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ABSTRACT 

MICROSCOPIC IMAGE CELL COUNTING USING 

CONVOLUTIONAL NEURAL NETWORKS 

 

Tare, Aleks 

 

M.Sc., Department of Computer Engineering 

 

Supervisor: Dr. Arban Uka 
 
As the field of automation is moving forward at ever-faster rates, cell counting and 

classification is an omnipresent yet repetitive task that would benefit greatly from this 

field. The counting of contiguous cells in a specific area could provide crucial 

contribution to work done in clinical trials. Cell counting, sadly, is most often 

conducted manually by humans and can be time and resource consuming. 

Due to cells touching each other, a non-uniform background, shape and size variations 

of cells, and different techniques of image acquisition, the task becomes even more 

difficult. In this paper we describe a convolutional neural network approach, using a 

Faster-RCNN architecture later also combined with a U-Net neural network, for cell 

counting and possibly segmentation in a raw microscopic picture. 

 

Key words: machine learning, microscopy, faster-rcnn, classification, cell counting 
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ABSTRAKT 

NUMERIMI I QELIZAVE NE IMAZHET MIKROSKOPIKE DUKE 

PERDOR RRJETAT NEURALE KONVOLUCIONARE 

 

Tare, Aleks 

 

Master Shkencor, Departamenti i Inxhinierise Kompjuterike 

 

Udhëheqësi: Dr. Arban Uka 
 
Ndërkohë që fusha e automatizmit po ecën përpara me ritme gjithnjë e më të shpejta, 

numërimi dhe klasifikimi i qelizave është një detyrë që do të përfitonte shumë nga kjo 

fushë pasi ky i fundit paraqet sfida te mundimshme për stafin mjekësor. Numërimi i 

qelizave të ngjitura me njëra-tjetrën, në një zonë specifike, mund të sigurojë një 

kontribut thelbësor në punën e kryer në provat klinike. Numërimi i qelizave, për fat të 

keq, shpesh herë kryhet në mënyrë manuale nga njerëzit dhe si veprim konsumon tepër 

kohë dhe burime. 

Për shkak të qelizave që prekin njëra-tjetrën, sfondeve jo-të-njëtrajtshëm, ndryshime të 

formës dhe madhësisë së qelizave, si dhe teknikave të ndryshme të fotografimit të 

imazhit, kjo detyrë bëhet edhe më e vështirë. Në këtë punim ne përshkruajmë një qasje 

të rrjetit neural konvolucionar, duke përdorur një arkitekturë ‘Faster-RCNN’ të 

kombinuar më vonë edhe me një rrjet neural ‘U-Net’, për numërimin e qelizave dhe 

mundësisht segmentimin e tyre në një imazh të papërpunuar mikroskopik. 

 

Fjalët kyçe: machine learning, mikroskopi, faster-rcnn, klasifikim, numerim qelizash 
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CHAPTER 1 

1. INTRODUCTION 

1.1 Cell Counting 
 

Medical images provide health professionals in-depth knowledge of the inner operation 

of a person’s body, as well as the functions of their organs and tissues. This knowledge 

is often key to the clinical analysis of a person’s situation or the implementation of life 

saving medical interventions. Medical imaging technology including acquisition and 

analysis is constantly evolving and we need knowledgeable and highly skilled 

practitioners to ensure the best care for the patient. In this work, we will analyze state-

of-the-art methods for detection such as Faster-RCNN [1] and image segmentation 

techniques such as U-Net [2] for each respective stage of our research to detect cells 

and determine the area covered by them. This evolution comes at a cost and that is the 

effort needed by the medical staff to analyze and generate results out of these images. 

One of the issues treated in this thesis is the counting of the cells in a microscope image. 

This task is usually done manually and copious amounts of time are required for the 

medical staff to finish it.  

 

1.2 Thesis Objective & Scope of Works 
 

In this paper, we hope to achieve an automated cell counting technique by utilizing pre-

existing convolutional neural networks. The research group aims to create a successful 

deep learning model, which accurately detects the location of each cell present in the 

images provided in our dataset. Firstly, a literature review is conducted in order to 

determine which model suits best the task at hand, and also later on to analyze the 

possibilities of linking our model with a segmentation task in order to accurately detect 

the area covered by each cell. In addition, the recent methods of pre-processing and 

regularization will be analyzed during this process. Finally, the scope of the thesis 

covers multiple experiments with different preprocessing techniques such as  

 template matching and contrast correction 
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 alternating hyperparameters for the model 

The goal of this research is to achieve the best performance possible with a CNN model 

for the detection of the maximum number of cells we can in a microscope image. 

 

1.3 Organization of the Thesis 
 
This thesis is organized in six chapters with each one representing a part of the work 

conducted from the beginning of the research up until the results and conclusions. 

 Chapter 1 presents the introduction to the motivations behind this work and its 

purposes. 

 Chapter 2 explores the correlated researches in the field of medical image 

analysis through different approaches such as classification and object detection 

by utilizing neural networks. 

 Chapter 3 holds all the necessary architecture information that supports all the 

work in this thesis. It covers some state-of-the-art techniques in object detection 

models and their evaluation methods. 

 Chapter 4 describes the methodology used for the experiments conducted and 

the resources applied during these experiments.  

 Chapter 5 includes all the information about the parameters of each experiment 

and the interpretation of their results. 

 Chapter 6 interprets the results, discusses the conclusions and recommends 

future work for research on this topic. 

This thesis also includes sections for easier navigation such as the List of Tables, List 

of Figures and Table of Contents. 
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CHAPTER 2 

2. LITERATURE REVIEW 

2.1 Medical Image Analysis 
 

The rapidly developing optical microscopy area has evolved over the past few years 

from depending on conventional photomicrography using emulsion-based film to one 

where state-of-the-art digital images are produced as a result. These images can be 

transformed and altered through various processes such as changing their spatial or 

gray-level resolution, contrast manipulation and stretching, gamma correction, noise 

removal, background subtraction and so on. 

 

Implanting of biocompatible materials has been used for many decades. Tooth 

implants, silicone implants, hip replacements have been used for a long time and the 

use of them is expected to rise. The market share is predicted to be 130 billion dollars 

pointing to the importance of the research relating the use of biomaterials. The most 

important aspect in the use of biomaterials is the prediction of unwanted complications 

that may arise at a personalized level. A certain biomaterial may have shown to be 

compatible over the course of a certain testing phase, but complications in new patients 

cannot be completely ruled out. Because of this, a personalized level analysis of the 

biocompatibility of materials is essential such as Dollinger et al [3]. 

Lab scientists to stimulate and mimic tissue growth are studying biomaterials. These 

so-called “regenerative functional porous materials” are mixed with living cell cultures 

so they can stimulate mechanisms to work for the regeneration of a specific body tissue. 

However, the tests and clinical trials must be conducted in laboratory environments 

such as incubators before they are tested in vivo. This requires thorough observation of 

these cultures, by daily or weekly cycles, in order to detect anomalies such as cells 

dying or turning cytotoxic in reaction to the biomaterial. [4], [5] Analyzing these 

images manually is not only expensive and lengthy but it also suffers from the variation 

of observers-interpretation. 
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A little earlier, computer vision researches thought that employing a computer to tell 

the difference between a cat and a dog would be almost impossible, whereas now this 

can be achieved at an accuracy of higher than 99%. This is image classification, which 

includes the labeling of images, in two or more classes and then identifying an image 

after a training of a certain neural network. In the recent years, researchers have also 

achieved object detection using artificial intelligence that is to look at an image and try 

to find all the objects in that image, assigning bounding boxes around these objects and 

label exactly what those objects are. Similar researches conduct the same task but with 

different types of cells. [6] [7] [8] 

In order to alleviate human effort in the sector of biomaterial testing, we can apply 

image detection and classification techniques to automatize the process of detecting 

these cells, counting them and if possible classify them into healthy and unhealthy 

categories.  

2.2 Challenges of this research 
 

One of the initial challenges faced in this research was the labelling of the images. A 

raw dataset of images was provided and the initial labelling was done as manual work 

over the course of 3 months in a total of approx. 100 hours to label 86 images. 

Another great challenge posed by this research can be seen in the image below. The 

cells can be very crowded in an image and are usually touching other cells. With a high 

number of cells touching each other, it is hard even for the human eye to distinguish 

cells from the background. 

 
 

Figure 1. Crowded Cell Image 
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Another challenge is the difference in contrast and lighting of each image. Compared 

to the image above, the following picture demonstrates a huge change in focus of the 

image, which in terms can throw off the neural network when detecting cells. (False 

Positive/False Negatives cells are detected) 

 

 
 

Figure 2. Out of Focus Cells in an Image 

One of the major challenges belonging to the group of image qualities (and which is 

effectively treated in this paper) is that of the contrast differences between images. As 

we can see from the example below, two extremes of high and low, contrasts are present 

throughout the entire dataset. This would require a thorough preprocessing technique 

in order to create a better model for the cell counting task such as [9]  

 

  
 

Figure 3. Different Contrast Extremes in the Dataset 
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2.3 Microscopy Image Analysis 
 
One of the main problems in microscopic anatomy image analysis is to count the cells 

in the image. This consists in not only the complexity and variety of algorithm being 

applied, but also it is a process, which is held back by the characteristics of microscopic 

images such as cells touching each other, background disorders, shape and size 

variations of cells, and different techniques of image acquisition. We must also note 

that these histological images come in high resolutions, thus consuming many 

computational resources. 

2.4 Use of Neural Networks in Medicine Pathology 
 

Convolutional Neural Networks (CNNs) have been widely used for image processing 

purposes not only in medical imaging, but also in fields of security, space exploration 

images, autonomous driving, fake news detection and many more. [10] [11], [12] It is 

implemented to also adapt to real time images which can change dynamically, such as 

sign language detection and translation. [13]  However, we notice that the most 

impactful field is that of improving medical diagnosis. Innovative designs of CNNs 

have shown great progress in the field of dealing with melanoma cancer cells by using 

a committee of CNNs [14] or the detection of colorectal cancer in real time colonoscopy 

images. [15] [16] [8] These have shown a superior efficiency level for Fast-RCNN 

implementations compared to similar classifiers in this field. Other researchers still 

applied their version of Deep Convolutional Neural Networks in order to diversify the 

approach for a specific type of detection in medical imaging. Detect Net from the Caffe 

package was used for detection of astrocytes involved in different brain pathologies. 

[17]–[19] Besides the complex implementations of FRCNN in Caffe or Tensorflow, it 

is worth noting the simplified join-training scheme of the pipeline, which unifies 

functionalities of both these libraries. [20] We may also mention that this is not the first 

time U-Net has joined forces with Fast-RCNN since the use of this latter in a 3D Faster 

R-CNN model, adapted in the architecture of U-Net for the detection of pulmonary 

nodules to prevent lung cancer. [21] Similar methods include generation of a mask to 

identify cells in an image. Of particular note is the Mask-RCNN algorithm designed by 

Facebook AI Research (FAIR). [22] Multiple augmentation methods have been 

reviewed such as [23] 
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2.5 Segmentation Techniques in Medical Imaging 
 

The next challenging step is segmentation of these detected regions, and the most-

valued method in the field is the state-of-the-art approach of U-Net. [2] This model 

finds usages in various medical fields, especially in MRI Imaging. By using multiple 

2D U-Nets for analyzing MR brain images in order to diagnose glioma, a type of 

malignant brain tumor [18], [24], or an “autoencoder-regularized 3D-CNN” with three 

stages of encoding the low dimensional input, reconstructing it and finally segmentation 

through U-Net for the same problem of brain tumors, providing this way a memory 

efficient approach. [19] U-Net has also been evaluated in 2D and 3D architectures 

against DenseNet for Cardiac MRI Image Segmentation, to distinguish between left 

ventricle and right ventricle, with the 2D architecture having the upper accuracy of 

generalization. [25] DenseU-Net is based on encoding, connecting and decoding dense 

blocks and it provides substantial gains over the baseline U-Net model in terms of Dice 

Score improvement. [17] A similar approach is that of AD-UNet for vessel 

segmentation purposes in retinal images, except that it also includes the attention 

mechanism, of which the encoder and decoder components are added with dense 

blocks. [12]  Also, in the same field another approach introduces a method in which the 

pooling layers of the encoder part are replaced by strided convolutional layers. [1] Other 

researchers have preferred a raw implementation of CNN to achieve the same task on 

eye vasculature. [26] [27] [28] On the other hand, 3D U-Net performs very well for 

segmentation of thoracic Organs-At-Risk by using cropped 3D images. It has shown 

potential for eventual clinical adoption of deep learning in radiation treatment planning 

due to improved accuracy and reduced cost for OAR segmentation. [29] For knee 

cartilage segmentation the original UNet with 40 channels and a version of UNet with 

dilated convolutions are ensembled in (Duarte, 2019) [30] The dilation model helps 

achieve a larger field of view while the original model improves the accuracy of the 

smaller regions. In addition, other methods such as Random Forest Semantic 

Classification prove to be better in the field of brain MRI for the problem of weak 

signals produced by bone and air tissues. [18] The illumination and contrast of cell 

images varies greatly. To reduce this variance and enhance the contrast, a method of 

normalizing each image by first subtracting the minimum intensity value of the image 

is proposed by Gao et al [16].  
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CHAPTER 3 

3. FROM MACHINE LEARNING TO NEURAL NETWORKS 

In the paper published by Geoffrey Hinton [31] in 2006, it is demonstrated the training 

of a deep neural network (DNN) able to recognize handwritten digits even with the 

highest precision possible at that time (>98%). This technique was later known as 

“Deep Learning.” A DNN is a cut down version of our brain’s cerebral cortex, which 

in this case is made of a stack of layers of artificial neurons. In the late 1990s, it was 

considered a very hard and tedious task to train a DNN and most researchers abandoned 

the idea. This paper revitalized the scientific community’s interest and it would not be 

long that other papers would join to show that Deep Learning could surpass Machine 

Learning techniques even in most complicated tasks. However, a great help were the 

advancements made in computing power and speed and the larger ever-growing amount 

of data we feed into the Internet today. This newborn interest soon stretched into many 

other capacities of Machine Learning. 

A decade or so later, Machine Learning is at the very top of the productive processes 

happening inside every computer: it is the core of what people call magic of the 

computers nowadays, classification of web results, speech recognition conducted live 

in your handheld device, movie recommendation and defeating world class champions 

in games such as Go. It is already working and improving on driving our cars. 

It is possible to classify different types of Machine Learning in extensive categories, 

since so many of them exist. This is done in accordance with the following criteria: If 

human supervision has been present during the training (supervised, unsupervised, semi 

supervised, and Reinforcement Learning). Another way of categorizing them is based 

on the ability to learn incrementally on the fly (online versus batch learning). We can 

combine these criteria in any way we like, since they are not exclusive. As an example, 

we can analyze a state-of-the-art spam filter. This filter can learn on the fly by using a 

deep neural network model. The model itself utilizes examples of spam and ham to 

train itself. This learning system is known to be an online, model-based, supervised 

one. (Benjamin Planche, 2019) 

We can also classify Machine Learning systems by analyzing the type and quantity of 

supervision the models can have during the process of training. Unsupervised learning, 



9 
 

supervised learning, semi supervised learning, and reinforcement Learning are some 

major categories. In supervised learning, you feed a training set that includes the desired 

solutions to the algorithm. These solutions are known as labels. Classification is a very 

typical supervised learning task. As we explained above in the spam filter, we use 

example emails and we classify them as spam or ham. Then the model trains itself and 

can learn how to classify other emails. Predicting numerical values, as targets, for 

example the price of a car, is another typical task. In this case, we provide what we call 

predictors. Predictors are a group of different features, such as age, mileage, color, 

brand, etc. This type of function can also be known as regression. (Benjamin Planche, 

2019) 

3.1 Batch Learning 
 
In this type of learning, the system is not able to learn incrementally: we must use all 

the available data to train it. It is usually not done online as it generally involves a huge 

quantity of time and resources to compute. The model is firstly trained, and then is able 

to run without learning anymore, while being launched into production and applying 

what has already been learned. We call this offline learning. Let us say that we want to 

add new data to a currently live batch learning system. In this case, a new version of 

the system needs to be trained from the beginning using the complete dataset. The full 

dataset contains both old and new data. Then we need to replace the old model with the 

new one. The solution may be simple, but there is a downside to using the full dataset 

to train. This can require prolonged hours and a new system would generally be trained 

every 24 hours or even weekly. In addition, a huge amount of computing resources such 

as CPU, disk space, memory space, inputs, outputs and more are required. Therefore, 

we can lean on using algorithms capable of learning incrementally as a better option. 

[32] 

 

3.2 Artificial Neurons 
 
McCulloch and Pitts firstly introduced the Artificial Neural Networks in 1943. They 

demonstrated a simplified computational model of how biological neurons might work 

together in their paper, “A Logical Calculus of Ideas Immanent in Nervous Activity” 

[33] They explained how the neurons use propositional logic to perform complex 

calculations in animal brains. All of this was nothing but the first architecture of 
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artificial neural networks. Many other types of architecture would be designed in the 

following years. Until the 1960s, there was a broad belief that humans would be able 

to interact with very intelligent machines, led by early successes of Artificial Neural 

Networks. The early 1980s saw an invention of new network architectures. Researchers 

were also developing better training techniques. This caused a revival of interest in 

ANNs. During the 1990s, the majority of researchers were favoring alternative Machine 

Learning techniques that could be more powerful, such as Support Vector Machines. 

Better results and stronger theoretical foundations were believed to be offered by these 

techniques. Nowadays the interest in ANNs is fortunately awakened again. [32] 

 

3.3 Logical Computations with Neurons 
 
The researchers mentioned above first came up with a very straightforward model of 

the biological neuron. This came to be known as an artificial neuron. The artificial 

neuron contains more than one inputs and only one output (usually both are binary). 

The output is easily activated when the active inputs surpass a certain number.  

McCulloch and Pitts presented how it can be conceivable to build artificial neurons into 

a network and compute any logical result you want, even using such a simplified model. 

In the following figure there are portrayed some ANNs that perform various logical 

computations, all while considering that the activation of a neuron happens only when 

at least two of its inputs are turned on (active).  

 

 
 
 

Figure 4. Simple Neurons Illustrated as Logic Gates [32] 

 

One of the simplest ANN architectures is called a Perceptron. With numbers serving as 

inputs and outputs, this neuron is called a Linear Threshold Unit (LTU). The input is 

each on their own connected to a value, which is called weight. The Linear Threshold 
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Unit using the following formula calculates a weighted sum: (z = w1 x1 + w2 x2 + ⋯ 

+ wn xn = wT · x). Afterwards a step method is applied to the sum computed previously. 

Finally, the product is finally outputted: hw(x) = step (z) = step (wT · x). 

 

 
 
 

Figure 5. Anatomy of the Perceptron [32] 

Multiple Perceptrons stacked together along with some bias values create what we call 

a Multi-Layered Perceptron, which is the core foundation of Deep Neural Networks 

used nowadays. A Multi=Layered Perceptron consists of one input layer, one or more 

middle layers that are hidden and one final output layer. The steps for each training 

instance go as follows: firstly, the backpropagation algorithm makes a prediction that 

is called forward passing. It measures the error contribution from each connection while 

going through each layer in reverse (reverse pass). Lastly, the connection weights are 

slightly tweaked in order to have the error reduced. The process of tweaking is called 

Gradient Descent step.  

Instead of the logistic function, we may use the backpropagation algorithm together 

with other activation functions. Some other famous activation functions are: 

 

1. The hyperbolic tangent function tanh (z) = 2σ (2z) – 1 

It is S-shaped, continuous, and differentiable, just like the logistic function. 

Unlike the logistic function, it has an output value that ranges from –1 to 1. 

This range contributes to causing each layer’s output to be almost normalized, 

in other words: centered on zero at the start of training. All of this leads to a 

speedup of the convergence. [32] 
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2. The ReLU function 

ReLU (z) = max (0, z). Although continuous, this function can sadly not be 

differentiable at the point z = 0 (Gradient Descent bounces around since the 

slope changes abruptly). It is, however, quick to be calculated. This function  

also does not have a maximum output value and this can help reduce some 

issues during Gradient Descent [32] 

 

 
 

Figure 6. Activation Functions & their Derivatives 

3.4 Computer Vision Techniques 
 
Computer vision can be hard to define because it sits at the joint of several research and 

development fields, such as computer science (algorithms, data processing, and 

graphics), physics (optics and sensors), mathematics (calculus and information theory), 

and biology (visual and neural processing). At its core, computer vision can be 

summarized as the automated extraction of information from digital images. [32] A 

central goal in computer vision is to make sense of images, that is, to extract 

meaningful, semantic information from pixels (such as the objects present in images, 

their location, and their number). This generic problem can be divided into several sub-

domains: 

1. Object classification 

2. Object identification 

3. Object detection and localization 

4. Object and instance segmentation 

In computer vision, a feature is a piece of information (often mathematically 

represented as a one or two-dimensional vector) that is extracted from data that is 

relevant to the task. Features include some key points in the images, specific edges, 
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discriminative patches, and so on. They should be easy to obtain from new images and 

contain the necessary information for further recognition.  

Our images are complex structures with a large number of values (that is, H × W × D 

values with H indicating the image's height, W its width, and D its depth/number of 

channels, such as D = 3 for RGB images). This number of parameters simply explodes 

when we consider larger RGB images or deeper networks. Because their neurons 

receive all the values from the previous layer without any distinction (they are fully 

connected), these neural networks do not have a notion of distance/spatiality. More 

precisely, this means that the notion of proximity between pixels is lost to fully 

connected (FC) layers, as all pixel values are combined by the layers with no regard for 

their original positions. It is common practice to flatten multidimensional inputs before 

passing them to these layers. CNNs can handle multidimensional data. For images, a 

CNN takes as input three-dimensional data (height × width × depth) and has its own 

neurons arranged in a similar volume. This leads to the second novelty of CNNs—

unlike fully connected networks, where neurons are connected to all elements from the 

previous layer, each neuron in CNNs only has access to some elements in the 

neighboring region of the previous layer. This region (usually square and spanning all 

channels) is called the receptive field of the neurons (or the filter size) [32] 

 

 
 

Figure 7. Simple CNN Architecture 
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CHAPTER 4 

4. METHODOLOGY 

4.1  VGG – a standard CNN architecture 
 

VGG (or VGGNet), developed by the Visual Geometry Group from Oxford University, 

though only achieved second place in the ILSVRC classification task in 2014, 

influenced many later architectures. AlexNet was the first CNN successfully trained for 

such a complex recognition task and making several contributions that are still valid 

nowadays, such as: 

The use of a rectified linear unit (ReLU) as an activation function prevents the 

vanishing gradient problem, and thus improving training (compared to using sigmoid 

or tanh). Also the application of dropout to CNNs. The typical CNN architecture 

combining blocks of convolution and pooling layers, with dense layers afterward for 

the final prediction. The application of random transformations (image translation, 

horizontal flipping, and more) to artificially augment the dataset (that is, augmenting 

the number of different training images by randomly editing the original samples. The 

main motivation of many researchers was to try going deeper (that is, building a 

network composed of a larger number of stacked layers), despite the challenges arising 

from this. More layers typically means more parameters to train, making the learning 

process more complex. Karen Simonyan and Andrew Zisserman from Oxford's VGG 

group tackled this challenge with success. [34] The method they submitted to ILSVRC 

2014 reached a top-5 error of 7.3%, dividing the 16.4% error of AlexNet by more than 

two. In their paper (Simonyan, 2014) [34] presented how they developed their network 

to be deeper than most previous ones. They actually introduced six different CNN 

architectures, from 11 to 25 layers deep. Each network is composed of five blocks of 

several consecutive convolutions followed by a max-pooling layer and three final dense 

layers (with dropout for training). All the convolutional and max-pooling layers have 

SAME for padding. The convolutions have s = 1 for stride, and are using the ReLU 

function for activation. Overall, a typical VGG network is represented in the following 

diagram: 
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Figure 8. VGG-16 Architecture 

The two most performant architectures, still commonly used nowadays, are called 

VGG-16 and VGG-19. The numbers 16 and 19 represent the depth of these CNN 

architectures; that is, the number of trainable layers stacked together. For example, as 

shown in the figure above, VGG-16 contains 13 convolutional layers and 3 dense ones, 

hence a depth of 16 (not including the non-trainable procedures; that is, the five max 

pooling and two dropout layers). The same goes for VGG-19, which is composed of 

three additional convolutions. VGG-16 has approx. 138 million parameters, and VGG-

19 has 144 million. 

 

The VGG authors then decided to replace the large convolutions with multiple smaller 

ones. A simple observation made by them was that a stack of two convolutions with 3 

by 3 kernels and the same receptive field as a convolution with 5 by 5 kernels. Similarly, 

three consecutive convolutions of those 3 by 3 kernels resulted in a 7-by-7 receptive 

field and five convolutions resulted in an 11-by-11 receptive field. Therefore, while 

AlexNet had large filters up to 11 by 11, the VGG network contains more numerous 

but smaller convolutions for a larger efficient receptive field. There are two main 

benefits achieved from this observation. It decreases the number of parameters: The N 

filters of an 11 by 11 convolution layer imply 11 by 11 by D × N = 121DN values to 

train just for their kernels (for an input of depth D). While five 3 by 3 convolutions have 

a total of 1 × (3 × 3 × D × N) + 4 × (3 × 3 × N × N) = 9DN + 36N2 weights for their 

kernels. As long as N < 3.6D, this means fewer parameters. For instance, for N = 2D, 

the number of parameters drops from 242D2 to 153D2.  This makes the network easier 

to optimize, as well as much lighter. It also increases the non-linearity: Having a larger 

number of convolution layers, each followed by a non-linear activation function such 

as ReLU, increases the networks' capacity to learn complex features (that is, by 

combining more non-linear operations). (Simonyan, 2014) Also introduced a data 

augmentation mechanism that they named scale jittering. At each training iteration, 

they randomly scale the batched images (from 256 pixels to 512 pixels for their smaller 
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side) before cropping them to the proper input size (224 × 224 for their ILSVRC 

submission). With this random transformation, the network will be confronted with 

samples with different scales and will learn to properly classify them despite this scale 

jittering. The network becomes more robust as a result, as it is trained on images 

covering a larger range of realistic transformations. [32] 

 

4.2 Faster R-CNN – a powerful object detection model 
 
The Faster R-CNN architecture [1] was engineered over several years of research. More 

precisely, it was built incrementally from two architectures—R-CNN and Fast R-CNN. 

Faster R-CNN works in two stages: 

1. The first stage is to extract a region of interest (RoI, or RoIs in the plural form). 

A RoI is an area of the input image that may contain an object. For each image, 

the first step generates about 2,000 RoIs. 

2. The second stage is the classification step (sometimes referred to as the 

detection step). We resize each of the 2,000 RoIs to a square to fit the input of 

a convolutional network. We then use the CNN to classify the RoI. [1] 

4.2.1 Region Proposals Network (RPN) 
 
Regions of interest are generated using the region proposal network (RPN). To 

generate RoIs, the RPN uses convolutional layers. Therefore, it can be implemented on 

the GPU and is very fast. It uses anchor boxes—in the Faster R-CNN paper, nine anchor 

sizes are used (three vertical rectangles, three horizontal rectangles, and three squares). 

It can use any backbone to generate the feature volume and it uses a grid, and the size 

of the grid depends on the size of the feature volume. The network’s last layer outputs 

numbers that allow the anchor box to be refined into a proper bounding box fitting the 

object. The RPN accepts an image as input and outputs regions of interest. Each region 

of interest consists of a bounding box and an objectness probability. To generate those 

numbers, a CNN is used to extract a feature volume. The feature volume is then used 

to generate the regions, coordinates, and probabilities. 
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Figure 9. CNN Feature Map Flow 

The systematic process represented in the figure above is as follows: 

1. The network accepts an image as input and applies several convolutional layers. 

2. It outputs a feature volume. A convolutional filter is applied over the feature 

volume. Its size is 3 × 3 × D, where D is the depth of the feature volume. 

3. At each position in the feature volume, the filter generates an intermediate 1 × 

D vector. 

4. Two sibling 1 × 1 convolutional layers compute the ‘objectness’ scores and the 

bounding box coordinates. There are two ‘objectness’ scores for each of the k 

bounding boxes. There are also four floats that will be used to refine the 

coordinates of the anchor boxes. 

After post-processing, the final output is a list of RoIs. At this step, no information 

about the class of the object is generated, only about its location. 

 

 

4.2.2 Mean Average Precision Score 
 

Average precision gives information about the performance of a model for a single 

class. To get a global score, we use mean Average Precision (mAP) [35]. This 

corresponds to the mean of the average precision for each class. mAP summarizes a 

precision-recall curve as the weighted mean of precisions achieved at each threshold, 

with the increase in recall from the previous threshold used as the weight: 

 

𝐴𝑃 =  ∑

𝑛

(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛 
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Where Pn and Rn are the precision and recall at the nth threshold. This implementation 

is not interpolated and is different from computing the area under the precision-recall 

curve with the trapezoidal rule, which uses linear interpolation and can be too 

optimistic. [35] The Mean average precision score was used to clearly evaluate the 

Faster-RCNN architecture through each model’s tests. This score was generated by 

running the model against pre-labelled images and calculating the average precision of 

each image. 

 

4.2.3 Classification inside Faster-RCNN 
 

The second part of Faster R-CNN is the classification part. It outputs the final bounding 

boxes and accepts two inputs—the list of RoIs from the previous step (RPN), and a 

feature volume computed from the input image. 

Since most of the classification stage architecture comes from the previous paper, Fast 

R-CNN, it is sometimes referred to with the same name. 

Therefore, Faster R-CNN can be regarded as a combination of RPN and Fast R-CNN. 

The classification part can work with any feature volume corresponding to the input 

image. However, as feature maps have already been computed in the previous region-

proposal step, they are simply reused here. This technique has two benefits: Sharing the 

weights: If we were to use a different CNN, we would have to store the weights for two 

backbones: one for the RPN, and one for the classification, and secondly, sharing the 

computation: For one input image, we only compute one feature volume instead of two. 

As this operation is the most expensive of the whole network, not having to run it twice 

allows for a consequent gain in computational performance. For each RoI, 

convolutional layers are applied to obtain class predictions and bounding box 

refinement information. 

 

While convolutional networks can accept inputs of any size (as they use a sliding 

window over the image), the final fully connected layer (between steps 2 and 3) accepts 

a feature volume of a fixed size as an input. In addition, since region, proposals are of 

different sizes (a vertical rectangle for a person, a square for an apple...); this makes the 

final layer impossible to use as is. 

To circumvent that, a technique was introduced in Fast R-CNN—region of interest 
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pooling (RoI pooling). This converts a variable-size area of the feature map into a fixed-

size area. The resized feature area can then be passed to the final classification layers.  

 

 

4.2.4 RoI Pooling 
 

The goal of the RoI pooling layer is simple; to take a part of the activation map of 

variable size and convert it into a fixed size. The input activation map sub-window is 

of size h × w. The target activation map is of size H × W. RoI pooling works by dividing 

its input into a grid where each cell is of size h/H × w/W. Let us use an example. If the 

input is of size h × w = 5 × 4, and the target activation map is of size H × W = 2 × 2, 

then each cell should be of size 2.5 × 2. Because we can only use integers, we will make 

some cells of size 3 × 2 and others of size 2 × 2. Then, we will take the maximum of 

each cell: 

 

 
 
 

Figure 10. RoI Max Pooling Example 

A RoI pooling layer is very similar to a max pooling layer. The difference is that RoI 

pooling works with inputs of variable size, while max-pooling works with a fixed size 

only. RoI pooling is sometimes referred to as RoI max pooling. In the original R-CNN 

paper, RoI pooling had not yet been introduced. Therefore, each RoI was extracted from 

the original image, resized, and directly passed to the convolutional network. Since 

there were around 2,000 RoIs, it was extremely slow. The Fast in Fast RCNN comes 

from the huge speedup introduced by the RoI pooling layer. [32] 

 



20 
 

4.2.5 Intersection over Union Threshold (IOU) 
 

The number of predictions matching or not matching the ground truth boxes defines 

true and false positives. In order to decide when a prediction and the ground truth are 

matching a common metric is used: the Jaccard index, which measures how well two 

sets overlap (in our case, the sets of pixels represented by the boxes). Also known as 

Intersection over Union (IOU), it is defined as follows: 

 

𝐼𝑜𝑈(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

|𝐴 ∩ 𝐵|

|𝐴 + 𝐵| − |𝐴 ∩ 𝐵|
 

 

|𝐴| and |𝐵| are the number of elements that each set contains. 𝐴 ⋂ 𝐵 is the intersection 

of the two sets, and therefore the numerator |𝐴 ⋂ 𝐵| represents the number of elements 

they have in common. Similarly, 𝐴 ⋃ 𝐵 is the union of the sets and therefore the 

denominator |𝐴 ⋃ 𝐵| represents the total number of elements the two sets cover 

together. [32]  

While the intersection would provide a good indicator of how much two sets/boxes 

overlap, this value is absolute and not relative. Therefore, two big boxes would 

probably overlap by many more pixels than two small boxes. This is why this ratio is 

used—it will always be between 0 (if the two boxes do not overlap) and 1 (if two boxes 

overlap completely). When computing the average precision, we say that two boxes 

overlap if their IOU is above a certain threshold.  

The threshold chosen for the experiments in this paper is 0.5 for the classifier and 0.7 

for the RPN layer.  
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4.3  Labelling the Dataset 
 

In the initial part of the experiments a type of labelling was required which was 

supported by the current Faster-RCNN architecture we have presented before. This 

labelling was done using an open source image annotation tool such as LabelImg. [36] 

This tool is used to label object bounding boxes in images. The tool is run via a python 

interface and it allows the user to select areas in a specific image defined as bounding 

boxes and assign a label to each bounding box. It is written in Python and uses Qt for 

its graphical interface. Annotations are saved as XML files in PASCAL VOC format, 

the format used by ImageNet. [37] 

 

 
 

Figure 11.  LabelImg User Interface 

For the label, the letter ‘N’ was used in each bounding box to represent the Nuclei of 

the cells. The xml file format in which labelimg saves the files is not supported by 

default by our Faster-RCNN architecture so a conversion was needed. A predefined 

python script ‘xml_to_csv.py’ [8.1] was used for the conversion of the labels from xml 

to ‘comma separated value’ format. This format was suitable for the architecture used 

and is the final step in labelling. Labelling was done in two parts. The first part consisted 

of 46 images labelled which were used for the two first models trained. 30 images were 

used for training and 16 for testing. Later the dataset was doubled by adding 40 more 

images and splitting them into 60 images for training and 26 for testing. This part of 

the research required the most manual work with over 100 hours of labelling spread 

over 3 months. 
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CHAPTER 5 

5. RESULTS AND DISCUSSIONS 

5.1 Initial Model 03 
 
VGG-16 Hyper-parameters: 

During the initial testing, a dataset of 44 images was used. This was split into 30 images 

for training the VGG-16 network and 14 other images for testing validation. In total, 

there were 2752 nuclei labels in the training dataset. The number of classes to 

distinguish between was set to two; one being the ‘N’ (nucleus) and the other was 

automatically set to ‘bg’ (background). The original images had a resolution of 

1280x1024 and this was not resized during training or testing. The images were kept in 

greyscale to provide higher efficiency against RGB. The feature map size was with a 

height=64 and width=80 whereas the RPN stride was 16 pixels. 

 

VGG-16 Initial Results: 

Firstly, Anchor Box Scales of [64, 128, 256] were tested against this dataset. The 

training of 115k Batches took over 30 hours on Google Colab. We can see the results 

of Batch 115k in the tables below: 

Table 1. Model 03 Results 

Mean Overlapping 

Bounding boxes 

 

Classifier 

accuracy 

 

RPN 

Classifier 

Loss 

 

RPN 

Regression 

Loss 

 

24.262 0.797 0.126 0.103 
 

Classifier Classification 

Loss 

 

Classifier Regression 

Loss 

 

Current 

Loss 

 

Elapsed time 

 

0.415 0.091 0.735 32.27 

 

The network was able to achieve a mean average precision of 72.8 % in terms of 

accuracy. 
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In this model, one of the main challenges we had to improve was the low number of 

detections. This was coming due to the network scanning for larger anchor boxes when 

training the Regions Proposal Network. The anchor boxes were not in proportion to the 

mean size of a nucleus and this way the network was detecting only those nucleus, 

which were grouped together due to the larger window scanning for these targets. In 

the next model, we decided to improve on that anchor box scale and train the model 

again.  

Some of the results from model_03 look like the following images: 

 
 

 

 
 

Figure 12. Model 03 Test Results 
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M03 Classification Accuracy 

 
 

 
 
      M03 Mean Overlapping Boxes  M03 Loss RPN Classification 

 
 

 
 

Figure 13. M03 Total Loss & Other Graphs (above) 
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5.2 Improvements in Model 04 
 
Later the Anchor Box Scales were lowered to [32, 64, 128] in order to fit the cell size 

better. 85k Batches were trained for over 28 hours on Google Colab. As expected, we 

noticed changes in the results for the 85k Batch:  

 

Table 2. Model 04 Results 

 

Mean Overlapping 

Bounding boxes 

 

Classifier 

accuracy 

 

RPN 

Classifier 

Loss 

 

RPN 

Regression 

Loss 

 

26.983 0.829 0.16 0.13 
 

Classifier Classification 

Loss 

 

Classifier Regression 

Loss 

 

Current 

Loss 

 

Elapsed 

time 

 

0.375 0.046 0.71 32.27 

 
 

The lower scales led to a higher mean average precision of 82.6%, an increase by 

approximately 10%. 

However the images of testing suffered from this precision increase in terms of cells 

being more exclusively distinguished by the VGG-16. 

The increasing accuracy was a hopeful achievement but the problem of low detection 

persisted in model_04. At this phase, we decided to improve upon the preprocessing of 

the images and trained model_05 based on this. Some results of model_04 are listed 

below: 

 
 

Figure 14. Model 04 Test Results 
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M04 Classification Accuracy 

 

 
 

M04 Mean Overlapping Boxes         M04 Loss RPN Classification 

 
 

 
 

Figure 15. M04 Total Loss & other graphs (above) 
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5.3  Histogram Matching Preprocessing in Model 05 
 
Afterwards, the histogram matching technique was applied to the dataset and its size 

was increased by doubling the number of labelled images of cells. As we can see from 

the image below, there is a huge contrast difference between the upper left corner of 

the image and the brighter lower right corner. This is because most images are not taken 

in an ideal environment and the lighting/focus elements are disregarded for our dataset. 

 

 
 

Figure 16. Difference of contrast inside a sample 

 
For this reason, we applied a template matching technique used widely in image 

processing to correct this issue and introduce a uniform set of pixel intensities for the 

neural network to process. This technique consists of an image being selected as a 

template to be matched and all the other images in the dataset have their histograms 

adjusted in order to ‘match’ the template image intensities. One example of the process 

is illustrated in the figure below. The histogram matching python code is provided in 

the appendix section of this paper. 
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Figure 17. Histogram Matching Technique 

This technique makes use of the cumulative distribution function of the intensities of 

each pixel and based on this information it applies the template to the input to generate 

a specific output. Our model then evaluates this output and since it has similar group 

intensities, the resulting images with detected bounding boxes were easier for the 

network to specify which regions can be nuclei and which are background pixels. 

The resulting images with cells detected were far more promising than the previous 

tests: 

 

 

 
 

Figure 18. Model 05 Test Results 
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M05 Classification Accuracy 

 
 
 

 
M05 Mean Overlapping Boxes  M05 Loss RPN Classification 

 
 

 
 

Figure 19. M05 Total Loss & other graphs (above) 
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In this model_05, 187 Epochs were trained with over 60 hours of enhanced cloud 

computing on Google Colab. The following numerical results were reached on batch 

187.000: 

 

Table 3. Model 05 Results 

 

Mean Overlapping 

Bounding boxes 

  

Classifier 

accuracy 

  

RPN Classifier 

Loss 

  

RPN Regression 

Loss 

  
36.638 0.819 0.254 0.186 

 

Classifier Classification 

Loss 

  

Classifier Regression 

Loss 

  

Current Loss 

  

0.391 0.192 1.024 

 

After training 187k batches, the mean average precision reached was 79.21%. A 

lower value than what we had before but still justified by the fact that the dataset is 

doubled now and thus the training length requirements are extended to reach the same 

level of mAP. As the next step an improvement of the histogram matching was 

proposed by deepening the classification of images before conducting histogram 

matching. 

 

Even after such a good resulting model, we knew there was stillroom for improvement. 

That is when we noticed some of the images developing sort of ‘auerolas’ the cells 

when template matching was used. These bright spots surrounding the cells were a 

result of an increase in contrast in a specific area of the image, which was already bright 

enough. That posed a problem for our model since it might throw the network off in 

not detecting any cells since the area is made of high intensity pixels. For this issue we 

decided to group the images further before we continued with histogram matching. The 

following results of model_06 describe this method in detail. 
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5.4  Selective-Histogram Matching Classification in Model 06 
 

In this part, a method of deepening the manual classification of images was proposed. 

This technique consisted in splitting the dataset into three subgroups depending on their 

contrast level. Respectively High-, Medium- and Low-Contrast groups were created 

and images were manually classified into them based on the level of contrast of each 

image.  

An example is demonstrated below with two images of High-Contrast (left) and Low-

Contrast (right) before and after the technique of “selective histogram matching”. 

   

 
Figure 20. Images before Selective Histogram Matching 

   

 
Figure 21. Images after Selective Histogram Matching 

We can surely notice how the high contrast image had its contrast tuned down and 

turned a bit darker, while the opposite effect is apparent in the low contrast image. This 

grouping of images before applying histogram matching was made in order to reduce 

differentiation between images in times of training the model but also to yield better 

results during test runs. 
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   M06 Classification Accuracy 

 

 
M06 Mean Overlapping Boxes  M06 Loss RPN Classification 

 
 
 

 
 

Figure 22. M06 Total Loss & other graphs (above) 
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In this final and best model so far, 130 Epochs were trained with over 40 hours of 

enhanced cloud computing on Google Colab. The following numerical results were 

reached on batch 130.000: 

Table 4. Model 06 Results 

 

Mean Overlapping 

Bounding boxes 

  

Classifier 

accuracy 

  

RPN Classifier 

Loss 

  

RPN Regression 

Loss 

  

34.3 0.812 0.272 0.193 
 

Classifier Classification 

Loss 

  

Classifier Regression 

Loss 

  

Current Loss 

  

0.414 0.168 1.047 
 

After training 130k batches, the mean average precision reached was 78.07%. This 

demonstrates a trend of declining mean average precision as we get better and better 

results in the number of cells detected. This could be due to the fewer number of cells 

detected could be correlated with a lesser division for the mean average denominator 

and thus producing slightly higher values for the accuracy when we have few cells 

detected.  

 
 

Figure 23. M06 Test Results 



34 
 

CHAPTER 6 

6. CONCLUSIONS 

6.1 Conclusions 
 

Through these experiments we have concluded that lowering the bounding box scale 

for the FRCNN will adjust the network to achieve better accuracy in detecting small 

crowded cells in an image. The dataset requires better preprocessing such as the 

template matching technique used in digital image processing. This technique is a great 

improvement but still introduces some areas with higher threshold of intensity, which 

can throw the network off in defining the cells to be counted. 

A huge improvement on the number of cells detected was the template matching 

technique applied in groups. Instead of a single template for all the dataset, the image 

was clustered into three groups of high, medium and low contrast and histogram-

matching technique was applied for each respective group separately. This way a better 

distribution of pixel intensities was provided while keeping the image data as close as 

possible to the raw data. The model was also run against raw unlabeled images and 

resulted in very good detection numbers. Although one thing to be notices was the 

number of cells detected was always in an average of 50-70 cells. This could be a bias 

of the model based on the low density of the dataset. 

 

6.2  Future Work 
 
As future work, it is proposed that the current model can immeasurably help in labeling 

images by utilizing the bounding box coordinates detected by the model. This way the 

model can self-improve by minimizing the manual work required for labelling future 

images. In addition, the histogram matching technique still requires some sort of human 

labor to distinguish and classify the images in the similar groups of contrasts. A model 

can be created to automatically classify the similar histogram distribution, contrast of 

the images, and group them together. Then histogram matching can be applied, thus 

compressing the entire preprocessing stage into one simple script.  

Finally, the model can be further analyzed by fine-tuning the current model 06 with a 

wider dataset of higher density labelled images of cells. 
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