and base force data from the pushover curve can be imported into Excel after running the analysis in SAP2000. The load-deformation curve of the base shear force vs the horizontal roof displacement of the building, known as the "Pushover Curve," illustrates the nonlinear behavior of the structure. After the analysis is run through the modelling steps it has been specified x- (U1) direction, so another run needs to be performed showing the base force and displacement curve.

Figure 49. Capacity curve of the building in x-direction

5.3.3 Hinges

As a structure approaches its ultimate strength under cyclic stress, hinges are locations on the structure where one expects cracking and yielding to occur in substantially increased intensity so that they show high flexural (or shear) displacement [17]. A hinge essentially depicts the localized force-displacement relationship of a member during its elastic and inelastic phases when subjected to seismic pressures.'Immediate Occupancy' (IO), 'Life Safety' (LS), and 'Collapse Prevention' (CP) are non-linear states for these hinges that are specified as being within their ductile range. This is typically accomplished by splitting the Pushover curve into four sections and designating the states of each individual hinge as IO, LS, and CP (even if the structure as a whole has these states determined by drift limits.

Figure 51. Hinges developed during the SPO Analysis.

5.3.4 Performance Levels

The performance based design defines different levels of the structural damages during a seismic action. The prediction of the structural performance due to earthquake loadings is defined as performance target. Different levels of the performance design and seismic action are given (FEMA-356: 2000).

The building's performance level is determined by the intersection of the demand and capacity curves, as well as the hinge formed by the beams and columns, in the Pushover Analysis.

Performance Levels		Description
Operational	Fully Functional	Components that are structural and non-structural have not sustained any substantial damage. The building is fit for its intended usage and normal occupants.
Immediate occupancy	Operational	The building has not sustained any substantial damage and still has nearly all of its stiffness and strength from before the earthquake. If utilities were available, most nonstructural elements would operate securely. Although in a limited way, the building may still be used for its intended purpose.
Life Safety	Life Safe	Damage to structural components that significantly reduces rigidity, but there is still a margin of safety. Nonstructural components are fastened but may not work. Until repairs can be made, occupancy can be prohibited.

Table 4: Performance levels, meaning in a Nonlinear Analysis

Immediate occupancy (IO), life safety (LS), and collapse prevention (CP) are all taken into account in this research. The pushover curve's axis is normalized in the x direction by the ratios of displacement to building height, and in the y direction by the ratio of base force to building weight, in order to construct the graph correctly. Furthermore, the performance levels are placed directly in the capacity curve of the building generated after the pushover analysis. The IO, LS and CP points can be defined based on different guidelines. For this study, the VISION 2000 [18] is taken into consideration. The performance levels are taken while considering the roof displacements normalized by the building height as 10% for IO, 60% for LS and 90% for CP. As shown from the figures below, the location of the limit states is shown in the pushover curve for both directions of the building.

Figure 52: Pushover curve together with the performance levels in x-direction

Figure 53: Pushover curve together with the performance levels in y-direction

The pushover curves show the capacity of the structure in both directions. However, the pushover without the demand would be meaningless. Therefore, the demand calculations must be done for both directions of the building. In this study, the capacity spectrum method is used for demand calculations of the selected building.

CHAPTER 6

CAPACITY SPECTRUM METHOD

6.1 Evaluation of Performance of template Design

The Method of Capacity Spectrum (CSM) (ATC-40,1996), the method of Displacement Coefficients (DCM) (FEMA-273,1997) [19] and N2 Method (Fajfar and Gasperic, 1996) [20] are considered the main nonlinear static analysis procedure to define the performance point of the buildings. The evaluation of performance of the selected building is done based on the Capacity Spectrum Method. This method evaluates the maximum displacement by considering an intersection point between capacity curves of the building with a reduced response spectrum. However, the CSM method requires to convert the capacity curve and demand the response spectra in Acceleration Displacement Response Spectra (ADRS) format. The method of conversion is based on the guidance of ATC-40 according to procedure A.

Figure 54. Response spectra shown with corner periods (EC-8)

6.1.1 Determination of the Performance Point

The response spectra used in this study to calculate the performance point is based on EC-8 standards. The EC-8 provides five corner period which are calculated using the equations as shown below:

Equation 5	$S_{E(T)} = a_g * S * (1 + T/TB * (\eta * 2.5-1))$	For $0 \le T \le T_B$
Equation 6	$S_{E(T)} = a_g * S * \eta * 2.5$	For $T_B \leq T \leq T_C$
Equation 7	$S_{E(T)} = a_g * S * \eta * 2.5 * (TC/T)$	For $T_C \le T \le T_D$
Equation 8	$S_{E(T)=}a_g*S*\eta*2.5*(TC*TD/T^2)$	For $T_D \le T \le 4_S$

Furthermore, the parameters of EC-8 to define the response spectra are as follows:

Table 5: Structural Performance Levels and Damages for vertical andhorizontal elements (FEMA 356).

Parameters	EC-8
Structure Type factor	1.4
Structure Importance factor	4
Type of the Soil	С
Acceleration	0.35

To construct the capacity spectrum using the pushover curve it is important to convert the base shear and roof displacements to first mode spectral acceleration. The following equations are used to conduct this step:

$$S_{ai} = \frac{\frac{V_i}{W}}{a_1}$$
 Equation 9

$$S_{di} = \frac{\frac{\Delta_{roof}}{W}}{PF_{1^*}\phi_{1,roof}} \qquad Equation \ 10$$

The PF₁ and α_1 stand for modal mass participation factor and first natural mode of the building respectively. To calculate these two parameters, the following formulas are provided in the guidelines of ATC-40:

$$PF_{1} = \frac{\sum_{i=1}^{N} (w_{i}\phi_{i})/g}{\sum_{i=1}^{N} (w_{i}\phi_{i}^{2})/g} \qquad Equation \ 11$$
$$\alpha_{1} = \frac{[\sum_{i=1}^{N} = (w_{i}\phi_{i})/g]^{2}}{[\sum_{i=1}^{N} w_{i}/g][\sum_{i=1}^{N} (w_{i}\phi_{i}^{2})/g} \qquad Equation \ 12$$

Furthermore, the bilinearization of the pushover curve must be done in regard to the reduction of the spectral demand. The bilinearization is conducted by equalizing the area above and below the pushover curve with respect the the bilinearization lines as shown in the figure below:

Figure 55: Bilinearization of the pushover curve

The dy, ay and dpi and api points are used according to the ATC-40 guidelines to reduce the spectral demand for the calculation of the performance point. According to the procedures given in the standard, if the api,dpi and intersection of the reduced graph with the pushover curve is between 0.95 dpi and 1.05 dpi then the point is accepted. The entire process is an iterative one which makes the entire process timeconsuming. For that reason, a ready script is utilized to calculate the performance point [21]. As shown in the figures, the performance point is calculated efortless from the given tool.

Figure 56: Calculation of the performance point using the capacity spectrum method for x-direction.

Figure 57: Calculation of the performance point using the capacity spectrum method for y-direction.

In addition, comparing the performance point from the capacity spectrum method with the LS performance level would be a good comparison for the life safety ensurance. The figures below show the pushover curve plotted together with the performance point:

Figure 58: Capacity curve with limit states and performance point for ydirection

Figure 59: Capacity curve with limit states and performance point for ydirection

As shown in the figures above, the performance point presented in the same graph with capacity curve of the building shows a clear information on the performance of the structure as belong to the exceedance of limit states. From both directions, it is shown that the performance point is located in the region of life safety performance level. This means that the structure is in the region of life safety. Nevertheless, the graphical view of the data demonstrates that the performance point is very close to exceeding the LS limit state.

CHAPTER 5

CONCLUSIONS

5.1 Conclusions

The seismic performance evaluation of Azem Hajdari elementary school is conducted in this thesis using nonlinear analysis procedures. The capacity of the structure is estimated using pushover analysis. The demand calculations are done based on the capacity spectrum method and the spectra was calculated based on the parameters from the EC-8. The limit states are located in the pushover curve as immediate occupancy IO, life safety LS and collapse prevention CP for the performance evaluation of the building. Finally, while comparing the demand calculated by the ATC-40 standard with the limit states in the pushover curve, it is concluded that the seismic performance of the structure is located in the life safety performance level.

The analysed building must be designed with higher importance factor compared to residential buildings. Generally, for school and hospital buildings under the design earthquake loading for a return period of 75 years, the ensurance of immediate occupancy performance level is expected as shown in figure 60.

Figure 60: Expected performance levels at different seismic intensities.

The results gathered from the the analyses performed in this thesis show that the building exceeds the immediate occupancy performance level. Moreover, it is shown that the life safety threshold is almost exceeded in the y direction of the building. This can be interpreted by the fact that usually the engineering practice in our country utilizes the linear analyses procedures instead of the nonlinear one which are more aqurate in the design stage. Finally, it can be concluded that the Azem Hajdari school did not satisfy the target performance level (IO).

5.2 Recommendations for future research

The study can further be improved by providing time history nonlinear dynamic analyses using a set of ground motion records. Furthermore, a detailed methodology of the retroffiting procedures for schools and hospitals could play an important role for such typologies in Albanian engineering practice.

REFERENCES

- R. W. .. Niewiarowski, "CSM-ATC40, 'SEISMIC EVALUATION AND RETROFITTING OF BUILDINGS AND STRUCTURES.".
- [2] I. CSI (Computer and Structures, "SAP2000. "Integrated software for structural analysis and design", Computers and Structures Inc., n.d".
- [3] R. BENTO, "NON-LINEAR STATIC PROCEDURES IN PERFORMANCE BASED SEISMIC DESIGN".
- [4] E. 1998-1:2004, "Eurocode 8: Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings".
- [5] K. ELWOOD, "Effects of Strength and Stiffness Degradation on".
- [6] A. S. O. C. ENGINEERS, "FEMA 356., 'Prestandard and commentary for the seismic rehabilitation of buildings', Washington: federal emergency management agency (2000).".
- [7] Ronald O. Hamburger, "FEMA-350., 'Recommended seismic design criteria for new steel moment-frame buildings', Washington DC: Federal Emergency Management Agency (2000).".
- [8] W. J.Hall, "FEMA-351., 'Recommended seismic evaluation and upgrade criteria for existing welded steel', Washington DC: Federal Emergency Management Agency (2000).".
- [9] A. Pattar, "P-DELTA EFFECT ON MULTI-STOREY BUILDINGS".
- [10] P. A. O. H. ". M. o. R. C. n. C. A. R. _. (. Maekawa K., ""Nonlinear Mechanics of Reinforced Concrete". n.d.Manual, CSI_ Anlaysis_ Reference _. (n.d.).".
- [11] H.-W. UNIVERSITY, "Themelis, S. "Pushover analysis for seismic assessment and design of structures". 2008.".
- [12] E. 1998-3:2005, "Eurocode 8: Design of structures for earthquake resistance – Part 3: Assessment and retrofitting of buildings".
- [13] C.-M. M. a. Y.-Y. Chen, "Research on the differential settlements of mat".
- [14] E. 1992, "Eurocode 2 Design of concrete structures;".

- [15] N. Tosic, "One-two Way SLAB. New Eurocode 2 provisions for recycled aggregate concrete and their implications for the design of one-way slabs.".
- [16] S. A. M. M. M. H. Mourad M. Bakhoum, "Dead-Live Load.Comparison of actions and resistances in different building design codes.".
- [17] K. Neena Panandikar Hede, " "Effect of variation of plastic hinge length on the results of nonlinear analysis". n.d.".
- [18] S. E. A. o. California, "Vision 2000, Performance based seismic engineering of buildings, vols. I and II: Conceptual framework".
- [19] E. Zeller, "NEHRP GUIDELINES FOR THE SEISMIC REHABILITATION OF BUILDINGS".
- [20] P. FAJFAR, " 'On the relation between the near collapse limit state at the element and structure level .".

APPENDIX

Elevation View of Building

Planimetry of Building