
BITCOIN PRICE PREDICTION USING DEEP LEARNING

A THESIS SUBMITTED TO

THE FACULTY OF ACHITECTURE AND ENGINEERING

OF

EPOKA UNIVERSITY

 BY

KLEA XHIXHO

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

 JUNE ,2020

ii

Approval sheet of the Thesis

This is to certify that we have read this thesis entitled “Bitcoin price prediction using deep

learning “and that in our opinion it is fully adequate, in scope and quality, as a thesis for the

degree of Master of Science.

 Dr. Ali Osman TOPAL

 Head of Department

 Date: June 26,2020

Examining Committee Members:

 Dr. Ali Topal (Computer Engineering) _______________

Assoc. Prof. Dr. Dimitros A. Karras (Computer Engineering) ______________

 Dr. Maaruf Ali (Computer Engineering) _______________

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that, as

required by these rules and conduct, I have fully cited and referenced all material and

results that are not original to this work.

 Name Surname: Klea Xhixho

 Signature: ______________

iv

ABSTRACT

BITCOIN PRICE PREDICTION USING DEEP LEARNING

Xhixho, Klea

M.Sc., Department of Computer Engineering

Supervisor: Prof. Dr Dimitrios Karras

Bitcoin is a sort of computerized cash in which a record of exchanges is kept up and

new units of cash are produced by the computational arrangement of scientific issues, and

which works autonomously of a central bank. The price of a bitcoin is equal to 7000 USD and

is growing more day by day. Since this is not a low price, approximately 10 million people

are investing on it. This would be exceptionally curiously for investors to figure the Bitcoin

esteem but the same time making it troublesome to predict. This study centers on predicting

daily Bitcoin prices using some models (MLP, LSTM, CNN, GRU, ARIMA) of deep learning.

In each of these models we will interpret the train and test loss, mean squared error, the

performance in time and in the end predicted prices. After interpreting all this, we will

compare all these results between different models.

Keywords: Bitcoin, machine learning, LSTM, CNN, GRU, RMSE, MLP, ARIMA

v

ABSTRAKT

PARASHIKIMI I ÇMIMIT TË BITCOIN DUKE PËRDORUR DEEP

LEARNING

Xhixho, Klea

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike

Udhëheqësi: Prof. Dr Dimitrios Karras

Bitcoin është një monedhë virtuale e cila funksionon në mënyrë autonome nga banka

qëndrore. Çmimi i një bitcoin është i barabartë me 7000 USD dhe po rritet më shumë nga dita

në ditë. Meqenëse ky nuk është një çmim i ulët, rreth 10 milion njerëz janë duke investuar në

të. Ata janë të interesuar në parashikimin e çmimit ditor të një bitcoin por kjo është bërë disi

e vështirë pëe tu realizuar. Për këtë arsye ky studim përqendrohet në parashikimin e çmimeve

ditore të Bitcoin duke përdorur disa modele të Deep Learning (MLP, LSTM, CNN, GRU,

ARIMA). Në secilin prej këtyre modeleve ne do të interpretojmë humbjen që do të pësojë

çmimi gjatë proceseve të trajnimit dhe testimit, gabimet e bëra gjatë parashikimit,

performancën në kohë dhe në fund çmimet e parashikuara. Pas interpretimit të gjithë kësaj, ne

do t'i krahasojmë të gjitha këto rezultate midis modeleve të ndryshme.

Fjalët Kyçe: Bitcoin, LSTM, CNN, GRU, RMSE, MLP, ARIMA

vi

ACKNOWLEDGEMENTS

I would like to express my special thanks to my supervisor Prof. Dr. Dimitrios

Karras for his continuous guidance, encouragement, motivation, and support during

all the stages of my thesis. I sincerely appreciate the time and effort he has spent to

improve my experience during my graduate years.

vii

TABLE OF CONTENS

ABSTRACT ... IV

ABSTRAKT ..V

ACKNOWLEDGEMENTS ... VI

LIST OF FIGURES ...X

LIST OF ABBREVIATIONS ... XII

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 RESEARCH BACKGROUND ... 1

1.1.1 A brief history about Bitcoin .. 1

1.1.2 The creation of Bitcoins .. 2

1.1.3 How does Bitcoin work? ... 3

1.1.4 What is blockchain and how it works? ... 4

1.1.5 Bitcoin trading platforms .. 5

1.1.6 Bitcoin value and price ... 6

1.1.7 Prediction .. 7

1.1.8 Deep learning .. 7

1. How Deep Learning works? .. 8

1.2 PURPOSE ... 9

1.3 GOALS ... 10

1.4 RELATED WORK .. 10

1.4.1 Using Bitcoin Ledger Network Data to Predict the Price of Bitcoin 10

1.4.2 Bitcoin Price Prediction Using Ensembles of Neural Networks 11

1.4.3 A Comparative Study of Bitcoin Price Prediction Using Deep Learning 12

1.4.4 Prediction of Bitcoin Price using Data Mining ... 12

1.4.5 Prediction of Bitcoin using Recurrent Neural Network 13

1.4.6 Comparative study of Bitcoin price prediction using WaveNets, Recurrent

Neural Networks and other Machine Learning Methods 13

1.4.7 Bitcoin Price Prediction with Neural Networks .. 14

1.4.8 Predicting the price of Bitcoin using Machine Learning 14

1.4.9 Bitcoin price prediction using Deep Neural Networks 15

1.4.10 Next-Day Bitcoin Price Forecast .. 15

CHAPTER 2 .. 17

PREPROCESSING .. 17

2.1 DATASET ... 17

2.2 EXPLORATORY DATA ANALYSIS .. 18

2.2.1 Features correlation ... 19

viii

2.2.2 Stationarity .. 21

2.2.3 Autocorrelation and Partial Autocorrelation ... 23

1. Autocorrelation .. 23

1.1 Positive and negative autocorrelation .. 24

1.2 The implications of autocorrelation ... 24

2. Partial Autocorrelation ... 25

2.3 DATA PREPROCESSING .. 26

2.3.1 Relevant dataset .. 27

2.3.2 Missing values .. 27

2.3.3 Encoding the categorical data ... 27

2.3.4 Splitting the dataset into train and test sets ... 27

2.3.5 Feature selection ... 28

CHAPTER 3 .. 30

METHODOLOGY .. 30

3.1 WHAT IS A MULTILAYER PERCEPTRON? ... 30

3.1.1 How does a multilayer perceptron works? .. 30

3.1.2 MLP Regression of Scikit-Learn [13] ... 32

1. Preprocessing ... 33

3.1.3 MLP for Keras [14] ... 33

1. Creating the Training and Test dataset .. 34

2. Building the Deep Learning Regression Model... 34

3. Predict and Compute Evaluation Metrics .. 34

3.2 RECURRENT NEURAL NETWORKS (RNN) ... 35

3.2.1 Long Short-Term Memory .. 35

3.2.2 The implementation of LSTM .. 37

1. Creating the Training and Test dataset .. 37

2. Building the LSTM Model... 38

3. Predict and Compute Evaluation Metrics .. 38

3.3 GATED RECURRENT UNITS ... 38

3.3.1 GRU with recurrent dropout Neural Network .. 40

1. Creating the Training and Test dataset .. 40

2. Building the GRU Model ... 40

3. Predict and Compute Evaluation Metrics .. 41

3.3.2 GRU with 2 layers .. 41

1. Creating the Training and Test dataset .. 42

2. Building the GRU with two-layers Model ... 42

3. Predict and Compute Evaluation Metrics .. 42

3.4 CONVOLUTIONAL NEURAL NETWORK (CNN)... 42

3.4.1 CNN Architecture ... 43

3.4.2 CNN implementation [18] .. 44

1. Creating the Training and Test dataset .. 44

ix

2. Building the CNN Model ... 45

3. Predict and Compute Evaluation Metrics .. 45

3.5 TIME SERIES .. 45

3.5.1 Time series Analysis ... 46

3.5.2 Time Series Forecasting .. 46

3.5.3 Autoregressive Integrated Moving Average Model (ARIMA) 46

1. Building the ARIMA Model .. 47

2. Rolling forecast ARIMA model... 48

3. Predict and Compute Evaluation Metrics .. 48

CHAPTER 4 .. 49

SETUP AND ANALYSIS OF THE EXPERIMENTAL STUDY 49

4.1 ARCHITECTURES ... 49

4.1.1 MLP Regression of Scikit-Learn and MLP for Keras 49

4.1.2 Long Short-Term Memory .. 50

4.1.3 GRU with recurrent dropout Neural Network .. 50

4.1.4 GRU with 2 layers .. 51

4.1.5 Convolutional Neural Network (CNN) ... 51

4.2 RUNNING THE EXPERIMENTS ... 52

CHAPTER 5 .. 53

RESULTS .. 53

5.1 TRAIN AND TEST LOSS ... 53

5.2 COMPARISON OF TIME AND MEAN SQUARED ERROR .. 57

5.3 COMPARISON OF TRUE PRICES WITH PRICES OUR MODEL PREDICTED 58

CHAPTER 6 .. 62

CONCLUSIONS AND FUTURE WORK .. 62

6.1 CONCLUSIONS ... 62

6.2 FUTURE WORK .. 63

REFERENCES .. 64

APPENDIX A .. 66

x

LIST OF FIGURES

Figure 1. The transaction of Bitcoin .. 4

Figure 2. Binance’s fee structure ... 6

Figure 3. Neural Network which are organized in layers consisting of a set of

interconnected nodes .. 8

Figure 4. An example for categorizing vehicles using deep learning 9

Figure 5. Validation Accuracy of Logistic Regression, SVM, MLP and CNN models

………………………………………………………………………………………11

Figure 6. Total Asset Value over Time .. 12

Figure 7. Price Prediction for Bitcoin using Random Forest and LSTM RNN 13

Figure 8. Performance Comparison ... 15

Figure 9. Sample from the head of the dataset ... 17

Figure 10. Sample from the tail of the dataset ... 17

Figure 11. Bitcoin price shape through time .. 19

Figure 12. The correlation between the features and the Bitcoin price 20

Figure 13. Seasonal decomposition ... 23

Figure 14. Positive/Negative correlation ... 24

Figure 15. Autocorrelation ... 25

Figure 16. Partial Autocorrelation ... 26

Figure 17. Feature Selection .. 29

Figure 18. MLPs architecture .. 31

Figure 19. Training iterations of MLP Keras... 34

Figure 20. RNN architecture .. 35

Figure 21. LSTM architecture.. 36

xi

Figure 22. Training iterations of LSTM .. 38

Figure 23. Equations behind a GRU layer ... 38

Figure 24. GRU architecture .. 39

Figure 25. Training iterations of GRU ... 40

Figure 26. GRU with two-layers architecture .. 41

Figure 27. Training iterations of GRU with two-layers ... 42

Figure 28. CNN architecture .. 43

Figure 29. Training iterations of CNN ... 45

Figure 30. Arima Model Results .. 47

Figure 31. Summary of MLP from Keras .. 49

Figure 32. Summary of LSTM model.. 50

Figure 33. Summary of GRU model .. 50

Figure 34. Summary of GRU with two-layers model .. 51

Figure 35. Summary of CNN model .. 52

Figure 36. Train and Test Loss during training of a) MLP regression of Scikit-Learn

b) MLP of Keras c) LSTM d) GRU recurrent with dropout neural network e) GRU

with two layers f) CNN .. 56

Figure 37. Mean Squared Error and Time of implementation of each mode 57

Figure 38. Predicted price by MLP of Scikit-Learn model 58

Figure 39. Predicted price by MLP for Keras model ... 59

Figure 40. Predicted price by LSTM model .. 59

Figure 41. Predicted price by GRU with recurrent dropout model 60

Figure 42. Predicted price by GRU with two layers model 61

Figure 43. Predicted price by CNN model... 61

LIST OF ABBREVIATIONS

BTC → Bitcoin Core

SVM → Support Vector Machine

MLP → Multilayer Perceptron

CNN → Convolutional Neural Networks

GASEN → Genetic Algorithm based Selective Neural Network Ensemble

LSTM → Long Short-Term Memory

ResNet → Residual Neural Network

DNN → Deep Neural Network

RNN → Recurrent Neural Network

ARIMA → Autoregressive Integrated Moving Average

GPU → Graphics Processing Unit

CPU → Central Processing Unit

NNAR →Neural Network Autoregression

GRU → Gated recurrent units

ReLU → Rectified Linear Unit

MSE → Mean Squared Error

1

CHAPTER 1

 INTRODUCTION

 The first chapter in the first section describes the research background. In that part I

have talked about the history of Bitcoin, the creation of Bitcoin, how does it work, what is

blockchain and how does it work, Bitcoin value price, Bitcoin trading platforms, prediction

and Deep Learning and how does it work. In the second and third give the purpose and goals

of the thesis, respectively. The fourth section follows up the related work that I took into

consideration when I start working out with this paper.

 1.1 Research Background

 1.1.1 A brief history about Bitcoin

Milton Friedman, economist, and Nobel laureate had foreseen a digital currency

coming as early as 1999, and the possible impact it would have on the global economy as a

whole. Nearly 10 years later, he saw daylight in his dream. In November 2008, Bitcoin first

came into the world through an article called "Bitcoin: A Peer-to-Peer Electronic Cash

System" written by Satoshi Nakamoto, under what is considered to be a pseudonym. It reflects

the first digital currency in the world and the first peer-to-peer payment system. It was

probably Introduced as answer to the 2008 financial collapse, and since the end of 2010,

Satoshi himself has not been seen. The network is autonomous so, it is run by its users. It is

opensource, meaning that the software can be downloaded and distributed for any purpose by

everyone. Unlike a typical fiat currency, the aim of Bitcoin was to create a digital currency,

independent of third-party financial institutions' involvement. Instead, transactions between

network users would be direct electronically and instantly.

The network is not directly influenced by monetary policies and political decisions,

thus free from the potential instabilities (such as inflation) that could result from this.

While many say this is the benefit of Bitcoin, others say it is a big downside. Since it

is supposed to be free of political interference, it is likely, for example, that political decisions

2

affect the demand for bitcoins and ultimately affect the price. Chinese decision, for example,

to bar financial institutions and payment institutions from doing business associated with

bitcoins. Bitcoins are treated as a cryptocurrency. Every bitcoin is divisible to the eighth

decimal and is called one Satoshi. To put it another way, 0.00000001 BTC=1 Satoshi. Since

there is no financial institution, such as a central bank that controls the currency, Bitcoin relies

on customized cryptography to regulate bitcoin creation. While cash is entirely anonymous,

however, Bitcoin transactions are traceable and linked to specific accounts. If one can identify

this account's ownership, one can also see every historic transaction that was made with this

account. A better description would, therefore, be pseudonymous, rather than anonymous.

 1.1.2 The creation of Bitcoins

The development process of bitcoins is called mining. Since the network is self-

sustaining, it must fully function on its own and it must be validated by the system each time

a transaction is made before the transaction can be considered complete. The software is coded

to reward those who provide the computer power needed to verify the transactions – the

"miners".

This validation occurs in blocks, where every single block is a set of transactions that

await verification.

The software is designed to successfully add one block to the overall blockchain every

ten minutes. This blockchain is completely critical to remove double-spending and the

falsified bitcoin circulation. Since every transaction is registered and processed, the system

must always be aware of where each bitcoin is. But just mining does not reward you. Only the

miner who does manage to successfully process the block is rewarded by doing so with newly

created bitcoins. This is done by solving a complex math problem, which every two weeks

becomes more difficult. It is like the exploitation of natural resources makes them scarcer and

harder for others to find. As the mathematical problems became more difficult, more advanced

computers were needed to solve them and a "normal" computer is nowadays insufficient for

this, unlike at the beginning.

3

 1.1.3 How does Bitcoin work?

Bitcoin processing methods are incredibly complex, so we are going to try to skim the

surface of that. Each Bitcoin user receives two keys, one private and one public. You may

define the public key (your "Bitcoin address") as your bank account, and the private key as

your bank card reader, enabling you to authenticate an online transaction. In essence, the

public key can be described as a glass deposit box: everyone can see exactly what is inside,

but only the person with the right key (the private key) can use the money inside.

The whole network is a large zero-sum game, so the system is set up to keep track of

all previously made historical transactions (i.e., all historical deposits and withdrawals from

any existing Bitcoin account). In a sense, one does not transfer the bitcoin itself when

transferring a bitcoin, but rather Bitcoin ownership.

It is very similar to money during a gold standard, when gold certificates could be

exchanged multiple times, without affecting the actual gold itself. Money in your bank account

is not actual money either, but there is a confidence that those numbers are actual money. The

money is never seen when transferring funds to someone else, yet the bank registers and keeps

track of the transaction, and therefore the same transaction cannot be made twice. This is how

the Bitcoin network works too.

Bitcoin is visible. All transactions are publicly available, so “everybody is monitoring

everybody” and a transaction is not fully completed unless the whole system agrees on the

transaction. There must be agreement on the exact history of each bitcoin; where it was

previously, and where it is now. Once the transaction is complete it cannot happen again as

the system will react and deny it unanimously. A Network transaction is irreversible, much

like a cash transaction. It is allocated with a combination of many components to make each

transaction unique and non-replicable. This is called hashing, which simply involves creating

a unique code, using the coin's knowledge history (i.e. where it was previously) which adding

it to the new transaction. The system uses a mathematical algorithm to do this, and the next

time the coin is transferred, the new hash will incorporate information from all its old

addresses as well as from the current one.

4

Figure 1. The transaction of Bitcoin

Since the system is always up-to-date and the latest hash is registered as valid, one can

does not cheat it. Attempting to do this (e.g. by attempting to transfer a bitcoin that has been

transferred before) would result in the machine telling you metaphorically: "This coin is not

legitimate since it is no longer in your possession." If there is an attempt to move the same

funds to two separate accounts concurrently, the network would mark the first one submitted

as "on hold" before it can be added to the blockchain in full.

 1.1.4 What is blockchain and how it works?

 Money exists to facilitate trade. Through the centuries, trade has ended

up incredibly complex. Everybody exchanges with everybody, worldwide. Trade is recorded

in bookkeeping. This data is regularly confined and closed to the public. That is why,

we utilize third parties and middlemen we trust to encourage and endorse our exchanges.

Think of governments, banks, bookkeepers, notaries, and the paper money in your wallet. We

call these 'Trusted Third Parties'. This brings us to the pith of Bitcoin.

Bitcoin’s program empowers an arrangement of computers to keep up collective

bookkeeping through the web. This bookkeeping is public and accessible in

one computerized ledger which is completely distributed over the network. We call this the

Blockchain.Within the Blockchain, all exchanges are logged counting information on the

date, time, members, and amount of every single transaction. Each node within

the arrange claims a full duplicate of the Blockchain. Based on complicated state-of-the-

art numerical principles, the exchanges are confirmed by the so-called Bitcoin Miners,

who keep up the ledger. The scientific standards also guarantee that these nodes

5

automatically and persistently agree about the current state of the record and each exchange

in it.

 In case anybody attempts to degenerate an exchange, the nodes will not arrive at a

consensus and subsequently will deny joining the exchange within the Blockchain. So,

each exchange is public, and thousands of nodes collectively agree that an exchange has

occurred on date X at time Y. It is like there is a public accountant display at each transaction.

This way, everybody has access to a shared single source of truth. That is why we

can continuously believe Blockchain. The ledger does not care whether a bitcoin speaks to a

certain quantity of euros or dollars or anything else of esteem or property for that matter. Users

can choose for themselves what a unit of bitcoin represents.

 1.1.5 Bitcoin trading platforms

 There are many online bitcoin exchanges today. A few major actors such as Binance,

Huobi Global, and Coinbase Pro currently dominate the market, but there are plenty of other

trading platforms available.

 In this thesis, I have chosen to explore the platform called Binance. It is Bitcoin 's

largest and fast-growing exchange that has built the largest ecosystem around crypto-powered

finance. Using a debit/credit card, you can buy bitcoin on this platform, then trade it for other

coins. The platform also provides a fully functional mobile app, and this is by far the most

widely used Bitcoin exchange in the world. It has evolved tremendously since its ICO to date

and is now ranked in # 1 in the world's top 10 Bitcoin exchanges. Binance provides the largest

bitcoin marketplace. Being a centralized exchange has taken a unique approach to expand its

business and also gives day traders a decent discount. You need to register using your email

ID to get started with Binance and the process is pretty simple & fast. Binance is offering a

native coin called BNB which is probably the other crypto you could HODL for longer

periods. The fee structure of this platform is special too.

https://coinmarketcap.com/exchanges/binance/

6

Figure 2. Binance’s fee structure

To begin with, they have a standard trading fee of 0.1 percent that is already quite

smaller than other peers. You will get a 25 percent refund on your trading operation if you

keep the BNB token. This exchange has more benefits, such as:

• Bitcoin saving account: Bitcoin gets interested

• Exchange futures and margins

• Throwing

• No KYC for every day 2 BTC withdrawal

 1.1.6 Bitcoin value and price

A bitcoin is divisible in 100 million units. And each unit is

both independently identifiable and programmable.

This implies that users can assign properties to each unit. Users can program a unit

to speak to a Eurocent, or a share in a company, a kilowatt-hour of energy, or

a digital certificate of ownership. Because of this, Bitcoin is much more

than essentially cash and payments: A Bitcoin can represent many kinds of property. A

thousand barrels of oil, award credits, or a vote during elections,for example.

According to CoinMarketCap, the esteem of all the bitcoins within the world was $160.4

billion as of March 4, 2020. For comparison, Forbes estimated the net worth of Amazon

(AMZN) founder Jeff Bezos at $115.5 billion. That produces the market cap of

Bitcoin just over a third bigger than Bezos' fortune. Since this is not a low price,

approximately 10 million people are investing in it. This would be exceptionally curiously for

investors to figure the Bitcoin esteem but at the same time making it troublesome to predict.

7

 1.1.7 Prediction

In reality, no one can predict a cryptocurrency 's future but if we could, we would all

be billionaires. Prices in the world of cryptocurrency are very volatile. This means a coin 's

value will go up or down very quickly, sometimes with no reason as to why. That makes it far

more difficult to predict prices than traditional markets. There are many algorithms used on

stock market data for a price forecast. However, the parameters affecting Bitcoin are different.

Therefore, it is necessary to foretelling the Bitcoin value so that correct investment decisions

can be made. The price of Bitcoin does not depend on the business events or intervening

government authorities, unlike the stock market. Thus, to forecast the value we feel it is

necessary to leverage machine learning technology to predict the price of Bitcoin.

 1.1.8 Deep learning

Deep learning [1] is a technique of machine learning, teaching computers to do what

comes naturally to humans: learn by example. It is a key technology behind driverless cars,

enabling them to identify a stop sign or discern a pedestrian from a lamppost. Deep learning

is the secret to voice control in consumer devices such as phones, laptops, televisions, and

hands-free orators.

In deep learning a computer, the model learns directly from images, text, or sound to

perform classification tasks. Deep learning models can achieve cutting-edge precision, often

exceeding output at the human level. Models are trained using a wide collection of labeled

data and architectures of neural networks, which include several layers.

In a word, precision. Deep learning achieves accuracy in identification at levels higher

than ever before. This helps consumer electronics meet user expectations and is critical for

safety-critical applications such as driverless automobiles. Recent advances in deep learning

have improved to the point where deep learning outperforms humans in certain tasks, such as

image classification of objects.

8

Though deep learning was first theorized in the 1980s, it has only recently become

useful for two key reasons:

1. Deep learning involves large quantities of labeling data. For example, the creation of

driverless cars involves millions of images and thousands of hours of video.

2. Deep learning calls for considerable computing power. High-performance GPUs have

a parallel architecture that is effective for deep learning. Combined with clusters or

cloud computing, this allows development teams to shorten training times from weeks

to hours or less for a deep learning network.

1. How Deep Learning works?

Sometimes we refer to the models of deep learning, like deep neural networks. This is

because most deep learning approaches use neural network architecture. “Deep” is the notion

typically referring to the number of hidden layers within the neural network. The number of

hidden layers covering a traditional network is normally 2-3, although deep networks may be

as high as 150. Deep learning models are trained using large sets of labeled data and

architectures in the neural network that learn features directly from the data without the need

for manual extraction.

Figure 3. Neural Network which are organized in layers consisting of a set of

interconnected nodes

One of the most popular types of deep neural networks is known as neural convolution

(CNN or ConvNet). A CNN combines learned features with input data and uses 2D

9

convolution layers to make this architecture suitable for 2D data processing, such as images.

This model removes the need for manual extraction of the element, so you do not have to

recognize the features used to classify images. It operates by directly extracting features from

pictures. The related features are not pre-trained; while the network trains on a set of pictures,

they are taught.

This automated extraction of a feature makes deep learning models highly accurate for

computer vision tasks such as classification of objects. CNN's learn to use tens or hundreds of

hidden layers to detect different features of an image. Each hidden layer increases the

complexity of features learned in the image. For example, the first hidden layer might learn

how to detect edges, and the last one would learn how to detect more complex shapes

specifically tailored to the shape of the object we are trying to recognize.

Figure 4. An example for categorizing vehicles using deep learning

1.2 Purpose

 The main purpose of this thesis is to see the evaluation of Bitcoin price using some

traditional neural networks and some time-series models and later to compare the results of

each model with each other.

10

1.3 Goals

The goal of this thesis is to be able to implement all models that we can make a straight

comparison between each of them. The main focus of this work is going to be directed

especially in those perspectives:

• Implementing all the neural networks and time series models.

• Being able to find the time and mean squared error for each of them and compare

the conclusion between each-other.

1.4 Related work

 1.4.1 Using Bitcoin Ledger Network Data to Predict the Price of

Bitcoin

The first paper that I took into consideration was “Using Bitcoin Ledger Network Data

to Predict the Price of Bitcoin” by John Mern, Spenser Anderson and John Poothokaran. [2]

They have divided this study into two phases. In the first phase, multiple model types are

compared by them for determining the best choice for further optimization. For doing that,

they have used logistic regression and SVMs (support vector machines) and deep-learning

approaches (MLP, CNN). In the second phase, they optimized the training process for the

highest performing model, and they evaluated the final performance of this model. As is

shown in the figure below, they concluded that the CNN model had the best classification

accuracy and also the best regression performance. After they found the highest performing

model they were focused only on that model. They extended through June 2014 the training

set and through December 2014 the test set. In this way, they used June 2014 as the validation

set to perform a hyper-parameter sweep over model training parameters. 59.7% was the

accuracy throughout the entire test set, and during the first month of the test set, the accuracy

was 66.7%. They concluded that the convolutional neural network could generate a predictive

model of Bitcoin price that generalized reasonably well to market conditions.

11

Figure 5. Validation Accuracy of Logistic Regression, SVM, MLP and CNN models

1.4.2 Bitcoin Price Prediction Using Ensembles of Neural Networks

The second paper that I took into consideration was “Bitcoin Price Prediction Using

Ensembles of Neural Networks”. [3] The relationship between the features of Bitcoin and the

next day change in the price of Bitcoins are the topics that this paper explores. All this thing I

mentioned above is made by using an Artificial Neural Network ensemble approach called the

Genetic Algorithm which is constructed by means of Multi-Layered Perceptron. They have

considered a set of 200 features of the cryptocurrency over a span of 2 years for the Bitcoin

price. For the prediction of the next day direction of the Bitcoin price, they have used the

ensemble. Over a span of 50 days, they also have compared a trading strategy based on the

ensemble with a “previous day trend following” trading strategy. In that comparison, the

trading strategy based on GASEN had a higher value than “the previous day trend following”.

This is shown in the figure below. They also have tested the dataset with the MLP model in

the ensemble. As is shown in the figure below, the MLP model in the ensemble did not perform

as well as the ensemble. They concluded that GASEN was the best for the classification task.

Its accuracy consists of 58% to 63%. And with a simple trading strategy, this percentage will

rise close to 85%.

12

Figure 6. Total Asset Value over Time

1.4.3 A Comparative Study of Bitcoin Price Prediction Using Deep

Learning

The third article that I took into consideration was “A Comparative Study of Bitcoin

Price Prediction Using Deep Learning” by [4]. This article was published on 25 September

2019. Authors have used various deep-learning models for predicting Bitcoin prices. Some of

those models are long short-term memory (LSTM), deep residual networks (ResNet), deep

neural network (DNN), convolutional neural networks (CNN), and some combinations from

them. Firstly, they have used regression to predict the future Bitcoin price and after they have

used classification to see if the future price will go up or down. For the first part, the LSTM

was the model that performed higher than others. And for the second one was DNN. Despite

this, they concluded that none of the models was the winner. According to them, all the models

were comparable to each other.

 1.4.4 Prediction of Bitcoin Price using Data Mining

The fourth paper that I took into consideration was “Prediction of Bitcoin Price using

Data Mining” by Dharminder Singh Virk [5]. This paper was published by the School of

Computing National College of Ireland. This paper with the mean of data mining predicts the

13

accuracy of Bitcoin price. The author has created a new dataset from ten cryptocurrencies

datasets which has a strong correlation with Bitcoin. For finding out the best accuracy he has

used Support Vector Classifier, Neural Network Classifier, Random Forest Classifier, and

Gradient Boost Classifier. And he concluded that the highest accuracy was reached by the

support vector classifier. This paper has used Recurrent Neural Network, Gradient Boosting

Regressor, and Recurrent Neural Network methods in regression. Here, the highest value of

R-squared was reached by Gradient Boosting Regressor.

1.4.5 Prediction of Bitcoin using Recurrent Neural Network

The fifth paper that I took into consideration was “Prediction of Bitcoin using

Recurrent Neural Network” [6]. This paper has used Random Forest and Long Short-Term

Memory RNN algorithms for Bitcoin price prediction. After that, the author has made a

comparison between these algorithms. This comparison is made by using different sizes and

amounts of data. He also has considered the complexity of the database and also the time and

the speed. In the end, he concluded that for a complex database the best prediction is made by

LSTM RNN.

Figure 7. Price Prediction for Bitcoin using Random Forest and LSTM RNN

1.4.6 Comparative study of Bitcoin price prediction using WaveNets,

Recurrent Neural Networks and other Machine Learning Methods

The sixth paper that I took into consideration was “Comparative study of Bitcoin price

prediction using WaveNets, Recurrent Neural Networks, and other Machine Learning

Methods” by Leonardo Felizardo, Roberth Oliveira, Emilio Del-Moral-Hernandez and Fabio

14

Cozman. [7]. For predicting Bitcoin price this article has used different methodologies like

LSTM, ARIMA, SVM, Random Forest, and WaveNets. According to this paper when the

prediction gap increases all models performed badly. This was indicated by error metrics.

Models performed equally badly for long-term predictions too. This showed that the accuracy

was affected more from random components. According to these results, the authors

concluded that a linear model is more efficient in a time-series that has a random component.

1.4.7 Bitcoin Price Prediction with Neural Networks

The seventh paper that I took into consideration was “Bitcoin Price Prediction with

Neural Networks” by Kejsi Struga and Olti Qirici . [8] This paper has used the LSTM version

of RNN for predicting Bitcoin price. They have predicted the Bitcoin price for 30 and 60 days

ahead. They concluded that using the deep neural network has made us understand better

Bitcoin and LSTM architecture.

1.4.8 Predicting the price of Bitcoin using Machine Learning

The eighth paper that I took into consideration was “Predicting the price of Bitcoin

using Machine Learning” by Sean McNally. [9] It was presented at the School of Computing

National College of Ireland on 9t September 2016. This paper aimed to find out with what

precision Bitcoin price direction can be predicted. To archive this goal the author has

implemented RNN and LSTM models. The highest accuracy has archived by LSTM. For a

comparison to a deep learning model, the author has implemented the ARIMA, a time series

forecasting model. Which performed poorly in comparison with the deep learning models.

And in the end, this paper has benchmarked the RNN and LSTM on a GPU and a CPU. The

author has chosen the same batch size and the same temporal length for both models. He

concluded that in terms of overall training time, the LSTM trained faster on the GPU then the

RNN. This is shown in the table underneath.

15

Figure 8. Performance Comparison

1.4.9 Bitcoin price prediction using Deep Neural Networks

The ninth paper that I took into consideration was “Bitcoin price prediction using Deep

Neural Networks” by Michelle Appel. [10] It was presented at the Artificial Intelligence

University of Amsterdam in June 2016. This paper has predicted Bitcoin's price through the

LSTM algorithm. The author has made an experiment to see the effect of different feature

combinations. For this experiment, he found a certain optimal combination of 9 features. After

that, the author has used different prediction delays and different sequence lengths for testing

the effectivity of prediction. According to those tests he found out that a prediction delay of 0

and a sequence length of 1 can get the best absolute prediction.

1.4.10 Next-Day Bitcoin Price Forecast

The tenth paper that I took into consideration was “Next-Day Bitcoin Price Forecast”

by Ziaul Haque Munim, Mohammad Hassan Shakil, and Ilan Alon. [11] It was published at

Risk and Financial Management on 20 June 2019. This paper has used Neural Network

Autoregression (NNAR) and Autoregressive Integrated Moving Average (ARIMA) model for

analyzing forecasts of Bitcoin price. For doing that the authors have used both with and

without re-estimation of the forecast model for each step. They have used two different

training and testing samples for cross-validation. They concluded that the best performance in

the first training sample has archived by NNAR while the ARIMA performed better in the

16

second training sample. In the two test-sample forecasts ARIMA performed better and this

performance was identical for ARIMA models with and without re-estimation.

17

CHAPTER 2

PREPROCESSING

The second chapter, in the first section, describes the dataset. In the second section, I

have used some exploratory data analysis like feature correlation, stationarity, autocorrelation,

and partial correlation, to explain our dataset. The third section describes the preprocessing of

our dataset. The preprocessing has done in some steps like finding the null values, encoding

categorical data, splitting the dataset into training and test sets, and feature selection.

2.1 Dataset

For doing this study is needed a dataset with prices of Bitcoin during the last years.

So, I have chosen a dataset that contains this information from 2011 to 2020. [12]

Figure 9. Sample from the head of the dataset

Figure 10. Sample from the tail of the dataset

My dataset has 3333 rows and 8 columns. Let me explain the columns:

18

1. Bitcoin Core Price BTC → Price of Bitcoin.

2. Money Supply → The Bitcoin Core amount in circulation.

3. Price Volatility → The annualized price volatility changes daily. The volatility

of price is measured as the standard deviation in regular returns, multiplied to

annualize by the square root of 365, and expressed as a decimal.

4. Daily Transactions → The number of transactions included in the everyday

blockchain.

5. Block size → Bitcoin Core (BTC) transactions are collected by miners

into separate data packets, called blocks. Each block is cryptographically linked to the

previous block, creating a "blockchain." As more people use the Bitcoin Core (BTC)

network for Bitcoin Core (BTC) transactions, the size of block increases.

6. Transaction Fees → Total amount of Bitcoin Core (BTC) fees, measured in

Bitcoin Core (BTC), earned by all miners within a 24-hour period.

7. Inflation rate → The federal fund rate will decide the shape of the

economy’s future interest rate.

2.2 Exploratory data analysis

And now let us have a look in the picture below. There is a graph that is created from

our dataset and presents the changes in Bitcoin price over past years. Like we see above from

2011 to 2016 the price of Bitcoin is almost 0. At the beginning of 2017, the price of Bitcoin

has started to increase. The end of 2017 reached the highest price for our dataset. At the

beginning of 2018, the price of Bitcoin has decreased again. Through this year the price was

increased and decreased very often. In the middle of 2019, the price had a second higher price

for our dataset. But at the beginning of 2020, the price dropped again. How we can see in this

illustration the price of Bitcoin changes very often. For that reason, it is important to predict

it. This thesis aims to do that prediction for the following months of 2020.

19

Figure 11. Bitcoin price shape through time

2.2.1 Features correlation

Data and correlation of features is considered an important step in the data preproces

sing selection phase, this happens especially for continuous data types of the features.

So, what is data correlation? Data Correlation: Is the way how we understand the relation in

your dataset between multiple variables and attributes; You can get some insights by using

Correlation, like:

• One or more attributes are contingent upon another attribute or trigger of another

attribute.

• It combines one or more attributes with other attributes.

So, what are the beneficials of Correlation?

• Correlation may help to predict one attribute from another (Great way of imputing

missing values).

• The correlation can (sometimes) indicate that a causal relationship exists.

• For many modelling techniques, correlation is used as a basic quantity

20

Let us take a closer look at what this means, and how useful correlation can be. There

are three correlations:

1. Positive correlation: means that if we see increases of feature A, feature B will increase

as well or if we see decreases of feature A, feature B will decrease as well. The

relationship is linear.

2. Negative correlation: means that if we see increases of feature A, the feature B will

decrease and vice versa.

3. Any Correlation at all: These two attributes are not related.

Each of these types of correlation may exist in a spectrum represented by values from

0 to 1. If values are 0.5 or 0.7 the correlation is highly positive. For a strong and perfect positive

correlation, then a correlation score value of 0.9 or 1 will represent the result. If there is a strong

negative correlation, then a value of -1 will represent it.

In our Bitcoin price prediction study, we are interested to show the relationships of the

Bitcoin price variable with other variables that are part of our dataset. The figure underneath

shows that.

Figure 12. The correlation between the features and the Bitcoin price

21

For explaining the figure above, we need to know the meaning of each color that is

shown in it.

1. Blue → High positive correlation

2. Red → High negative correlation

3. White → No correlation between two features

As is shown at the figure the Bitcoin price variable has a positive correlation with four

features which are money supply, daily transactions, block size, and transaction fees. Three

first features have a dark blue that means that the correlation between them and Bitcoin price

is higher. The fourth one has a lighter blue which means that the correlation with Bitcoin price

is lower. Our variable has a negative correlation with the inflation rate and no relation with

price volatility.

2.2.2 Stationarity

A time series is stationary when one of its statistical properties are all constant over

time, such as mean, variance, autocorrelation, etc. Most statistical forecasting methods assume

that mathematical transformations can render the time series approximately stationary (i.e.,

"stationarized"). A stationary series is relatively easy to predict: you simply predict that in the

future, its statistical properties will be the same as they were in the past. The predictions for

the stationaries series can then be "untransformed" to obtain predictions for the original series

by reversing whatever mathematical transformations were previously used. Consequently,

when searching for an appropriate predictive model, finding the sequence of transformations

required to stationarize a time series often provides important hints. An important part of the

process of fitting an ARIMA model is the stationarisation of a time series by differentiating

(where required). Another reason to try to stationarize a time series is to get meaningful sample

statistics like means, variances, and correlations with other variables. Such statistics as future

conduct descriptors are only useful if the series is stationary. For example, if the series

22

increases continuously over time, the mean and variance of the sample will increase with the

size of the sample, and they will also underestimate the mean and variance of future periods.

And if a series' mean and variance are not well-defined then its correlations with other

variables are not either. You should, therefore, be careful in trying to extrapolate regression

models that are fitted to non-stationary data. Most market and economic time series are far

from stationary when represented in their original measuring units and will also usually

display patterns, cycles, random walking, and other non-stationary behavior, even after

deflation or seasonal adjustment. If the series has a stable long-run pattern and appears to

return to the trend line after a disturbance, it can be stationarized by de-trending (e.g. by fitting

a trend line and subtracting it out before fitting a formula, or by using the time index as an

independent variable in a regression or ARIMA model), either in combination with logging

or deflation. It is said a series like this is trend stationary. Nevertheless, even de-trending is

sometimes not enough to make the series stationary, in which case it may be necessary to

transform it into a series of differences from period to period and/or from season to season. If

the mean, variation, and self-correlations of the original series are not constant in time, maybe

the statistics of the series shifts between times or between seasons will be constant even after

detrending. This is called difference stationary. (Sometimes it can be hard to tell the

difference between a trend-stationary and a differential-stationary series, and a so-called unit

root test can be used to get a more definitive answer.)

For understanding if our data is stationary, I have performed a seasonal decomposition

of the data. This decomposition transforms our time series model into four different time

series. These four components series are:

1. Observed → Actual price movements.

2. Trend → The series increases or decreases in value.

3. Seasonality → Patterns which repeat with a fixed time period.

4. Residual → The part of the original time series left after removing seasonal and

trend series.

23

All these series components I have summarized in the graph below. The trend there is

not constant that means that data is non-stationary.

Figure 13. Seasonal decomposition

2.2.3 Autocorrelation and Partial Autocorrelation

Two things that I will examine for explain our data are autocorrelation and partial

correlation.

1. Autocorrelation

Autocorrelation is a data feature that indicates the degree of similitude over successive

time intervals between the values of the same variables.

If you have a number series and there is a pattern such that values can be predicted based on

24

preceding values in the series, the number series is said to exhibit autocorrelation. Often called

serial correlation and serial dependency. The presence of autocorrelation in a model's residuals

is a sign the model may be unsound. A correlogram (ACF plot) is used to diagnose

autocorrelation and can be tested using the Durbin-Watson test. The auto part of

autocorrelation is self-related from the Greek word, and autocorrelation means data that is

correlated to itself, rather than being correlated with some other data.

1.1 Positive and negative autocorrelation

The above example shows positive autocorrelation of the first order, where the first order

shows that observations that are one apart are correlated, and positive means that the

correlation between the observations is positive When data showing a positive first order

correlation is plotted, as on the left, the points appear in a smooth snake-like curve. If

connected, the points form a zigzag pattern we are dealing with negative first-order

correlation, as shown on the right.

Figure 14. Positive/Negative correlation

1.2 The implications of autocorrelation

When autocorrelation is observed from a model in the residuals it indicates that the

model is incorrectly defined (i.e., wrong in some sense). A cause is that the model has missing

25

some key variables or variables Where data is collected over time or space, and this is not

specifically taken into account by the model, autocorrelation is probable. For example, if a

weather model is wrong in one suburb, it will probably be wrong in a neighboring suburb the

same way. The fix is either to include the missing variables or to model the autocorrelation

explicitly (e.g., using an ARIMA model). The existence of autocorrelation means that there

are misleading computed standard errors, and consequently p-values.

For examining the autocorrelation of my data, I have built the correlogram.

Figure 15. Autocorrelation

The plot begins at lag 1 with a relatively high autocorrelation (1), which slowly

decreases. The decreasing autocorrelation is typically linear. This means that our data has a

moderate positive autocorrelation which provides moderate predictability.

The autocorrelation plot indicates a non-stationary process and suggests an ARIMA model.

2. Partial Autocorrelation

Partial autocorrelations are useful for identifying an autoregressive model order.

Before doing the partial autocorrelation, we must do autocorrelation. If this autocorrelation

concludes that the appropriate model is an AR model, we must do then the partial

autocorrelation which helps to examine the order of this model.

The partial autocorrelation of an AR(p)process is zero at lag p+1 and higher.

26

In partial correlation, we search for the point on the plot where the partial

autocorrelation coefficients are effectively zero. To this end, it is helpful to position a 95

percent confidence interval for statistical significance.

For examining the autocorrelation of my data, I have built the partial autocorrelation plot.

Where:

Vertical axis → Coefficient of partial autocorrelation at lag h.

Horizontal axis → Time lag h.

If we see carefully on the plot, we can see a blue border and this blue border is our 95

% confidence interval.

Our differentiated data partial autocorrelation plot with 95 per cent confidence bands

shows that only the first and second lag partial autocorrelations are significant. This suggests

 a Model AR (2).

Figure 16. Partial Autocorrelation

2.3 Data preprocessing

In Machine Learning, data preprocessing is a critical step that helps to enhance data q

uality to facilitate the extraction of useful insights from the data. This technique makes the

raw data suitable for Machine Learning models for construction and training. Data

27

preprocessing in Machine Learning is, in simple words, a technique of data mining that

transforms raw data into an understandable and readable format. There are some steps for

doing the preprocessing of the data.

2.3.1 Relevant dataset

 First, we need a relevant dataset. As we showed in the first section of this chapter, we

own it.

2.3.2 Missing values

Secondly, we must identify the missing values. This is a step that I did not make in my

dataset because it has not any null values.

2.3.3 Encoding the categorical data

The next step is to encode the categorical data. Categorical data means that the data

has a textual nature, but Machine Learning is a mathematical model and needs numbers to

work. For this reason, is needed the encoding of this textual data. If we see our dataset in the

first section of this chapter, we will realize that our dataset has any categorical data. This

means that I do not need to do this step.

2.3.4 Splitting the dataset into train and test sets

In the Machine Learning model, each dataset must split into two separate sets: train

and test sets. A dataset subset is defined from the training set for the machine learning model

being trained. We are already conscious of the output here. On the other hand, a test set is the

subset of the dataset used to test the model for machine learning. This test set is used by

28

Machine Learning to predict outcomes. The dataset is generally split into ratio 70:30 or 80:20.

This means 70% or 80% goes for training the model while 20% or 30% goes for testing.

I have done this step of preprocessing to my dataset. Set of training runs from 06 February

2011 to 30 September 2019. It contains 3183 days. While the set of test runs from 25 October

2019 to 22 March 2020 and it contains 150 days. I have defined a function that has created X

inputs and Y labels. Where X labels are values from a future point of time and Y values from

the past. In our function, we have put the look_back parameter which tells us the amount of

these values. In my case, I have set the look_back parameter to 30. This means that I have

predicted the value based on the previous 30 days values. After the look_back function, I have

reshaped the train and test sets to suit the model requirements. Due to the LSTM models are

scale sensitive I have used the MinMaxScaler to scale the dataset. I have made the dataset

suitable for time series forecasting and also for Keras. In the end, I have checked the

normalization and the shapes.

2.3.5 Feature selection

Feature selection is one of the most important aspects of data mining. It is essentially

concerned with extracting useful data features to make it easier for machine learning models

to implement their predictions. To check the features’ behavior concerning Bitcoin prices, we

plot the data for all 20 features over the entire period of time as shown in Figure 14 below.

According to this, I concluded that the most correlated features are Google trends, interest

rates, and Ripple price.

29

Figure 17. Feature Selection

30

CHAPTER 3

METHODOLOGY

This chapter will give an overview of the whole work done for this thesis. The first

section explains the multilayer perceptron, MLP of Scikit-Learn implementation, and MLP

from Keras implementation. The second section explains the RNN model, the LSTM model,

the architecture of LSTM, and its implementation. The third part explains GRU with recurrent

dropout Neural Network and its implementation. In the fourth section, we are going to explain

the GRU with two layers model and also its implementation. The fifth part explains the CNN

model, the architecture and, also the implementation of this model. Later on, in this chapter,

the time series, the ARIMA model and its implementation are going to be explained.

3.1 What is a multilayer perceptron?

The multilayer perceptron (MLPs) is used for classifying datasets that are not linearly

separable. This is achieved through the use of a stable and complex architecture to learn

models of regression and classification for difficult datasets.

3.1.1 How does a multilayer perceptron works?

The Perceptron is made of an input layer and an output layer which are completely

connected. MLPs have the same input and output layers but may have numerous hidden layers

in between the previously layers, as we can see at the figure below.

31

Figure 18. MLPs architecture

The algorithm for the MLP is shown below:

1. The inputs are pushed forward through the MLP by taking the real number of the

input with the weights that exist between the input layer and also the hidden layer (W-

H). This real number yields a price at the hidden layer. We are not pushing forward

that value as we would with a perceptron though.

2. MLPs use activation functions at each of the layers they calculate. There are several

activation functions to discuss: tanh, sigmoid function, rectified linear units (ReLU).

Move the measured output into each of those activation functions at the actual layer.

3. When the calculated output has been pushed through the activation function at the

hidden layer, move it to the next layer inside the MLP by taking the real number with

the corresponding weights.

4. Repeat steps two and three until the output layer is reached.

5. At the output layer, the calculations will either be used for a backpropagation

32

algorithm that corresponds to the activation function that was selected for the MLP (in

the case of training) or a call is going to be made supported the output (in the case of

testing).

In this study, I will implement two types of MLP. First, I will use the MLP Regression

of Scikit-Learn and then the MLP from Keras.

3.1.2 MLP Regression of Scikit-Learn [13]

Some important variables in Machine Learning are hyperparameters. They are very

important for efficiency. So, for determining them I will use a grid search. But these

parameters must be optimal and for this reason, I will use cross-validation. Cross-validation

is a robust method which helps us in finding optimal hyperparameters.

 Here are some parameters I have used in this method:

1. In grid search, I have specified the hidden layer number (1), the learning rate

initial (impacts the outcome of the training), the hidden layer size, the momentum,

and the alpha.

2. a large number of epochs (500) and activated the early stop.

3. a batch size equal to 125. Since we are working with time series, no need for

shuffling.

4. the tanH as an activation function because before converging to zero it can sustain

for a long time.

5. a default adaptive learning rate. The adaptive learning rate keeps the learning rate

constant to the learning rate initial as long as training loss keeps decreasing.

Anytime two consecutive epochs fail to decrease training loss by a minimum of

tol or fail to increase validation score by a minimum of tol and if ‘early_stopping’

is true, the present learning rate is divided by 5.

6. a momentum term to avoid staying stuck at a local minimum. This momentum

term is a value (between 0 and 1) and is used for increasing the size of the steps

that are taken towards the minimum by trying to jump from local minima. We

33

can use momentum for smoothing out the variations if the gradient is changing

direction.

7. the Adam optimizer solver to avoid overfitting.

1. Preprocessing

I have prepared our dataset according to the requirements of the model. For doing that

I have split it into train and test parts. For creating X inputs and Y label for our model I have

defined a function. Based on some previous and current values I have predicted the future

value. So, X inputs are values from the past while Y label is the value from the future. By

using the parameter look_back in our function I have set the amount of these values. The shape

of the training set from the past values is 3153 observations of 210 variables, and the shape of

the test set from the past values is 120 observations of 210 variables. Meanwhile, the shape of

the training set from the future values is 3153 observations of 1 variable, and the shape of the

test set from the future values is 120 observations of 1 variable.

3.1.3 MLP for Keras [14]

The second model of MLP that I have used in my study is MLP for Keras.

Parameters that I have used in my code for this model:

1. a batch size equal to 125.

2. I have iterated 500 times maximum over the entire training set.

3. a dropout with probability 0.1.

4. The fully connected layer will have 1 neuron

5. a 0.1 for factoring weights penalty.

34

[15] The steps I have used for implementing the model:

1. Creating the Training and Test dataset

The shape of the training and test set is the same. (120 observations of 1 variable).

2. Building the Deep Learning Regression Model

As I specified above, I have built a regression model with the use of Keras. First, I

have defined the model. I have used a Sequential model because our network is made of a

linear stack of layers. There I have added 2 stacked dense layers. Secondly, I have used tanH

as an activation function. In the next step, I have defined an optimizer and the loss measure

for training. Our loss measure is the mean squared error and for the optimizer, I have used

Adam because his main advantage is that we do not need to specify the learning rate.

 After that, I have fit the model on the training dataset. I have taken a large number of

epochs (500) and activate the early stop. As is shown in the figure underneath.

Figure 19. Training iterations of MLP Keras

3. Predict and Compute Evaluation Metrics

After that I got prediction and then I have made some transformation to be able to

calculate MSE (mean squared error) properly in USD.

Before I start with the implementation of the LSTM model, I have given a brief

description of RNN and LSTM.

35

3.2 Recurrent Neural Networks (RNN)

If we want to learn information about the immediately previous step, we can use RNN.

[16]

Figure 20. RNN architecture

At the figure above it is shown a typical RNN where:

X(t) → input

h(t) → output

A → neural network (gets information from the previous step in a loop)

But sometimes, in some cases, RNN does not work practically. Why does that happen?

Below is the reason:

The information during the training of RNN goes into a loop again and again. This

causes very large updates to the weights of the neural network model. But during an update

occurs the accumulation of error gradient and all those large updates result in an unstable

network. The worst thing that can happen here is the overflow of weight values and make

them very large or vanish of them and make them NaN values.

3.2.1 Long Short-Term Memory

The above problem of RNN brought the need for developing a new version of RNN

model that is called Long Short-Term Memory. [17] To control the memorizing process this

model uses gates. Below I have talked a little bit about the architecture of LSTM.

36

Figure 21. LSTM architecture

At the figure above it is shown a typical LSTM where:

a) X → Scaling of information

b) + → Adding information

c) σ → Sigmoid layer

d) tanh → tanh layer

e) h(t-1) → Output of last LSTM

unit

f) c(t-1) → Memory from last

LSTM unit

g) X(t) → Current input

h) c(t) →New updated memory

i) h(t) → Current output

• tanh is a function that overcomes the vanishing gradient problem.

• Sigmoid is used to forget or remember the information. (output 0 or 1)

In LSTM the information passes through many units. Below I have shown the

connection between three main components.

37

1. The input X(t) and h(t-1) are taken by the sigmoid layer which decides what to remove

from old output (by outputting a 0).

2. When new information comes, a sigmoid layer should decide which of them should be

updated or ignored. A new vector that contains all the values from the new input is created

from a tanh layer. The sigmoid layer and the tanh one are multiplied for updating the new

cell state. To give c(t) the new cell state is added to old memory c(t-1).

3. In the final step, we are going to decide which part of the cell state we are going to output.

This thing will be done by a sigmoid layer. For generating all possible values, we use a

tanh to put the cell state. After that, we multiply those values with the output of the sigmoid

gate. In this way, we only output the parts we want to.

3.2.2 The implementation of LSTM

Parameters that I have used in my code for this model:

1. a batch size equal to 125.

2. I have iterated 500 times maximum over the entire training set.

3. a dropout with probability 0.1.

4. The fully connected layer will have 1 neuron

5. a 0.0001 for factoring weights penalty.

The steps I have used for implementing the model:

1. Creating the Training and Test dataset

The shape of the training and test set is the same. (120 observations of 1 variable).

38

2. Building the LSTM Model

 First, I have defined the model. I have used a Sequential model because our network

is made of a linear stack of layers. There I have added one LSTM layer and one dense layer.

Secondly, I have used tanH as an activation function. In the next step, I have defined an

optimizer and the loss measure for training. Our loss measure is the mean squared error and

for the optimizer, I have used Adam because his main advantage is that we do not need to

specify the learning rate.

After that, I have fit the model on the training dataset. I have taken a large number of

epochs (500) and activate the early stop. As is shown in the figure underneath.

Figure 22. Training iterations of LSTM

3. Predict and Compute Evaluation Metrics

After that I got prediction and then I have made some transformation to be able to

calculate MSE (mean squared error) properly in USD.

3.3 Gated recurrent units
The idea and the equations behind a GRU layer are similar to that of an LSTM layer.

Figure 23. Equations behind a GRU layer

39

A reset gate r and an update gate z are two gates of GRU. The combination of the new

input with the previous memory is made by the reset gate. For defining the space of previous

memory for keeping around is used the update the gate. We can arrive in an RNN model if we

set the reset to all 1’s and update the gate to all 0’s. In this model, the idea of learning long-

term dependencies is the same as in an LSTM but with some changes.

• A GRU is made of two gates, an LSTM is made of three gates.

• The internal memory () does not exist in the GRU model.

• The reset gate r is applied to the previous hidden state, the input and forget gates are

coupled by an update gate z. Meanwhile, in an LSTM, the responsibility of the reset

gate is to split up into both r and z.

• In GRU, when computing the output, we don’t apply a second nonlinearity.

Figure 24. GRU architecture

40

3.3.1 GRU with recurrent dropout Neural Network

Parameters that I have used in my code for this model:

1. In each iteration, I have considered 125 training examples at once.

2. I have iterated 20 times over the entire training set.

3. a dropout with probability 0.01.

4. The fully connected layer will have 1 neuron

5. a 0.0001 for factoring weights penalty.

And now I will start with the steps I have used for implementing the model:

1. Creating the Training and Test dataset

The shape of the training and test set is the same. (120 observations of 1 variable).

2. Building the GRU Model

 First, I have defined the model. I have used a Sequential model because our network

is made of a linear stack of layers. There I have added one GRU layer and one dense layer.

Secondly, I have used tanH as an activation function. In the next step, I have defined an

optimizer and the loss measure for training. Our loss measure is the mean squared error and

for the optimizer, I have used Adam because his main advantage is that we do not need to

specify the learning rate.

After that, I have fit the model on the training dataset. I have taken a large number of

epochs (500) and activate the early stop. As is shown in the figure underneath.

Figure 25. Training iterations of GRU

41

3. Predict and Compute Evaluation Metrics

After that I got prediction and then I have made some transformation to be able to

calculate MSE (mean squared error) properly in USD

3.3.2 GRU with 2 layers

For capturing a higher-level interaction, we can add in our GRU model a second layer.

Figure 26. GRU with two-layers architecture

The implementation of GRU with two-layers

Parameters that I have used in my code for this model:

1. In each iteration, I have considered 125 training examples at once.

2. I have iterated 20 times over the entire training set.

3. a dropout with probability 0.01.

4. The fully connected layer will have 1 neuron

5. a 0.0001 for factoring weights penalty.

6. Two GRU layers.

 And now I will start with the steps I have used for implementing the model:

42

1. Creating the Training and Test dataset

The shape of the training and test set is the same. (120 observations of 1 variable).

2. Building the GRU with two-layers Model

 First, I have defined the model. I have used a Sequential model because our network

is made of a linear stack of layers. There I have added two GRU layer and one dense layer.

Secondly, I have used tanH as an activation function. In the next step, I have defined an

optimizer and the loss measure for training. Our loss measure is the mean squared error and

for the optimizer, I have used Adam because his main advantage is that we do not need to

specify the learning rate.

After that, I have fit the model on the training dataset. I have taken a large number of

epochs (500) and activate the early stop. As is shown in the figure underneath.

Figure 27. Training iterations of GRU with two-layers

3. Predict and Compute Evaluation Metrics

After that I got prediction and then I have made some transformation to be able to

calculate MSE (mean squared error) properly in USD.

3.4 Convolutional Neural Network (CNN)

This algorithm can classify and recognize features in images for computer vision. It is

designed to perform tasks and analyze visual inputs such as object detection, classification,

and segmentation.

CNN is made of two parts:

43

• For splitting the various features of the image this model uses a convolution tool.

• For predicting the best description, a fully connected layer uses the output of the

convolution layer.

3.4.1 CNN Architecture

A CNN is made of several kinds of layers:

Figure 28. CNN architecture

• Convolutional layer → For predicting the class probabilities for each feature this

model creates a feature map. This is made by applying a filter that scans the whole

image.

• Pooling layer (downsampling) → The information that is generated for each feature

from the convolutional layer, here is scaled down and is maintained only the most

essential information. (The process in those two first layers usually repeat several

times).

44

• Fully connected input layer → The output that is generated from the previous layer here

is “flatten” and is turned into a single vector that can be used later as an input for the next

layer.

• Fully connected layer → For predicting an accurate label this layer applies weights

over the input. This input is the one that is generated by the feature analysis.

• Fully connected output layer → For determining a class for the image this layer

generates the final probabilities.

3.4.2 CNN implementation [18]

Parameters that I have used in my code for this model:

1. In each iteration, I have considered 32 training examples at once.

2. I have iterated 500 times maximum over the entire training set.

3. a dropout after pooling with probability 0.01.

4. The fully connected layer will have 1 neuron

5. a 0.0001 for factoring weights penalty.

6. a 10x10 kernels throughout.

7. I will initially have 16 kernels in first convolutional layer.

8. I will initially have 32 kernels in second convolutional layer.

And now I will start with the steps I have used for implementing the model:

1. Creating the Training and Test dataset

The shape of the training and test set is the same. (120 observations of 1 variable).

45

2. Building the CNN Model

 First, I have defined the model. I have used a Sequential model because our network

is made of a linear stack of layers. There I have added two convolutional layers, two

Maxpooling layers, two dropout layers, one flatten layer and one dense layer. Secondly, I have

used tanH as an activation function. In the next step, I have defined an optimizer and the loss

measure for training. Our loss measure is the mean squared error and for the optimizer, I have

used Adam because his main advantage is that we do not need to specify the learning rate.

After that, I have fit the model on the training dataset. I have taken a large number of

epochs (500) and activate the early stop. As is shown in the figure underneath.

Figure 29. Training iterations of CNN

3. Predict and Compute Evaluation Metrics

After that I got prediction and then I have made some transformation to be able to

calculate MSE (mean squared error) properly in USD.

3.5 Time series

A time-series [19] is a successive sequence of numerical data points. In investing, a

time series monitors the movement of the selected data points, such as the price of a safe, over

a given period of time with reported data points at regular intervals. Any variable that varies

over time can be taken into a time series. In investing, a time series is widely used to measure

a security's price over time. In the short term, this can be tracked such as the price of a security

on the hour over a business day, or the long term, such as the price of security closing on the

last day of each month over a five-year period.

46

3.5.1 Time series Analysis

Analysis of the time series may be useful for seeing how a given asset, security, or

economic variable changes over time. It may also be used to examine how over the same time

period the changes associated with the chosen data point compare with shifts in other

variables.

3.5.2 Time Series Forecasting

Predicting time series uses historical values and related trend knowledge to forecast

future behavior. This most often concerns trend analysis, cyclical fluctuation analysis, and

seasonality issues. As for all forms of forecasting, there is no guarantee of success.

3.5.3 Autoregressive Integrated Moving Average Model (ARIMA)

For analyzing and forecasting time series data we can use a class of statistical models

called the ARIMA model. [20]

The name ARIMA has an explanation that I am giving below:

• AR = Autoregression. This model uses a relation between the observation and the number

of lagged observations.

• I = Integrated. To make the time series stationary this model uses the difference of raw

observations.

• MA = Moving Average. This model makes use of the dependency between a residual error

from a moving average model and an observation for lagging observation. In the model

these components are specified as parameters where:

• AR = p. The lag orders. (the number of lag observations).

• I = d. The degree of differencing. (The number of times the raw Observations differ).

• MA = q. The order of the moving average. (the size of the average movable window).

47

And now I will start with the steps I have used for implementing the model:

1. Building the ARIMA Model

 Firstly, I have fitted an ARIMA (2,1,1) model. Where:

• the lag value (p) = 2.

• the difference order = 1. (This made the time series stationary).

• the average model = 1.

To fit the ARIMA model I have used the statsmodels library. This library created

the ARIMA model as follows:

1. Called ARIMA () and showed up the p, d, and q parameters.

2. Called fit () function.

3. Called predict () function. This function has made predictions and also it has

gotten the index of the time steps and made predictions as arguments.

Figure 30. Arima Model Results

48

2. Rolling forecast ARIMA model

• I had also used the forecast () function which with the use of the model performs a

one-step forecast.

• I divided the training dataset into train and testing sets, where the train set is used to

fit the model and the test set is used for generating a prediction for each of his elements.

• In view of the dependence of observations in earlier differentiation phases, the AR

model has required a rolling forecast. I have done that by re-creating the ARIMA

model is provided after every new observation.

• History is a list that I manually kept track of all observations. This list is seeded with

the training data.

3. Predict and Compute Evaluation Metrics

After that I got prediction and then I have made some transformation to be able

to calculate MSE (mean squared error) properly in USD.

49

CHAPTER 4

SETUP AND ANALYSIS OF THE EXPERIMENTAL

STUDY

4.1 Architectures

As I have mentioned earlier, in this thesis are used different models to predict bitcoin

price, for this reason, I will explain the architecture for each of them.

4.1.1 MLP Regression of Scikit-Learn and MLP for Keras

 Since the two first models are multilayer perceptron; I have used the same

architecture in both of them. The architecture is made of one input layer, two hidden

layers with 25 neurons each, and one output layer.

Figure 31. Summary of MLP from Keras

50

4.1.2 Long Short-Term Memory

For the LSTM model, I have used an LSTM layer with 50 neurons and a dense

layer.

Figure 32. Summary of LSTM model

4.1.3 GRU with recurrent dropout Neural Network

In the first GRU model, I have used a GRU layer with 50 neurons and a dense

layer.

Figure 33. Summary of GRU model

51

4.1.4 GRU with 2 layers

For the GRU with two layers model, I have used in the first GRU layer 50

neurons, in the second GRU 10 neurons and a dense layer.

Figure 34. Summary of GRU with two-layers model

4.1.5 Convolutional Neural Network (CNN)

The CNN model is a little bit more complicated. Here I have used two

convolutional layers with 112 neurons and 512 neurons, respectively. Two max-

pooling layers with 112 neurons and 512 neurons, respectively. Two dropout layers

with 112 neurons and 512 neurons, respectively. One flatten layer with 512 neurons

and one dense layer.

52

Figure 35. Summary of CNN model

4.2 Running the experiments

For predicting the bitcoin price, I have used TensorFlow. The time that I have spent

running all the models has been 1 month. During this month, I have fixed a lot of

errors. Most of those errors were because of the libraries. Sometimes I had forgotten

to declare them, and some other times, some libraries had changed the syntax of

declaration.

Another problem was the part of downloading all the libraries that I have used in my

code.

A difficult part of this work was to find a suitable dataset. To found it, I have emailed

a lot of people that work in Bitcoin web pages.

About the computational time, the MLP models was faster than other models.

53

CHAPTER 5

RESULTS

This chapter will give the results for all the models I have used in chapter 3. The first

section gives the results of train and test loss for all the models and a comparison between

them. The second section gives the result for the timely implementation of all models, the

mean squared error and, also gives a comparison between all the results for different models.

The third part gives a comparison of the actual price and the price predicted from our models.

5.1 Train and test loss

At all models that I have used in this thesis, during the iteration I have done an early

stopping. This is shown in figures 20, 24, 28, 31, and 34. But what is early stopping and why

is it done? If we see at these figures I just mentioned, the training error decreases over time

while validation error increases. To do the regularization in deep learning I have used that

early stopping strategy. In this strategy, the best parameter setting with the lowest validation

error is reserved, and the model associated with the parameter setting with the minimum

validation error is selected (not the latest one) when training is completed (with the lowest

training error). After doing the early stop I have plotted the result of train and test loss for each

model. (figure 36)

Let us examine the plots. If training loss is greater than validation loss the data is

underfitting. If training loss is smaller than validation loss the data is overfitting and if both

losses are roughly the same the data is perfect fitting. MLP from Keras model seems to have

a perfect fitting to data. LSTM at the 17 first epochs has overfitting to data but later the

validation loss is decreased and has made a fitting to data. The GRU with recurrent dropout

54

neural network seems to have a fitting to data and when we add another layer the difference

between two losses has increased. And the CNN model has overfitting of the data.

a)

b)

55

c)

d)

56

e)

f)

Figure 36. Train and Test Loss during training of a) MLP regression of Scikit-Learn

b) MLP of Keras c) LSTM d) GRU recurrent with dropout neural network e) GRU with two

layers f) CNN

57

5.2 Comparison of time and mean squared error

In that part of this chapter, I made a comparison for execution time of iterations

between each model. As is shown in figure 37 the best performance on this topic is from MLP

Scikit-Learn with a time of execution 7.261 seconds. MLP for Keras has iterated with a time

of 17.4753 seconds which means that it is the second model faster than others. According to

that, MLP models are faster than other models. For this topic, the worst performance was from

GRU with a recurrent dropout neural network with a time of 433.333 seconds.

Another topic that I will discuss here is the mean squared error. The mean squared error

represents the square average of the difference between a variable’s observed and predicted

values.

A larger MSE means that the data values are widely distributed around its central mo

ment (mean), while a smaller MSE means otherwise and it is certainly the chosen and/or des

ired option because indicates that the data values are scattered near to its central

moment(mean), which is generally fantastic.

In our case, the model with the lowest MSE is CNN while the highest MSE error has

reached by MLP Scikit-Learn. This means that CNN performs better than other models.

Figure 37. Mean Squared Error and Time of implementation of each mode

58

5.3 Comparison of true prices with prices our model predicted

The below graphs show the actual prices and predicted ones from six different models

during the 120 coming days. As you can see, there are two lines on the graphs. The actual

price is represented by the green line. The orange line represents the predicted prices.

To understand which model has made the best prediction I will interpret the six graphs.

The first graph that is shown in figure 38 represents the prediction made by the MLP

of Scikit-Learn. During 43 first days, this model has predicted an increase in Bitcoin price.

This changes in the interval of 44 to 81 days where the predicted price will decrease compared

with the actual one. In the upcoming 28 days this model has assumed that the predicted price

will have almost the same value as the actual one. In the last days, the predicted price has

reached the maximum growth of these 120 days.

Figure 38. Predicted price by MLP of Scikit-Learn model

The second graph that is shown in figure 39 represents the prediction made by the

MLP for Keras model. As we can see, most of the days have a lower predicted price compared

to the actual one. In almost 20 days the MLP for Keras model has predicted that the price will

59

be the same as the current one. The largest increase of predicted price is recorded from day

105 to 117 and in the last three days, the price will decrease again.

Figure 39. Predicted price by MLP for Keras model

The third graph that is shown in figure 40 represents the prediction made by the LSTM

model. Most of the days, this model has predicted a very small decrease in predicted price

compared to the current one. In almost 30 days this predicted price has no change from the

actual price. In the last 15 days, the predicted price has reached the largest increase.

Figure 40. Predicted price by LSTM model

60

The fourth graph that is shown in figure 41 represents the prediction made by the GRU

with a recurrent dropout model. As we can see this model has predicted no decrease in bitcoin

price during the upcoming 120 days. Most of the days the predicted price has an increase

compared to the current one. The largest increase in the predicted price has reached in the last

10 days. A large number have the days where the predicted price has no change compared to

the current one.

Figure 41. Predicted price by GRU with recurrent dropout model

The fifth graph that is shown in figure 42 represents the prediction made by GRU with

two layers model. This model has predicted almost the same prices as the fourth model. Their

similarity is that neither of those two models has predicted a decrease in Bitcoin price.

According to GRU with two layers model, in 43 first days, the Bitcoin price will increase.

From 44 to 106 days the price of Bitcoin will have no change. The largest increase in the

predicted price has reached is in the last 14 days.

61

Figure 42. Predicted price by GRU with two layers model

The sixth graph that is shown in figure 43 represents the prediction made by the CNN

model. This model has some similarities with the two GRU models according to the lack of

price reduction. In most days, this model has predicted an increase in Bitcoin price. The largest

higher values the prediction price has reached in the last 10 days. In the remaining days, the

prices have no change.

Figure 43. Predicted price by CNN model

62

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The last chapter gives the conclusions about this thesis and the future work that other

researchers can make in this topic. The first section is about the conclusions. This part I have

split in three different parts. The second section is about future work.

6.1 Conclusions

First, I will give the conclusions about the fitting of the data. According to the results

MLP from Keras model seems to have a perfect fitting to data. LSTM at the 17 first epochs

has overfitting to data but later the validation loss is decreased and has made a fitting to data.

The GRU with recurrent dropout neural network seems to have a fitting to data and when we

add another layer the difference between two losses has increased. And the CNN model has

overfitting of the data.

The second part is a conclusion based on the MSE results. The model with the lowest

MSE is CNN while the highest MSE error has reached by MLP Scikit-Learn. This means that

CNN performs better than other models.

The third part of the conclusions is about Bitcoin price prediction. A better prediction

is that one where the actual price is very close to the predicted one. In our cases three are the

models that has this kind of information. GRU with recurrent dropout, GRU with two layers

and CNN have predicted better than three other models.

63

6.2 Future Work

Future studies can focus on some different models to see if there are other models than

perform better than these three, I concluded in this paper.

Another future study can be about GRU with two layers model since it is a model that

is rarely used. To see its architecture more carefully, how it works and to understand why

adding a new layer makes a model better.

64

REFERENCES

[1] «Techburst,» [Online]. Available: https://techburst.io/short-guide-on-how-deep-

learning-really-works-81a588541b24.

[2] S. A. a. J. P. John Mern, «Using Bitcoin Ledger Network Data to Predict the

Price of Bitcoin».

[3] E. S. a. L. Wang, «“Bitcoin Price Prediction Using Ensembles of Neural

Networks”».

[4] J. K. a. H. I. Suhwan Ji, «“A Comparative Study of Bitcoin Price Prediction

Using Deep Learning”,» 25 September 2019.

[5] D. S. Virk, «“Prediction of Bitcoin Price using Data Mining”,» in School of

Computing National College of Ireland.

[6] S. a. P. Mehta, «“Prediction of Bitcoin using Recurrent Neural Network”,» Blue

Eyes Intelligence Engineering & Sciences , March 2020.

[7] R. O. E. D.-M.-H. a. F. C. Leonardo Felizardo, «“Comparative study of Bitcoin

price prediction using WaveNets, Recurrent Neural Networks, and other

Machine Learning Methods”».

[8] K. S. Olti Qirici, «“Bitcoin Price Prediction with Neural Networks”».

[9] S. McNally, «“Predicting the price of Bitcoin using Machine Learning”,» in The

School of Computing National College of Ireland, 9th September 2016.

[10] M. Appel, «“Bitcoin price prediction using Deep Neural Networks”,» in The

Artificial Intelligence University of Amsterdam, June 2016.

65

[11] M. H. S. a. I. A. Ziaul Haque Munim, «“Next-Day Bitcoin Price Forecast”,» in

Risk and Financial Management, 20 June 2019.

[12] «Bitcoin,» [Online]. Available: https://www.bitcoin.com/.

[13] «Elite Data Science,» [Online]. Available: https://elitedatascience.com/python-

machine-learning-tutorial-scikit-learn.

[14] «GitHub,» [Online]. Available: https://github.com/keras-team/keras.

[15] «PLURALSIGHT,» [Online]. Available:

https://www.pluralsight.com/guides/regression-keras/.

[16] «towards data science,» [Online]. Available:

https://towardsdatascience.com/understanding-lstm-and-its-quick-

implementation-in-keras-for-sentiment-analysis-af410fd85b47.

[17] «toward data science,» [Online]. Available:

https://towardsdatascience.com/implementation-of-rnn-lstm-and-gru-

a4250bf6c090.

[18] «Tensorflow,» [Online]. Available:

https://www.tensorflow.org/tutorials/images/cnn.

[19] «Analytics Vidhya,» [Online]. Available:

https://www.analyticsvidhya.com/blog/2018/08/auto-arima-time-series-

modeling-python-r/.

[20] «Machine Learning Mastery,» [Online]. Available:

https://machinelearningmastery.com/arima-for-time-series-forecasting-with-

python/.

66

Appendix A

Definitions

Nr. Features Definitions

1. CoinMarketCap The most-referenced price-

tracking website in the fast-growing

cryptocurrency space for crypto assets

worldwide.

2. ConvNet A subset of deep neural networks,

most commonly used for visual imaging

studies.

3. WaveNets A deep neural network to raw

audio generation.

4. CPU When you run your deep nets on a

GPU, the CPU does little computation.

5. GPU This is a single chip processor used

for intensive graphical and mathematical

computations that releases CPU cycles for

other functions.

6. Bitcoin Core Price (BTC) Price of Bitcoin.

7. Money Supply The Bitcoin Core amount in

circulation.

8. Daily Transactions The number of transactions

included in the everyday blockchain.

9. Inflation rate The federal fund rate will decide

the shape of the economy’s future interest

rate.

67

10. Seasonal Decomposition The Seasonal Decomposition

procedure breaks down a sequence into a

seasonal component, a combined trend

and cycle component, and a component

called "error."

11. look_back The number of previous time

phases to be used as input variables for

predicting the next time cycle

12. MinMaxScalar A scikit-learn library pre-

processing package for standardizing the

dataset.

13. tanH function A rescaling of the logistic sigmoid,

so that its outputs vary between -1 and 1.

14. Sigmoid function Sigmoid removes the issue of

gradients in the model of machine learning

when training.

15. ReLU An activation function that does

not simultaneously activate all neurons.

16. Keras An open-source library of neural

networks written in Python.

17. Scikit-Learn Python 's free machine-learning

library. It features various algorithms such

as supporting vector machines, random

forests, and k-neighbors, as well as

supporting numerical and science libraries

such as NumPy and SciPy.

18. Grid search The process of data scanning to

configure optimal parameters for a

particular model

68

19. Hyperparameters A parameter whose value is set

prior to starting the learning process.

20. Cross-Validation A methodology used to test ML

models by training and evaluating several

ML models on subsets of available input

data on the complementary data subsets.

21. epochs An epoch refers to a single period

through a full training data collection.

22. hidden layer number The number of hidden layers.

23. learning rate initial A configurable hyperparameter

used in neural network training that has a

small positive value, often within a range

of 0.0 to 1.0.

24. alpha The parameter that determines the

size of a step/iteration.

25. momentum A set of tricks and techniques

designed to accelerate convergence of

methods of first order optimization, such

as gradient descent (and its many

variants).

26. hidden layer size The size of hidden layers.

27. batch size Number of training examples used

in one iteration.

28. early stop A type of regularization used to

prevent overfitting when training an

iterative learner, such as gradient descent.

29. tol Tolerance to the stop criteria.

30. adam optimizer An adaptive learning rate

optimization algorithm specifically

69

designed for training deep neural

networks.

31. sequential model The easiest way to construct a

model at Keras. It lets you build a layer-by

- layer model.

32. dense layer A layer of neurons in a neural

network.

33. dropout Simply placed dropout refers to

missing units (i.e neurons) that are

selected at random during the training

process of any group of neurons.

34. mean squared error It is the sum of the square of the

difference between the predicted and the

actual target variables, divided by the

number of data points, over all the data

points.

35. convolutional layer The major building blocks used in

convolutional neural networks.

36. feature map The output of one filter added to

the layer above.

37. pooling layer

(downsampling)

The layer that is used to gradually

reduce the representation 's spatial size to

reduce the amount of parameters and

computation in the network, and thus also

to control the overfitting.

38. fully connected layer The layer where all inputs are

connected to each activation unit of the

next layer from one layer to another.

70

39. flatten The function which converts the

pooled feature map to a single column

passed to the fully connected layer.

40. Maxpooling A sample-based discretization

method that downsamples an input

representation (image, hidden-layer

output matrix, etc.), reduces its

dimensionality and allows for

assumptions about features found in

binned sub-regions.

41. Autoregression A method of regressing the

variable by itself on past values.

71

X
H

,
K

B
IT

C
O

IN
 P

R
IC

E
 P

R
E

D
IC

T
IO

N
 U

S
IN

G
 D

E
E

P
 L

E
A

R
N

IN
G

2
0
2
0

