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ABSTRACT 

 

COOPERATIVE SPECTRUM SENSING USING MACHINE 

LEARNING-BASED MODELS 

  

 

Patoshi, Nevisa 

M.Sc., Department of Computer Engineering 

Supervisor: Dr. Julian Hoxha 

 

The unstoppable evolution that has affected mobile telecommunication systems in the 

last three decades has caused the occupation of the licensed frequencies, but at the 

same time these frequencies are not being used efficiently. Cognitive Radio is the key 

technology introduced to overcome the main problems of the spectrum utilization, 

since it offers the opportunity for other unlicensed users to utilize the licensed band 

while it is not being used by primary user. Even though it increases the efficiency of 

spectrum utilization, spectrum sensing in cognitive radios still faces problems for 

higher-performance and more energy-efficient systems. In this work, are taken in 

consideration two machine learning algorithms as decision-making tools in the fusion 

centre of cooperative spectrum sensing network based on energy detection technique. 

The effectivity of these algorithms is evaluated using Receiver Operating 

Characteristics (ROC) curve and Area Under The Curve (AUC) values, considering 

seperately additive white Gaussian noise and Rayleigh fading channel. Moreover, the 

training period of each algorithm is analyzed to evaluate the execution cost for each of 

them. 

 

Keywords: Cognitive Radio, spectrum sensing, machine learning algorithms, energy 

detection, additive white Gaussian noise, Rayleigh fading 
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ABSTRAKT 

 

DETEKTIMI I SPEKTRIT NE SISTEMET KOGNITIVE ME 

ANE TE ALGORITMEVE TE BAZUAR NE MACHINE LEARNING 

 

Patoshi, Nevisa 

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike 

Udhëheqësi: Dr. Julian Hoxha 

 

Evolucioni i pandalshëm që ka prekur sistemet e telekomunikacionit celular në tre 

dekadat e fundit ka shkaktuar zenien e frekuencave të licencuara, por në të njëjtën kohë 

këto frekuenca nuk janë duke u përdorur në mënyrë efikase. Rrjeti Kognitiv është 

teknologjia kryesore e prezantuar për të kapërcyer problemet kryesore të përdorimit të 

spektrit, pasi ofron mundësinë që përdorues të tjerë të palicencuar të përdorin bandën 

e licencuar në kohën që nuk është duke u përdorur nga përdoruesi parësor. Edhe pse 

kjo teknologji rrit ndjeshëm efikasitetin e përdorimit të spektrit, kjo teknologji është 

gjithnjë në kërkim të metodave për të arritur performancë më të lartë dhe përdorim 

eficent të energjisë. Në këtë tezë, janë marrë në konsideratë dy algoritme të bazuar në 

Machine Learning për tu përdorur si algoritme vendimmarrës në rrjetin Kognitiv, i cili 

bazohet në teknikën e detektimit me anë të energjisë. Efektiviteti i këtyre algoritmeve 

vlerësohet me anë të grafikut të Karakteristikave Operative të Marrësit dhe vlerave të 

sipërfaqes nën kurbë, duke marrë parasysh një kanal të ndikuar nga zhurma e bardhë e 

Gausiane dhe shpërndarja Rayleigh . Për më tepër, kohëzgjatja e trajnimit të të dhënave 

e secilit algoritëm është analizuar për të vlerësuar koston e ekzekutimit për secilin prej 

tyre. 

 

Fjalët kyçe: rrjeti Kognitiv, detektimi i spektrit, machine learning, detektimi me anë të 

energjisë, zhurma e bardhë Gausiane, shpërndarja Rayleigh 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction to Cognitive Radios   

The electromagnetic spectrum is notoriously a limited resource, in particular with 

reference to frequencies between 3 kHz and 300 GHz that have always been available 

for the broadcasting of radio waves in telecommunication systems (Figure 1). In order 

to limit the interference between different services, a spectral resource allocation system 

has been used through a licensing mechanism regulated by individual states or by 

international bodies. The unstoppable evolution that has affected mobile 

telecommunication systems in the last three decades has caused the occupation of the 

allocation of licenses. However, some services, such as wireless transmissions for local 

networks (wireless LAN) or data transmissions on third-generation mobile phone 

networks (HSPA), have undergone an exponential increase in their use with an overload 

of the frequencies of interest. (Wang & Liu, 2011) 

 

 

Figure 1. Electromagnetic spectrum used for TLC services 

By contrast, other services report little use of the spectral resource assigned to 

them, according to a latter survey of the Federal Communications Commission (FCC) 

and by several subsequent studies. In fact, it has been proven through field surveys that 

the temporal and geographical variance in the use of the assigned spectrum oscillates 
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between 15% and 85% with very low average values and below 20% (Figure 2). It is 

therefore possible to say that the traditional licensing approach leads to underutilization 

of the spectrum. 

 

Figure 2. Measured spectrum occupancy in percentage 

In order to utilize the spectrum supplies more efficiently, the need to overcome 

the rigidity of the assignment mechanism through licenses is therefore evident. But, 

interference between users can happen, in this case. These problems can be avoided 

through advanced access management of the transmission medium. In the last decade, 

new technological proposals for devices with a high ability to reconfigure and manage 

their radio interface have been emerging, such as Software Defined Radio or Cognitive 

Radio. 

These technologies were firstly designed in the late nineties by Dr. J. Mitola III 

and are characterized by the ability to readjust their operating parameters dynamically 

thus having all the potential to identify and use the underutilized portions of the 
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spectrum. This adaptive capacity of Cognitive Radio devices opens up new scenarios in 

which unauthorized secondary users can utilize the available frequencies even if this is 

bound by a license and already assigned to other services.  

Cognitive radio is the essential interface that allows using the spectral range 

more optimally since it enables secondary users to sense the portion of the available 

spectrum, choose the suitable channel, share it with other users and, whenever the 

primary user shows up in the spectrum, free the channel. All of this operation is 

performed out considering that the transmission of primary users, approved to be using 

the frequency range, will never be affected. 

Although it increases the efficiency of spectrum utilization, spectrum detection 

in cognitive radios still faces problems for higher-performance and more energy-

efficient systems because the spectrum sensing effectiveness can often be directly 

proportionate to the duration of spectrum detection. 

 

 

1.2 Aim of the Study 

The aim of this study is to develop a better understanding on the Cognitive Radio 

Networks and investigate other ways to reach the utilization of the spectrum as 

efficiently as possible using these networks.  

Nowadays, Machine Learning is being used in a great range of application, by 

training the data from the previous experience to develop a model that can predict the 

future decisions. Machine Learning models can fully adapt to CR networks since the 

purpose of these ML-based detection methods is to identify the accessibility of 

frequency ranges by structuring the procedure as a classification model in which the 

classifier has to select from two alternatives of each frequency band: available or 

occupied.  
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Moreover, this process is done without having any former information about the 

characteristics CR networks, like the average signal-to-noise ratio of each secondary 

user or the a priori hypothesis probability. 

Thus, the objectives of this thesis are to test the efficiency of several 

unsupervised ML models, as Naive Bayes classifier, Gaussian Mixture Model and 

Support Vector Machine, to decide which of these model performs betters, in terms of 

sensing probability and the execution cost.  

 

 

1.3 Outline of the Thesis 

This thesis is divided into five chapters. Each of them is briefly described below: 

In the first chapter is shortly given an introduction of the field chosen for this 

research and the main objectives of the study.  

In the second chapter, the literature review related to this research field is given. 

The third chapter, gives the methodology used to conduct this study. There are 

also briefly described the system used as a model for this research, the environment used 

for the implementation and the metrics used to evaluate the performance of each model. 

In the fourth chapter are given the numerical results obtained after the 

implementation of the models in the selected environment. 

Conclusions and future work will be given in the last chapter of this study. 
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CHAPTER 2 

LITERATURE REVIEW 

In this chapter is given the background of Cognitive Radio, including characteristics, 

functions, architecture and sensing techniques. After that, fusion decision-making 

models are explained, especially the basic combining and ML-based methods. 

 

2.1 Cognitive Radio (CR) Fundamentals    

“A Cognitive Radio (CR) is a radio that can change its transmitter parameters 

based on interaction with the environment in which it operates. This interaction may 

involve active negotiation or communications with other spectrum users and/or passive 

sensing and decision making within the radio. The majority of cognitive radios will 

probably be SDRs, but neither having software nor being field reprogrammable are 

requirements of a cognitive radio. (Tavares Azolini & Abrao, DECEMBER 2017)” ~ 

Federal Communications Commission (FCC) 

Cognitive radio is the main technology that makes it possible to use the spectrum 

more efficiently because it allows secondary users to detect the part of the spectrum 

disposable, pick the appropriate channel, co-transmit with other users and, free the 

channel when the primary user re-appears in the band. All this procedure is executed 

taking into consideration that the transmission of primary users, that are authorized to 

use the spectrum, will not be interrupted. 

While broadcasting at certain periods when primary users are not transmitting, 

secondary users must observe the availability of the frequency all time long and also 

assure that the temperature interference is below the bound (Clancy, May 2007). By 

using several sensing techniques, they stay informed if primary users show up in the 

spectrum. 

To better use the supplies, it is significant for cognitive radio networks to 

establish more efficient spectrum allocation and sharing models. Moreover, in order to 

eliminate the interference and crash between two users, strict rules must be determined 
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to regulate the spectrum entries and channel administration. A secure hand-off 

mechanism is needed to relocate the transmission of secondary users in another available 

frequency with a minimum level of latency if a primary user shows in the spectrum. 

 

2.1.1 Cognitive Radio Characteristics 

Cognitive Radio indicates more flexibility and adaptability in Software Defined 

Radio because their devices can change their operational parameters like modulation, 

power of the transmission, frequency, etc., according to the information assembled from 

the radio medium for more effective usage of the spectrum. Thus, the fundamental 

features of CR devices can be expressed as (Haykin, February 2005): 

1. Cognitive capability 

CR devices stay informed about the radio medium inquiry, such as range of 

frequencies available, type of modulation, used protocols, location, disposable 

resources, enabled services, etc. 

2. Reconfigurability 

According to the detected data, CR devices are able to continuously change their 

operational parameters to reach higher performance. 

 

2.1.2 Main Functions  

A usual cycle of a CR device, shown in Figure 3, involves sensing the holes in the 

spectrum, choosing the most convenient frequency, arrange the spectrum access among 

other user and free the frequency when the primary user needs to use it. 
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Figure 3. Cognitive Cycle 

So the main functions of the cognitive cycle are (Wang & Liu, 2011): 

1. Spectrum sensing and analysis 

CR devices are able to sense the spectrum holes, illustrated in Figure 4, 

representing the part of the spectrum unutilized by primary users at e certain 

time. Moreover, if primary users begin to utilize the spectrum once more, CR 

devices sense the presence of primary users in order to not interfere in their 

transmission. 
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Figure 4. Spectrum hole 

 

2. Spectrum administration and handoff 

After sensing the spectrum holes, secondary users decide which frequency to 

use according to their requirements and they use the spectrum until the primary 

user shows. In that moment, the handoff mechanism is applied to transfer the 

transmission of the secondary user in another available frequency, so no 

interference can happen. 

3. Spectrum allocation and sharing 

To achieve a better performance and to use the spectrum more efficiently, 

spectrum allocation and sharing is needed. This means that secondary users are 

able to divide the available spectrum with primary user and with each other, 

too. It is important for them to be organized and the interference temperature 

should be lower than a specified threshold in order to avoid the collisions. 
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2.1.3 Cognitive Radio Network Architecture  

A CR network architecture involves a primary and a secondary network at the same 

time (Figure 5), since they have to collaborate with each other to use the same band at 

different moments, without interfering to each other. 

 

Figure 5. Cognitive Radio Network Architecture 

 

A primary network consists of several primary users managed by one or several 

primary base stations. Since primary users are authorized to utilize the spectrum, their 

devices do not contain CR functions. 

On the other hand, secondary networks consists of secondary users, usually 

managed by a secondary base station, that are not licensed to utilize the spectrum, unless 

it is not being utilized by a primary user. Secondary base stations control the spectrum 

access traffic of secondary users that use the same range of frequencies and if there is 
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more than a secondary network using the same band, the traffic is controlled by 

spectrum broker (Raman, Yates, & Mandayam, November 2005) 

 

 

2.2 Cooperative Spectrum Sensing  

Spectrum sensing is the ability of the CR devices to gather the essential data 

from the medium in order to reach higher performance. It is the first step to have efficient 

spectrum usage. Cooperative sensing includes the co-operation of the secondary users 

with each other in order to increase the sensing probability (Kaabouch & Hu, 

OCTOBER 2014) . It takes advantage of the spatial and multiuser diversity to increase 

the spectrum sensing reliability and the probability of detection to lower the false alarms 

and to use the spectrum more efficiently.  

Even though it has high efficiency, its performance is constrained by several 

effects including shadowing, noise uncertainty, etc. Moreover, in case of a high number 

of secondary users that need to examine a lot of spectrum channels, they have to 

distribute the detection information to each other. This requires huge amount of data 

swapping, resulting in a lot of energy consumption that means increased costs of the 

network. 

 

2.2.1 Spectrum Detection Techniques 

Spectrum detection is the first function of a CR device and it can be executed in 

several domains, such as time, frequency and spatial. In order to change their 

parameters, it is important for these devices to assemble the necessary information from 

the surroundings and based on the needed a priori data, spectrum detection techniques 

are divided in several groups. 

 

 Energy Detection Sensing 
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Energy detection is based on the recognition of the signal by calculating its 

energy. This technique is the most used because its simple application and also 

no former information is needed for primary user’s signal.  

For the received signal, the hypothesis model can be written as:  

𝑯𝟎: 𝒚(𝒌) = 𝒏(𝒌)

𝑯𝟏: 𝒚(𝒌) = 𝒈𝒙(𝒌) + 𝒏(𝒌)
      [1] 

where 𝐻0 is the null hypothesis denoting that the primary user is not using the 

spectrum, 𝐻1 denotes that the spectrum is being used by primary user, 𝑛(𝑘) is the 

Gaussian noise, 𝑥(𝑘) is the signal of the primary user and 𝑔 is the channel gain. 

The detection statistics is calculated as: 

𝑻 =  
𝟏

𝑴
 ∑|𝒚(𝒌)|𝟐
𝑴

𝒌=𝟏

     [2] 

where 𝑀 is the number of the executed samples. 

The detection statistics 𝑇 is compared to a given threshold 𝜆 to determine whether 

the spectrum is available. The probability of detection 𝑃𝑇 and probability of false 

alarm 𝑃𝐹 define the efficiency of the detector. 

𝑷𝑻 = 𝑷𝒓(𝑻 > 𝝀|𝑯𝟏)     [3] 

𝑷𝑭 = 𝑷𝒓(𝑻 > 𝝀|𝑯𝟎)     [4] 

In order to reach a higher performance, the detector must keep the probability of 

false alarms in low level. The disadvantages of this technique are the incapacity 

to differentiate the primary user from other sources, especially in low levels of 

signal-to-noise ratio, and the difficulty in defining a proper threshold. 

 

 Cyclostationary Based Sensing 
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In this technique, the signals are modulated with sine waves carriers in order to 

easily differentiate primary user’s signal from noise (Cabric & Brodersen, 

October 2005) (N., Cordeiro, & Challapali, December 2005)  

The detection statistics is calculated using the cyclic autocorrelation function 

(CAF) that verifies when the primary user re-apears in the spectrum: 

𝑹𝒚
𝜶(𝝉) =  𝑬[𝒚(𝒌 + 𝝉)𝒚∗(𝒌 − 𝝉)𝒆𝒋𝟐𝝅𝜶𝒌]     [5] 

where 𝛼 represents the cyclic frequency, * is the complex conjugation and 𝐸[∙] 

represents the expectation operation. 

Taking in consideration sensing in low SNR levels, cyclostationary detector 

performs better than energy detector. However, this detector requires some prior 

data from primary user’s signal. 

 

 Matched Filtering 

Matched filtering performs better than the other detectors to define the primary 

user’s signal in low SNR levels, but only if it is fully informed about the features 

of the primary user’s signal. Otherwise the sensing performance will be reduced 

a lot.  

The key benefit of this technique is the fact that the number of samples needed 

for the analysis is inversely related to SNR. So to reach higher performance, a 

small number of samples is necessary. 

On the other hand, matched filtering is very expensive to apply because it requires 

dedicated receivers for every CR device. 
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2.2.2 Spectrum Allocation and Sharing Topologies 

According to the management of the traffic, cooperative sensing is divided in two 

categories: 

1. Centralized Topology 

In centralized architecture, the user traffic is totally managed by a fusion centre. 

According to the accumulated detection data from each user, this fusion centre 

localizes the spectrum holes and transmits the processed data to secondary users. 

Centralized sensing networks are classified in two groups (Akyildiz, Lee, Vuran, 

& Mohanty, 2006): 

a) Partly Cooperative Networks 

The users do not exchange information with each other. They sense the 

channel separately and after that broadcast the data to the fusion centre. 

 

Figure 6. Design of partly cooperative networks 

 

b) Fully Cooperative Networks 
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The users share with each other the detection data and after that they 

transmit this information to the fusion centre. 

 

Figure 7. Design of fully cooperative networks 

 

2. Distributed Topology 

In distributed architecture, there is not a centre that controls the traffic, but the 

users communicate with each other and decide based on the gathered 

information. One of the advantages of the distributed sensing networks is that 

they do not require a backbone infrastructure. 
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Figure 8. Design of distributed sensing architecture 

 

 

2.3 Fusion Centre 

In centralized sensing, the fusion centre is the main component that manages the 

traffic between SUs. It processes all the data gathered from every user, comes up with a 

final decision which of the hypothesis H1 or H0 is accurate and communicates it to each 

user of the network. There exist a lot of decision models applied to fusion center, but 

the ones used in this research are described in the sections below. 

In centralized architecture, the user traffic is totally managed by a fusion centre. 

According to the accumulated detection data from each user, this centre localizes the 

spectrum holes and transmits the processed data to secondary users.  Every detection 

node j, detects the energy level, compares it to a given threshold λ and gives as feedback 

a binary number Xj = 1, if it assumes that H1 is true, and Xj = 0 if not. An elementary 

solution is the Voting Rule that is based over some logic operations, such as: 

a) OR Rule 

It is a hard-combining method and the detection performance is calulated as: 



16 

 

{
 
 

 
 
𝑷𝑶𝑹_𝑻 = 𝟏 − ∏(𝟏− 𝑷𝑻𝒋)

𝑵

𝒋=𝟏

𝑷𝑶𝑹_𝑭 = 𝟏 − ∏(𝟏− 𝑷𝑭𝒋)

𝑵

𝒋=𝟏

     [6] 

 

b) AND Rule 

Using the AND rule, also a hard-combining method, the detection 

performance is calculated as: 

{
 
 

 
 
𝑷𝑨𝑵𝑫_𝑻 =∏𝑷𝑻𝒋

𝑵

𝒋=𝟏

𝑷𝑨𝑵𝑫_𝑭 =∏𝑷𝑭𝒋

𝑵

𝒋=𝟏

     [7] 

 

c) Maximum Ratio Combining (MRC) 

In this technique the hypothesis test is given as:  

{
𝑯𝟏, 𝒊𝒇   ∑𝒘𝒋𝒚𝒋  ≥  𝝀 

𝑴

𝒋=𝟏

𝑯𝟎,                      𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

     [8] 

where 𝑀 is the number of SUs and 𝑤𝑗 is the weighted energy level for 

the 𝑗𝑡ℎ  SU. 

In order to increase the efficiency and to reduce the implementation cost, 

maching learning based models are being used as decision-making tools in the fusion 

centre of cooperative spectrum sensing network. These methods are described in the 

section below. 
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2.4 Machine Learning Based Models 

Machine Learning is the analysis of the computational models that upgrade 

dynamically via observation and previous experience. It is often referred as artificial 

intelligence. Machine learning techniques develop a mathematical model based on the 

available data, defined as "training instances", to make predictions about the future 

without even being explicitly programmed for doing so. These algorithms are included 

in a diverse range of applications, like phishing emails and image processing, in which 

it is hard to build algorithms for the execution of some required dutties.  

Numerous networking requirements are fulfilled from the ML aspect, such as a) 

traffic prediction; b) traffic segmentation; c) traffic forwarding; d) resource planning; 

etc., while in CRN, the purpose of these ML-based detection methods is to identify the 

accessibility of frequency ranges by structuring the procedure as a classification model 

in which the classifier has to select from two alternatives of each frequency band: 

available or occupied.  

The advantage of the ML-based models in CRN is that they do not demand for 

previous information on channel, including a priori probabiblity of channel availability 

and SNR of SUs. A vector with channel condition results is utilized by fusion centre to 

train the ML methods.  

The training procedure is a computerized method to closely resemble a function 

that schedules the expected samples of energy on the SUs to a PU tag. The methods are 

capable of deciding the channel condition after the training period, depending on 

unknown energy samples. It enables the structure of the cognitive radio network to take 

into account the greatest-effort strategy, whether by refusing primary user collaboration 

or by providing secondary users with channel knowledge. 

 

2.4.1 Unsupervised Learning 

In this case, for the training of the classifier are needed only the energy matrices  

(i.e., y = {y(1),..., y(M)}) and this makes it more quickly adapted in practice in 
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comparison to the supervised learning. Since there is not a specific instructor involved 

in training, unsupervised learning needs to depend on the clustering framework of the 

energy vectors. 

A cluster of the energy matrices in relation to the corresponding multivariate 

Gaussian distribution is generated for any PU status. In particular, observations of the 

energy matrices are obtained from the Gaussian mixture distribution whose pdf is given 

as:  

𝒇(𝒙) =  ∑𝒑(𝒔) ∙ 𝝋((𝑿|𝝁𝒀), ∑𝒀) 

𝑺

     [9] 

where 𝑝(𝑠) is the probability of the PU status, 𝜇𝑌 is the mean vector, ∑𝑌 is the 

covariance matrix and φ((𝑋|𝜇𝑌), ∑𝑌)) is the pdf of the Gaussian mixture distribution 

given as: 

𝝋((𝑿|𝝁𝒀), ∑𝒀)) =  
𝟏

𝟐𝝅(
𝑵
𝟐⁄ )|∑𝒀|

𝟏
𝟐⁄
 𝒆𝒙𝒑 {−

𝟏

𝟐
 (𝒙 − 𝝁𝒀)

𝑻∑𝒀
−𝟏(𝒙 − 𝝁𝒀)}     [10] 

After the classifier has been instructed to use clustering, it gets the classification 

test energy vector and finds out the cluster in which it belongs to. 

 

2.4.2 Supervised Learning 

Moreover, in practice the PU has to notify the cognitive network of channel 

occupancy for some of the energy vectors for training purposes. So comparing to the 

unsupervised learning, it is more difficult to execute. Yet, supervised learning appears 

to have higher performance because of the prior knowledge about the quality of the 

platform. 
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2.4.3  System Model 

The system model used for this research consists of a cognitive radio network 

(CRN) with a single PU and 𝑘 SUs, where all secondary users utilize energy detection 

as sensing technique during a detection period 𝜏 along the bandwidth 𝜔. They provide 

𝐾 =  2𝜔𝜏 samples for every detection period, since the considered sampling frequency 

is at the Nyquist rate, 𝑓𝑠  =  2𝜔. Each SU calculates the level of energy and 

communicates it to the fusion centre. Depending on energy rates recorded by all SUs, 

the fusion system decides the state of the channel.  

Throughout this work, it is followed a very common PU model, in which PU 

changes between active and passive status. Let P determine the PU status: 

𝑺 = {
 𝟏, 𝒊𝒇 𝑷𝑼 𝒊𝒔 𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒕𝒕𝒊𝒏𝒈
𝟎,                            𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

     [11] 

 So according to the status of PU, is determined the occupancy of the channel: 

𝑶 = {
 𝟏,        𝒊𝒇   𝑺 = 𝟎      (𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆)
−𝟏,      𝒊𝒇  𝑺 = 𝟏 (𝒖𝒏𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆)

     [12] 

 The sensing process at the ith SU is done according to two hypothesis: 

{
𝑯𝟏: 𝒛𝒋(𝒎) =  𝒉𝒋𝒙(𝒎) + 𝒏𝒋(𝒎), 𝒊𝒇 𝒕𝒉𝒆 𝑷𝑼 𝒊𝒔 𝒂𝒄𝒕𝒊𝒗𝒆

𝑯𝟐: 𝒛𝒋(𝒎) =  𝒏𝒋(𝒎), 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆                                
     [13] 

where ℎ𝑗 is the channel gain from the PU’s transmitter to the 𝑗𝑡ℎ  SU’s receiver, 

𝑥(𝑙) is the transmitted signal from PU and 𝑛𝑗(𝑙) is AWG noise at the 𝑗𝑡ℎ  SU receiver. 

The channel gain ℎ𝑗 is calculated as: 

𝒉𝒋 =  𝒈𝒋√𝒅𝒊
−𝑳     [14] 

where 𝑔𝑗  is the fading coefficient, considered uniform in this research; 𝑑𝑗  is the 

Euclidean distance between the 𝑗𝑡ℎ  SU and the PU; and 𝐿 is the path-loss coefficient 
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calculated as 4. So, in this research is taken in consideration a non-line-of-sight (NLOS) 

channel. 

The normalized energy calculated at the 𝑗𝑡ℎ  SU, after the detection period, is: 

𝒚𝒋 = 
𝟏

𝝈𝒏𝟐
∑ 𝒛𝒋

𝟐(𝒎)

𝑴

𝒎=𝟏

     [15] 

where 𝑀 is the number of samples considered for every detection period. 

According to 𝐻0 hypothesis, 𝑧𝑗(𝑚)  =  𝑛𝑗(𝑚)  ∼  𝑁(0, 𝜎𝑛
2), so, 𝑦𝑗 will have a Chi-

squared distribution with 𝑘 degrees of freedom: 

𝒚𝒋 = ∑ [
𝒏𝒋(𝒎)

𝝈𝒏
]

𝟐

= ∑ ẑ𝒋
𝟐(𝒎)

𝑴

𝒎=𝟏

𝑴

𝒎=𝟏

     [16] 

where 𝑧𝑗(𝑚)  ∼  𝑁(0, 𝜎𝑛
2)   ⸫   𝑦𝑗 ~ 𝜒𝑘

2 

While, according to hypothesis 𝐻1, the normalized energy will have Gamma 

distribution with shape 
𝑘

2
 and scale 2(1 +  𝛾𝑖): 

𝒚𝒋 = ∑ [
𝒉𝒋𝒙(𝒎) + 𝒏𝒋(𝒎)

𝝈𝒏
]

𝟐

=  ∑ ẑ𝒋
𝟐(𝒎)

𝑴

𝒎=𝟏

𝑴

𝒎=𝟏

     [17] 

where 𝑧𝑗(𝑚)  ∼  𝑁(0, 1 +
ℎ𝑗
2𝜎𝑠

2

𝜎𝑛
2 ) ⸫ 𝑦𝑗 ~ 𝛤 (

𝑘

2
, 2(1 + 𝛾𝑗)), 

where 𝛾𝑗  is the average SNR calculated as: 

𝜸𝒋 =  (
𝒉𝒋𝝈𝒔

𝝈𝒏
)

𝟐

     [18] 

In the energy detection model, the availability of the spectrum is defined by 

comparing every SU’s estimated energy to a certain threshold 𝜆: 
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𝑨𝒋 =  {
𝑯𝟏, 𝒊𝒇 𝒚𝒋  ≥  𝝀

𝑯𝟎, 𝒊𝒇 𝒚𝒋  <  𝝀
     [19] 

So, false alarm and detection probabilities are calculated respectively as follows: 

{
𝑷𝑭  =  𝑷(𝒚 ≥ 𝝀 |𝑯𝟎)
𝑷𝑫  =  𝑷(𝒚 ≥  𝝀|𝑯𝟏)

     [20] 

Consiquently, taking into account the hypothesis 𝐻0, 𝑃𝐹 of the 𝑗𝑡ℎ  SU can be 

written as the right-tail probability of a central Chi-squared random variable: 

𝑷𝑭𝒋 = ∫ 𝒇(𝒚𝒋|𝑯𝟎)𝒅𝒚 ≜  𝑸𝝌𝑵𝟐
(𝝀)

∞

𝝀

     [21] 

where 𝑓(𝑦𝑗|𝐻𝑖) stands for the conditional PDF of the normalized energy calculated 

at the the 𝑗𝑡ℎ  SU, given hypothesis 𝐻𝑖 for i = 0,1. 

By fixing a desired probability of  false alarm (𝑃𝐹
∗), the threshold parameter 𝜆 is 

derived from [21] as: 

𝝀 =  𝑸
𝝌𝑵
𝟐
−𝟏(𝑷𝑭

∗ )     [22] 

Taking in consideration the incomplete Gamma function, [22] is formulated as: 

𝝀 =  𝟐𝜞𝒖
−𝟏 (𝑷𝑭

∗ ,
𝒌

𝟐
)     [23] 

where 𝛤𝑢(𝑥, 𝑛) represents the incomplete Gamma function, calculated as: 

𝜞𝒖(𝒙, 𝒏) =  
𝟏

𝜞(𝒙)
 ∫ 𝒕𝒙−𝟏

∞

𝒏

𝒆−𝒕𝒅𝒕     [24] 

where 𝛤(𝑥) represents the Gamma function. 

In the same way is calculated the probability of detection: 
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𝑷𝑫𝒋 = ∫ 𝒇(𝒚𝒋|𝑯𝟏)𝒅𝒚 ≜  𝑸𝜞 (𝝀;
𝒌

𝟐
, 𝟐(𝟏 + 𝜸𝒋))

∞

𝝀

     [25] 

that can be expressed as: 

𝑷𝑫𝒋 = 𝜞𝒖 (
𝒌

𝟐
, 𝟐(𝟏 + 𝜸𝒋))     [26] 

To conclude, these are the derivation of the false alarm and detection probabilities 

for the system model used for this research. 

 

2.4.4 Proposed Scheme 

The aim of CSS techniques in this research is to properly decide the occupancy of 

channel O assumed from the energy vector Y. This is similar to developing a classifier 

to match the energy vector Y appropriately with the channel occupancy O.  In terms of 

machine learning, an energy vector is similar to a feature. In order to build the 

classification method, firsty enough training energy vectors need to be gathered. 

Have y(m) identify the m-th energy vector of training and o(m) identify channel 

occupancy correlating to y(m). After that, the structure of the energy vectors of training 

is placed into the training classification, i.e. y={y(1),,..., y(M)}, where M represents the 

number of training instances. Two cases are known: supervised learning, where the 

energy vectors of training should be mapped with the correlating channel ocupancy, and 

unsupervised learning, where this process is not necessary. The classifier is then 

instructed using the energy vectors. The training process is different for every machine 

learning method.  

After the classifier is instructed, an energy testing vector y* is taken for 

classification, including its correlating channel occupancy o*.  Furthermore, the 

accessibility of channel 𝑜 ̂determined by the classifier must be indicated. The energy 

vector y* mentioned below is classified as either “channel availability” (𝑜 ̂ = 1) or 

“channel unavailability” (𝑜 ̂= −1). 
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The architecture of the proposed plan is given in (Figure 9). It involves the training 

unit and the classification unit that work separately. When the cognitive network 

requires information about channel occupancy, it produces the testing energy matrix. 

This matrix is used in the classification unit to define the accessibility of the channel 

utilizing the classifier. 

 

Figure 9. Proposed Scheme 

The training unit instructs the classifier utilizing the training energy matrix and 

generates a trained classifier for the classification unit. This unit can be operated in the 

first implementation of the cognitive network and when the network of the PU changes. 

In addition, the training process can be done in the backstory while the classification 

unit works as usual. 

 

2.4.5 Machine Learning Based Models 

Some of the unsupervised machine learning-based models used in CR networks 

are: 

a) Gaussian Mixture Model 
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The model of the Gaussian mixture is a statistical method built on the 

prediction of Gaussianity and autonomy among all the energy samples 

collected from every independent secondary user on the same scheme. These 

two concepts enable us to identify the mean m*, variance Σ2, and the vector 

of mixing proportions as follows: 

𝒎 ∗ = (
𝑴…𝑴

𝑴(𝟏+ 𝜸𝒊)…𝑴(𝟏 + 𝜸𝑵)
)     [27] 

𝜮𝟐 = (
𝟐𝑴…𝟐𝑲

𝟐𝑴(𝟏 + 𝜸𝒊)²…𝟐𝑴(𝟏 + 𝜸𝑵)²
)     [28] 

𝝅 = [𝑷(H0) 𝑷(H1)]
𝑻     [29] 

where M refers to the taken number of samples through detection time. 

GMM is an unsupervised machine learning technique that can also be defied 

as a weighted sum of multivariate Gaussian probability densities given by 

(Choi, Saquib, & Hossain, NOVEMBER 2013): 

𝒇(𝒙|𝜽) =  ∑ 𝒑𝒎 ∙ 𝝋((𝑿|𝝁𝒎), ∑𝒎)

𝑴

𝒎=𝟏

     [30] 

where pm is the probability of the PU status, 𝜇𝑌 is the mean vector, ∑𝑌 is the 

covariance matrix and φ((𝑋|𝜇𝑚), ∑𝑚)) is the Gaussian density given as: 

φ((𝑋|𝜇𝑚), ∑𝑚)) =  
1

2𝜋(
𝑁
2⁄ )|∑𝑚|

1
2⁄
 𝑒𝑥𝑝 {−

1

2
 (𝑥 − 𝜇𝑚)

𝑇∑𝑚
−1(𝑥 − 𝜇𝑚)} 

     [31] 

and θ includes every parameter for the GMM such as: 𝑝𝑚, 𝜇𝑚, and ∑𝑚for all 

m = 1,...,M. All these parameters can be calculated utilizing the maximum-

likelihood (ML) estimation for the given group of the evergy matrices  (i.e. 

y={y(1),,..., y(M)}) that is given as: 
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𝒘(𝒚|𝜽) =∑𝒍𝒏(∑ 𝒑𝒎 ∙ 𝝋((𝒚
(𝒊)|𝝁𝒎), ∑𝒎)

𝑴

𝒎=𝟏

)

𝑰

𝒊=𝟏

     [32] 

The ML estimator is the optimizing variable for this log-likelihood function. 

The variables which optimize the log-likelihood function is achieved utilizing 

the EM algorithm. This algorithm changes the variable 𝜃 maximizing the 

given function: 

𝑄(𝜃′|𝜃) = 𝐸 {∑ 𝑙𝑛 (∑ 𝑝
𝑙(𝑖)
′  ∙  φ ((𝑦(𝑖)|𝜇

𝑙(𝑖)
′ ), ∑

𝑙(𝑖)
′ )𝑀

𝑚=1 )𝐼
𝑖=1 |𝑦, 𝜃} 

=∑{∑ 𝒖𝒎
(𝒊)
∙ 𝒍𝒏 𝒑𝒎

′

𝑴

𝒎=𝟏

+ ∑ 𝒖𝒎
(𝒊)
∙ 𝒍𝒏𝝋((𝒚(𝒊)|𝝁𝒎

′ ),∑𝒎
′ )

𝑴

𝒎=𝟏

}

𝑰

𝒊=𝟏

     [33] 

When the optimal parameter 𝜃∗ is calculated, a testing energy matrice 𝑦∗  is 

taken for classification and the classifier determines to which cluster it 

belongs by comparing it to e given threshold λ. The channel is considered 

unavailable if: 

𝒍𝒏(∑ 𝒑𝒎
∗ ∙ 𝝋((𝒚∗|𝝁𝒎

∗ ), ∑𝒎
∗ )

𝑴

𝒎=𝟐

) − 𝒍𝒏(𝒑𝒎
∗ ∙ 𝝋((𝒚∗|𝝁𝟏

∗), ∑𝟏
∗))  ≥  𝝀     [34] 

 

b) Support Vector Machine 

The SVM is a supervised machine-learning approach designed to define a 

linear hyperplane with a maximum margin between groups by using a kernel 

function k(x, x') to the input matrix in order to maximize its range from input 

space to feature space. So according to the status of PU, is determined the 

occupancy of the channel as in [12]. 
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Figure 10. Support vector machine decision plane 

For the given linear problem (Figure 10):  

𝒉(𝒚) = 𝒘𝑻ɸ(𝒚) + 𝒃    [35] 

where ɸ(·) is a function for the transformation from feature to space, the aim 

is to get w and b so that h(y
m

)> 0 if O = 1 and h(y
m

) < 0 if O = -1. Furthermore, 

to increase the decision margin of the hyperplane h(y) = 0 we can use [35]. 

Considering that the space of any point y to the decision surface is: 

𝑶𝒎(𝒘
𝑻 ɸ(𝒚𝒎) + 𝒃)

||𝒘||
    [36] 

it is assumed that the nearest point to decision surface is 𝑂𝑚(𝑤
𝑇  ɸ(𝑦𝑚) +

𝑏) = 1. So the optimization problem given as: 

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆
𝒘,𝒃

𝟏

𝟐
 ||𝒘||²    [37] 

s.t.  𝑂𝑚(𝑤
𝑇  ɸ(𝑦𝑚) + 𝑏) ≥ 1,       𝑚 = 1,… ,𝑀 
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assures that each sample is classified correctly and the classes are excellently 

distuinguished. The positions y
m

 are referred as support vectors. In order to 

avoid the problem of the clogging, slack variable δm and overlap budget ξ are 

added. So [37] is written as: 

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆
𝒘,𝒃

𝟏

𝟐
 ||𝒘||²    [38] 

s.t. (1)  𝑂𝑚(𝑤
𝑇  ɸ(𝑦𝑚) + 𝑏) ≥ 1 − 𝛿𝑚 ,       𝑚 = 1,… ,𝑀 

(2)  𝛿𝑚 ≥ 0,       𝑚 = 1,… ,𝑀 

(3)  ∑ 𝛿𝑚 ≤ ξ𝑀
𝑚=1  

where ξ is utilized to lower training errors and manage the complexity. 

By using the Lagrange primal function: 

𝓛(𝒘, 𝒃, 𝜹, 𝜶, 𝝁)

=
𝟏

𝟐
 ||𝒘||

𝟐
+  𝝃 ∑ 𝜹𝒎 − ∑ 𝜶𝒎[𝒅𝒎𝒉(𝒚𝒎) − 𝟏 + 𝜹𝒎]

𝑴

𝒎=𝟏

𝑴

𝒎=𝟏

− ∑ 𝝁𝒎𝜹𝒎

𝑴

𝒎=𝟏

    [39] 

where μ
m

 and  αm are assumed as Lagrange multipliers. 

If the derivatives are set to zero, is taken: 

𝝏

𝝏𝒘
= 𝟎 → 𝒘 = ∑ 𝜶𝒎𝒅𝒎ɸ(𝒚𝒎) 

𝑴

𝒎=𝟏

     [40] 

𝝏

𝝏𝒃
= 𝟎 → ∑ 𝜶𝒎𝒅𝒎 = 𝟎

𝑴

𝒎=𝟏

    [41] 

𝝏

𝝏𝜹𝒎
= 𝟎 → 𝜶𝒎 = 𝝃 − 𝝁𝒎    [42] 
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So from the equations above we have set KKT conditions: 

𝜶𝒎 ≥ 𝟎     [43] 

𝒅𝒎𝒉(𝒚𝒎) − 𝟏 + 𝜹𝒎 ≥ 𝟎     [44] 

𝜶𝒎(𝒅𝒎𝒉(𝒚𝒎) − 𝟏 + 𝜹𝒎) = 𝟎     [45] 

𝝁𝒎 ≥ 𝟎     [46] 

𝜹𝒎 ≥ 𝟎     [47] 

𝝁𝒎𝜹𝒎 = 𝟎     [48] 

The dual problem is derived if we substitute [40]–[48] in [39] : 

�̂�(𝜶) = ∑ 𝜶𝒎 −
𝟏

𝟐

𝑴

𝒎=𝟏

∑∑𝜶𝒎𝜶𝒏

𝑴

𝒏=𝟏

𝑴

𝒎=𝟏

𝒅𝒎𝒅𝒏𝒌(𝒚𝒎, 𝒚𝒏)     [49] 

where k(y
m
, y

n
) = ɸ(y

m
)𝑇 ɸ (y

n
) is a kernel function, so it calculates the inner 

product of the variables obtained in the feature space under the embedding ɸ 

of two locations in the input space. 

So the optimization problem is formulated as: 

𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆 �̂�
𝜶

(𝜶)     [50] 

s.t.  (c.1)  0 ≤ 𝛼𝑚 ≤ ξ 

       (c.2)  ∑ 𝛼𝑚𝑑𝑛
𝑀
𝑚=1 = 0 

and it is calculated utilizing standard quadratic techniques. 
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Considering 𝛼∗ as the solving of the dual problem and 𝑏∗ as the solving of 

the primal problem the output of SVM will be: 

𝒉(𝒚) = ∑ 𝜶𝒎
∗

𝑴

𝒎=𝟏

𝑶𝒎𝒌(𝒚, 𝒚𝒎) + 𝒃
∗     [51] 

Channel state can now be easily distinguished if we convert the output of 

SVM into an calculated a posteriori probability �̂�(H1|𝑦) : 

�̂�(h(y))=
𝟏

𝟏 + 𝒆(𝑨𝒉(𝒚)+𝑩)
     [52] 

and the paramters A and B can be calculated if the negative log likelihood 

function (LLF) of the training energy vectors is minimized:  

   𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 − ∑ 𝒕𝒎 𝒍𝒐𝒈 (𝒑𝒎𝒎 ) + (𝟏 − 𝒕𝒎) 𝒍𝒐𝒈(𝟏 −𝒑𝒎)     [53] 

where  𝒑𝒎 =
𝟏

𝟏+𝒆(𝑨𝒉(𝒚𝒎)+𝑩)
     [54] and     𝒕𝒎 =

𝒅𝒎+𝟏

𝟐
    [55] 

Utilizing SVM results the channel condition can be evaluated as: 

�̂�SVM = {
H1, 𝒊𝒇 �̂�(h(y)) ≥ 𝟏 − 𝑷𝒇𝒂

∗

H0, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
    [56] 

 

c) Naive Bayes Classifier 

The Naive Bayes Classifier, assuming that the energy levels calculated at 

every SU are reciprocally independent and the sensed energy is specified, 

evaluates the a posteriori probability of the channel availability using Bayes 

Theorem as: 
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𝑷(H1|𝒚) =
𝒇(𝒚|H1)𝑷(H1)

𝒇(𝒚|H1)𝑷(H1) +  𝒇(𝒚|H0)𝑷(H0)
    [57] 

where P(H1) and P(H0) represent the a priori probabilities of every 

hypothesis, calculated as below: 

𝑷(H0) =
𝑴{H0} 

𝑴
     [58] 

𝑷(H1) =
𝑴{H1} 

𝑴
     [59] 

where 𝑀{H1}, i = 0,1 is the number of the ith occurrence of the hypothesis. 

To conclude, the Naive Bayes channel availability is evaluated as: 

�̂�NB = {
H1, 𝒊𝒇 𝑷(H1|𝒚) ≥ 𝟏 − 𝑷𝒇𝒂

∗

H0, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
     [60] 
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CHAPTER 3 

METHODOLOGY 

In this chapter is given the methodology used to conduct this study. There are also 

briefly described the environment used for the implementation and the metrics used to 

evaluate the performance of each model. 

 

3.1 Research Approach 

The objective of this work is making a comperative survey of the ML-based 

algorithms used by fusion centre of cognitive radio networks. So, if various methods 

need to be examined and compared, then a case study is the most suitable research 

strategy. A case study research is chosen for this reason, as the most useful research 

approach to this master thesis. 

 

3.2  Selected Environment 

The platform used to test the efficiency of the analytical and machine-learning 

techniques presented in this research is MATLAB. The algorithms are developed in 

MATLAB and R language. 

MATLAB (matrix laboratory) is software for numerical computing, firstly 

released at 1984. It uses MATLAB language, but also adapts object-oriented 

programming models. This platform merges computation, visualization and 

programming into a single environment (Houcque, August 2005).  MATLAB is 

generally utilized for: 

 Numerical Computations 

 Simulation  

 Designing Models 
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 Data Analyzing 

 Algorithm and Application Developments 

R is a programming language, applied in statistical platforms and data analysis. 

It is widely used for development of machine learning models. 

 

3.3 Evaluation Metrics 

The efficiency evaluation of each technique used in this research is done based 

on these parameters: 

 Receiver Operating Characteristic (ROC) Curve – It is probability 

curve, used to evaluate the efficiency of classification methods at fixed 

threshold values. 

 Area under The Curve (AuC) – It represents the coefficient of 

separability. So it shows the capability of the method to distinguish 

between classes. 

  Training time – It shows the period that the method needs to train a 

specific dataset.  

 

3.4 Implemented Machine Learning Based Models  

Machine Learning-based models tested in this research are described below: 

 Naive Bayes Classifier 

 Gaussian Mixture Model 

 Support Vector Machine with Linear kernel function 

 Support Vector Machine with Gaussian kernel function 

These algorithms are compared with basic analytical decision-making 

techniques OR, AND and MRC.  
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CHAPTER 4 

NUMERICAL RESULTS 

In this chapter are included the numerical results obtained after the implementation of 

the models in the selected environment. 

4.1 Tested Scenarios 

The evaluation of the ML-based methods, described in this thesis, is done using 

two different scenarios, based on the system model described in chapter four. 

The first scenario takes in consideration a CR network, consisting of a single PU 

and three SUs, located in different distances from the PU position.  

 

Figure 11. Scenario 1 

 

While, the second scenario takes in consideration a CR network, consisting of a 

single PU and four SUs, interacting with each other.  
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Figure 12. Scenario 2 

 

 

4.2  System Parameters 

To analyse the performance of the unsupervised ML models taken in 

consideration in this thesis, Monte-Carlo simulations (MSC) with a number of 5 ×

 104 realization are performed.  The given values of the system parameters are 

concluded in the table below: 

Table 1. System Parameters for Monte Carlo Simulations 

Bandwidth (w) 5MHz 

Noise PSD ( 𝜼𝟎) -150 dBm 

PU Transmission Power (𝝈𝒔
𝟐) 0.1 mW 

Sensing Period (τ) 5μs 

Sampling Frequency (𝒇𝒔) 10 MHz 

PU active probability (𝑷(𝑯𝟏)) 0.5 

Number of SUs (𝑵) 3, 4 

Number of samples (𝑲) 50 
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Training Set Size (𝜴𝒕𝒓𝒂𝒊𝒏) 1000 

 

 

4.3  Detection Performance 

The detection performance of each method discussed is evaluated through the 

receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) 

value. The simulations are done considering separately the AWGN channel and the 

Rayleigh fading channel for each scenario. 

 

4.3.1 Detection Performance for Scenario 1 

As described in the sections above, the first scenario consists of three differently 

positioned SUs and a single PU. The ROC curve used to define the performance of each 

method is shown above, taking in consideration AWGN channel and Rayleigh fading 

channel, respectively. 

 Performance Considering AWGN Channel 
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Figure 13. ROC curve for Scenario 1 considering AWGN channel 

In Figure 13 is shown the ROC curve for the first scenario, considering AWGN 

channel, where it is seen that the MRC technique performs better than other techniques 

and then followed by GMM and SVM with linear kernel function.  

 

 Performance Considering Rayleigh Fading Channel 



37 

 

   

Figure 14. ROC curve for Scenario 1 considering Rayleigh Fading 

While in Rayleigh fading, ML-based models, especially GMM and SVM with 

gaussian kernel function techniques, have higher performance that MRC technique, as 

shown in Figure 14Figure 14, because the MRC technique is based on the mean SNR 

of every user that in a Rayleigh fading channel, it changes in time. 

The results are better noticed by the AUC values concluded in the Table 2 and it 

is understood that Naive Bayes Model is less effective than other techniques under both, 

AWGN and Rayleigh fading channel. On the other hand, the techniques that have higher 

performance are Gaussian Mixture Model and SVM with linear kernel. 

Table 2. AUC Results for Scenario 1 

CHANNEL 

TECHNIQUES 

MRC NB 
SVM-

Linear 

SVM-

Gaussian 

 

GMM 

AWGN 0.9941 0.9930 0.9938 0.9934 0.9936 

Rayleigh 0.9650 0.9650 0.9728 0.9688 0.9731 
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4.3.2 Detection Performance for Scenario 2 

The same procedure is followed for the second scenario that, unlike the first 

scenario, has an extra SU in its network. 

 Performance Considering AWGN Channel 

 

Figure 15. ROC curve for Scenario 2 considering AWGN channel 

In Figure 15 is shown the ROC curve for the second scenario, considering 

AWGN channel, where it is seen that the MRC technique performs better than other 

techniques, like in the first scenario. So, the addition of the other users does not affect 

its performance. 

 

 Performance Considering Rayleigh Fading Channel 
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Figure 16. ROC curve for Scenario 2 considering Rayleigh Fading 

While in Rayleigh fading, unlike the first scenario, the ML-based models have 

higher performance that MRC technique, as shown in Figure 16Figure 14. 

AUC results for the second scenario are concluded in the Table 3 and it is 

understood that Naive Bayes Model is less effective than other techniques under both, 

AWGN and Rayleigh fading channel. On the other hand, the techniques that have higher 

performance are Gaussian Mixture Model and SVM with linear kernel. 
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Table 3. AUC Results for Scenario 2 

CHANNEL 

TECHNIQUES 

MRC NB 
SVM-

Linear 

SVM-

Gaussian 

 

GMM 

AWGN 0.9941 0.9927 0.9937 0.9934 0.9934 

Rayleigh 0.9663 0.9723 0.9771 0.9747 0.9773 

 

 

4.4  Execution Cost 

For the comparison of the execution cost of all ML-based models analysed in 

this research, the training period for 1000 training samples is taken in consideration. The 

results are shown in Table 4: 

Table 4. Training Results 

Techniques Training period (s) 

GMM 0.962 

NB 0.840 

SVM-Linear 2.120 

SVM-Gaussian 0.654 

 

From the results is understood that SVM with Gaussian kernel function is more 

efficient than other ML-based models, regarding training period, since the training 

period is shorter for the same training dataset. 
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CHAPTER 5 

CONCLUSIONS 

 

5.1 Conclusions 

In this thesis, we conducted a comparative analysis of four machine learning 

algorithms, specifically Gaussian mixture model, naive Bayes and support vector 

machine with linear and Gaussian kernel function, that were applied as decision-making 

tools in the fusion centre of cooperative spectrum sensing network based on energy 

detection technique.  

The performance of these algorithms was tested using Receiver Operating 

Characteristics (ROC) curve and Area Under The Curve (AUC) values, considering 

seperately additive white Gaussian noise and Rayleigh fading channel. Moreover, two 

different scenarios were use for evaluation. The first considered scenario was a CR 

network consisting of a single primary user and three secondary users, located in 

different distances. While in the second scenario, another secondary user was added to 

the network. 

Numerial results proved that under AWGN channel, the performance of the 

analytical technique, maximum ratio combining, was higher compared to the 

performance of the machine learning techniques. On the other hand, under Rayleigh 

fading channel, it was quite the opposite. All machine learning algorithms demonstrated 

higher results than MRC because of changing SNR levels in all secondary users for 

every detection period. 

In order to measure the computational cost, the training time of each algorithm 

was considered and according to the results, the support vector machine with Gaussian 

kernel function has the lowest execution cost, since the training time was smaller among 

the other techniques. 
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