

MICROSCOPIC IMAGE CELL COUNTING USING CONVOLUTIONAL

NEURAL NETWORKS

A THESIS SUBMITTED TO

THE FACULTY OF ARCHITECTURE AND ENGINEERING

OF

EPOKA UNIVERSITY

BY

ALEKS TARE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

JUNE 2020

ii

Approval sheet of the Thesis

This is to certify that we have read this thesis entitled “Microscopic Image Cell

Counting using Convolutional Neural Networks” and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Dr. Ali Osman Topal (Head of Department)

 Date: July 13, 2020

Examining Committee Members:

Dr. Ali Osman Topal (Computer Engineering) ________________

Assoc. Prof. Dr. Dimitrios A. Karras (Computer Engineering) ________________

Dr. Arban Uka (Computer Engineering) ________________

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

 Name Surname: Aleks Tare

Signature: ______________

iv

ABSTRACT

MICROSCOPIC IMAGE CELL COUNTING USING

CONVOLUTIONAL NEURAL NETWORKS

Tare, Aleks

M.Sc., Department of Computer Engineering

Supervisor: Dr. Arban Uka

As the field of automation is moving forward at ever-faster rates, cell counting and

classification is an omnipresent yet repetitive task that would benefit greatly from this

field. The counting of contiguous cells in a specific area could provide crucial

contribution to work done in clinical trials. Cell counting, sadly, is most often

conducted manually by humans and can be time and resource consuming.

Due to cells touching each other, a non-uniform background, shape and size variations

of cells, and different techniques of image acquisition, the task becomes even more

difficult. In this paper we describe a convolutional neural network approach, using a

Faster-RCNN architecture later also combined with a U-Net neural network, for cell

counting and possibly segmentation in a raw microscopic picture.

Key words: machine learning, microscopy, faster-rcnn, classification, cell counting

v

ABSTRAKT

NUMERIMI I QELIZAVE NE IMAZHET MIKROSKOPIKE DUKE

PERDOR RRJETAT NEURALE KONVOLUCIONARE

Tare, Aleks

Master Shkencor, Departamenti i Inxhinierise Kompjuterike

Udhëheqësi: Dr. Arban Uka

Ndërkohë që fusha e automatizmit po ecën përpara me ritme gjithnjë e më të shpejta,

numërimi dhe klasifikimi i qelizave është një detyrë që do të përfitonte shumë nga kjo

fushë pasi ky i fundit paraqet sfida te mundimshme për stafin mjekësor. Numërimi i

qelizave të ngjitura me njëra-tjetrën, në një zonë specifike, mund të sigurojë një

kontribut thelbësor në punën e kryer në provat klinike. Numërimi i qelizave, për fat të

keq, shpesh herë kryhet në mënyrë manuale nga njerëzit dhe si veprim konsumon tepër

kohë dhe burime.

Për shkak të qelizave që prekin njëra-tjetrën, sfondeve jo-të-njëtrajtshëm, ndryshime të

formës dhe madhësisë së qelizave, si dhe teknikave të ndryshme të fotografimit të

imazhit, kjo detyrë bëhet edhe më e vështirë. Në këtë punim ne përshkruajmë një qasje

të rrjetit neural konvolucionar, duke përdorur një arkitekturë ‘Faster-RCNN’ të

kombinuar më vonë edhe me një rrjet neural ‘U-Net’, për numërimin e qelizave dhe

mundësisht segmentimin e tyre në një imazh të papërpunuar mikroskopik.

Fjalët kyçe: machine learning, mikroskopi, faster-rcnn, klasifikim, numerim qelizash

vi

ACKNOWLEDGEMENTS

I would first like to express my gratitude to my thesis advisor Dr. Arban Uka of the

Computer Engineering Department at Epoka University. Whenever I ran into a trouble

spot or had a question about my research Prof. Uka was always willing to help. His

valuable advice and suggestions helped steer me into the best learning path during my

studies in Epoka. I would also like to thank Alba Tujani who was involved in the

labelling of images for this research project. Without her relentless participation and

input, the labelling of over five-thousand cells could not have been conducted.

vii

TABLE OF CONTENTS

ABSTRACT .. iv

ABSTRAKT .. v

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES .. ix

LIST OF TABLES ... x

CHAPTER 1 .. 1

1. INTRODUCTION .. 1

1.1 Cell Counting .. 1

1.2 Thesis Objective & Scope of Works ... 1

1.3 Organization of the Thesis .. 2

CHAPTER 2 .. 3

2. LITERATURE REVIEW ... 3

2.1 Medical Image Analysis .. 3

2.2 Challenges of this research .. 4

2.3 Microscopy Image Analysis .. 6

2.4 Use of Neural Networks in Medicine Pathology .. 6

2.5 Segmentation Techniques in Medical Imaging ... 7

CHAPTER 3 .. 8

3. FROM MACHINE LEARNING TO NEURAL NETWORKS 8

3.1 Batch Learning .. 9

3.2 Artificial Neurons .. 9

3.3 Logical Computations with Neurons .. 10

3.4 Computer Vision Techniques .. 12

CHAPTER 4 .. 14

4. METHODOLOGY ... 14

viii

4.1 VGG – a standard CNN architecture... 14

4.2 Faster R-CNN – a powerful object detection model 16

4.2.1 Region Proposals Network (RPN) ... 16

4.2.2 Mean Average Precision Score.. 17

4.2.3 Classification inside Faster-RCNN ... 18

4.2.4 RoI Pooling .. 19

4.2.5 Intersection over Union Threshold (IoU) .. 20

4.3 Labelling the Dataset ... 21

CHAPTER 5 .. 22

5. RESULTS AND DISCUSSIONS .. 22

5.1 Initial Model 03 ... 22

5.2 Improvements in Model 04 ... 25

5.3 Histogram Matching Preprocessing in Model 05 .. 27

5.4 Selective-Histogram Matching Classification in Model 06 31

CHAPTER 6 .. 34

6. CONCLUSIONS .. 34

6.1 Conclusions ... 34

6.2 Future Work .. 34

7. REFERENCES ... 35

8. APPENDIX .. 39

ix

LIST OF FIGURES

Figure 1. Crowded Cell Image .. 4

Figure 2. Out of Focus Cells in an Image ... 5

Figure 3. Different Contrast Extremes in the Dataset ... 5

Figure 4. Simple Neurons Illustrated as Logic Gates ... 10

Figure 5. Anatomy of the Perceptron .. 11

Figure 6. Activation Functions & their Derivatives .. 12

Figure 7. Simple CNN Architecture ... 13

Figure 9. VGG-16 Architecture .. 15

Figure 10. CNN Feature Map Flow .. 17

Figure 8. RoI Max Pooling Example .. 19

Figure 11. LabelImg User Interface ... 21

Figure 12. Model 03 Test Results ... 23

Figure 13. M03 Total Loss & Other Graphs (above) .. 24

Figure 14. Model 04 Test Results ... 25

Figure 15. M04 Total Loss & other graphs (above) ... 26

Figure 16. Difference of contrast inside a sample .. 27

Figure 17. Histogram Matching Technique .. 28

Figure 18. Model 05 Test Results ... 28

Figure 19. M05 Total Loss & other graphs (above) ... 29

Figure 20. Images before Selective Histogram Matching ... 31

Figure 21. Images after Selective Histogram Matching ... 31

Figure 23. M06 Total Loss & other graphs (above) ... 32

Figure 22. M06 Test Results ... 33

x

LIST OF TABLES

Table 1- Model 03 Results ... 22

Table 2- Model 04 Results ... 25

Table 3- Model 05 Results ... 30

Table 4- Model 06 Results ... 33

1

CHAPTER 1

1. INTRODUCTION

1.1 Cell Counting

Medical images provide health professionals in-depth knowledge of the inner operation

of a person’s body, as well as the functions of their organs and tissues. This knowledge

is often key to the clinical analysis of a person’s situation or the implementation of life

saving medical interventions. Medical imaging technology including acquisition and

analysis is constantly evolving and we need knowledgeable and highly skilled

practitioners to ensure the best care for the patient. In this work, we will analyze state-

of-the-art methods for detection such as Faster-RCNN [1] and image segmentation

techniques such as U-Net [2] for each respective stage of our research to detect cells

and determine the area covered by them. This evolution comes at a cost and that is the

effort needed by the medical staff to analyze and generate results out of these images.

One of the issues treated in this thesis is the counting of the cells in a microscope image.

This task is usually done manually and copious amounts of time are required for the

medical staff to finish it.

1.2 Thesis Objective & Scope of Works

In this paper, we hope to achieve an automated cell counting technique by utilizing pre-

existing convolutional neural networks. The research group aims to create a successful

deep learning model, which accurately detects the location of each cell present in the

images provided in our dataset. Firstly, a literature review is conducted in order to

determine which model suits best the task at hand, and also later on to analyze the

possibilities of linking our model with a segmentation task in order to accurately detect

the area covered by each cell. In addition, the recent methods of pre-processing and

regularization will be analyzed during this process. Finally, the scope of the thesis

covers multiple experiments with different preprocessing techniques such as

 template matching and contrast correction

2

 alternating hyperparameters for the model

The goal of this research is to achieve the best performance possible with a CNN model

for the detection of the maximum number of cells we can in a microscope image.

1.3 Organization of the Thesis

This thesis is organized in six chapters with each one representing a part of the work

conducted from the beginning of the research up until the results and conclusions.

 Chapter 1 presents the introduction to the motivations behind this work and its

purposes.

 Chapter 2 explores the correlated researches in the field of medical image

analysis through different approaches such as classification and object detection

by utilizing neural networks.

 Chapter 3 holds all the necessary architecture information that supports all the

work in this thesis. It covers some state-of-the-art techniques in object detection

models and their evaluation methods.

 Chapter 4 describes the methodology used for the experiments conducted and

the resources applied during these experiments.

 Chapter 5 includes all the information about the parameters of each experiment

and the interpretation of their results.

 Chapter 6 interprets the results, discusses the conclusions and recommends

future work for research on this topic.

This thesis also includes sections for easier navigation such as the List of Tables, List

of Figures and Table of Contents.

3

CHAPTER 2

2. LITERATURE REVIEW

2.1 Medical Image Analysis

The rapidly developing optical microscopy area has evolved over the past few years

from depending on conventional photomicrography using emulsion-based film to one

where state-of-the-art digital images are produced as a result. These images can be

transformed and altered through various processes such as changing their spatial or

gray-level resolution, contrast manipulation and stretching, gamma correction, noise

removal, background subtraction and so on.

Implanting of biocompatible materials has been used for many decades. Tooth

implants, silicone implants, hip replacements have been used for a long time and the

use of them is expected to rise. The market share is predicted to be 130 billion dollars

pointing to the importance of the research relating the use of biomaterials. The most

important aspect in the use of biomaterials is the prediction of unwanted complications

that may arise at a personalized level. A certain biomaterial may have shown to be

compatible over the course of a certain testing phase, but complications in new patients

cannot be completely ruled out. Because of this, a personalized level analysis of the

biocompatibility of materials is essential such as Dollinger et al [3].

Lab scientists to stimulate and mimic tissue growth are studying biomaterials. These

so-called “regenerative functional porous materials” are mixed with living cell cultures

so they can stimulate mechanisms to work for the regeneration of a specific body tissue.

However, the tests and clinical trials must be conducted in laboratory environments

such as incubators before they are tested in vivo. This requires thorough observation of

these cultures, by daily or weekly cycles, in order to detect anomalies such as cells

dying or turning cytotoxic in reaction to the biomaterial. [4], [5] Analyzing these

images manually is not only expensive and lengthy but it also suffers from the variation

of observers-interpretation.

4

A little earlier, computer vision researches thought that employing a computer to tell

the difference between a cat and a dog would be almost impossible, whereas now this

can be achieved at an accuracy of higher than 99%. This is image classification, which

includes the labeling of images, in two or more classes and then identifying an image

after a training of a certain neural network. In the recent years, researchers have also

achieved object detection using artificial intelligence that is to look at an image and try

to find all the objects in that image, assigning bounding boxes around these objects and

label exactly what those objects are. Similar researches conduct the same task but with

different types of cells. [6] [7] [8]

In order to alleviate human effort in the sector of biomaterial testing, we can apply

image detection and classification techniques to automatize the process of detecting

these cells, counting them and if possible classify them into healthy and unhealthy

categories.

2.2 Challenges of this research

One of the initial challenges faced in this research was the labelling of the images. A

raw dataset of images was provided and the initial labelling was done as manual work

over the course of 3 months in a total of approx. 100 hours to label 86 images.

Another great challenge posed by this research can be seen in the image below. The

cells can be very crowded in an image and are usually touching other cells. With a high

number of cells touching each other, it is hard even for the human eye to distinguish

cells from the background.

Figure 1. Crowded Cell Image

5

Another challenge is the difference in contrast and lighting of each image. Compared

to the image above, the following picture demonstrates a huge change in focus of the

image, which in terms can throw off the neural network when detecting cells. (False

Positive/False Negatives cells are detected)

Figure 2. Out of Focus Cells in an Image

One of the major challenges belonging to the group of image qualities (and which is

effectively treated in this paper) is that of the contrast differences between images. As

we can see from the example below, two extremes of high and low, contrasts are present

throughout the entire dataset. This would require a thorough preprocessing technique

in order to create a better model for the cell counting task such as [9]

Figure 3. Different Contrast Extremes in the Dataset

6

2.3 Microscopy Image Analysis

One of the main problems in microscopic anatomy image analysis is to count the cells

in the image. This consists in not only the complexity and variety of algorithm being

applied, but also it is a process, which is held back by the characteristics of microscopic

images such as cells touching each other, background disorders, shape and size

variations of cells, and different techniques of image acquisition. We must also note

that these histological images come in high resolutions, thus consuming many

computational resources.

2.4 Use of Neural Networks in Medicine Pathology

Convolutional Neural Networks (CNNs) have been widely used for image processing

purposes not only in medical imaging, but also in fields of security, space exploration

images, autonomous driving, fake news detection and many more. [10] [11], [12] It is

implemented to also adapt to real time images which can change dynamically, such as

sign language detection and translation. [13] However, we notice that the most

impactful field is that of improving medical diagnosis. Innovative designs of CNNs

have shown great progress in the field of dealing with melanoma cancer cells by using

a committee of CNNs [14] or the detection of colorectal cancer in real time colonoscopy

images. [15] [16] [8] These have shown a superior efficiency level for Fast-RCNN

implementations compared to similar classifiers in this field. Other researchers still

applied their version of Deep Convolutional Neural Networks in order to diversify the

approach for a specific type of detection in medical imaging. Detect Net from the Caffe

package was used for detection of astrocytes involved in different brain pathologies.

[17]–[19] Besides the complex implementations of FRCNN in Caffe or Tensorflow, it

is worth noting the simplified join-training scheme of the pipeline, which unifies

functionalities of both these libraries. [20] We may also mention that this is not the first

time U-Net has joined forces with Fast-RCNN since the use of this latter in a 3D Faster

R-CNN model, adapted in the architecture of U-Net for the detection of pulmonary

nodules to prevent lung cancer. [21] Similar methods include generation of a mask to

identify cells in an image. Of particular note is the Mask-RCNN algorithm designed by

Facebook AI Research (FAIR). [22] Multiple augmentation methods have been

reviewed such as [23]

7

2.5 Segmentation Techniques in Medical Imaging

The next challenging step is segmentation of these detected regions, and the most-

valued method in the field is the state-of-the-art approach of U-Net. [2] This model

finds usages in various medical fields, especially in MRI Imaging. By using multiple

2D U-Nets for analyzing MR brain images in order to diagnose glioma, a type of

malignant brain tumor [18], [24], or an “autoencoder-regularized 3D-CNN” with three

stages of encoding the low dimensional input, reconstructing it and finally segmentation

through U-Net for the same problem of brain tumors, providing this way a memory

efficient approach. [19] U-Net has also been evaluated in 2D and 3D architectures

against DenseNet for Cardiac MRI Image Segmentation, to distinguish between left

ventricle and right ventricle, with the 2D architecture having the upper accuracy of

generalization. [25] DenseU-Net is based on encoding, connecting and decoding dense

blocks and it provides substantial gains over the baseline U-Net model in terms of Dice

Score improvement. [17] A similar approach is that of AD-UNet for vessel

segmentation purposes in retinal images, except that it also includes the attention

mechanism, of which the encoder and decoder components are added with dense

blocks. [12] Also, in the same field another approach introduces a method in which the

pooling layers of the encoder part are replaced by strided convolutional layers. [1] Other

researchers have preferred a raw implementation of CNN to achieve the same task on

eye vasculature. [26] [27] [28] On the other hand, 3D U-Net performs very well for

segmentation of thoracic Organs-At-Risk by using cropped 3D images. It has shown

potential for eventual clinical adoption of deep learning in radiation treatment planning

due to improved accuracy and reduced cost for OAR segmentation. [29] For knee

cartilage segmentation the original UNet with 40 channels and a version of UNet with

dilated convolutions are ensembled in (Duarte, 2019) [30] The dilation model helps

achieve a larger field of view while the original model improves the accuracy of the

smaller regions. In addition, other methods such as Random Forest Semantic

Classification prove to be better in the field of brain MRI for the problem of weak

signals produced by bone and air tissues. [18] The illumination and contrast of cell

images varies greatly. To reduce this variance and enhance the contrast, a method of

normalizing each image by first subtracting the minimum intensity value of the image

is proposed by Gao et al [16].

8

CHAPTER 3

3. FROM MACHINE LEARNING TO NEURAL NETWORKS

In the paper published by Geoffrey Hinton [31] in 2006, it is demonstrated the training

of a deep neural network (DNN) able to recognize handwritten digits even with the

highest precision possible at that time (>98%). This technique was later known as

“Deep Learning.” A DNN is a cut down version of our brain’s cerebral cortex, which

in this case is made of a stack of layers of artificial neurons. In the late 1990s, it was

considered a very hard and tedious task to train a DNN and most researchers abandoned

the idea. This paper revitalized the scientific community’s interest and it would not be

long that other papers would join to show that Deep Learning could surpass Machine

Learning techniques even in most complicated tasks. However, a great help were the

advancements made in computing power and speed and the larger ever-growing amount

of data we feed into the Internet today. This newborn interest soon stretched into many

other capacities of Machine Learning.

A decade or so later, Machine Learning is at the very top of the productive processes

happening inside every computer: it is the core of what people call magic of the

computers nowadays, classification of web results, speech recognition conducted live

in your handheld device, movie recommendation and defeating world class champions

in games such as Go. It is already working and improving on driving our cars.

It is possible to classify different types of Machine Learning in extensive categories,

since so many of them exist. This is done in accordance with the following criteria: If

human supervision has been present during the training (supervised, unsupervised, semi

supervised, and Reinforcement Learning). Another way of categorizing them is based

on the ability to learn incrementally on the fly (online versus batch learning). We can

combine these criteria in any way we like, since they are not exclusive. As an example,

we can analyze a state-of-the-art spam filter. This filter can learn on the fly by using a

deep neural network model. The model itself utilizes examples of spam and ham to

train itself. This learning system is known to be an online, model-based, supervised

one. (Benjamin Planche, 2019)

We can also classify Machine Learning systems by analyzing the type and quantity of

supervision the models can have during the process of training. Unsupervised learning,

9

supervised learning, semi supervised learning, and reinforcement Learning are some

major categories. In supervised learning, you feed a training set that includes the desired

solutions to the algorithm. These solutions are known as labels. Classification is a very

typical supervised learning task. As we explained above in the spam filter, we use

example emails and we classify them as spam or ham. Then the model trains itself and

can learn how to classify other emails. Predicting numerical values, as targets, for

example the price of a car, is another typical task. In this case, we provide what we call

predictors. Predictors are a group of different features, such as age, mileage, color,

brand, etc. This type of function can also be known as regression. (Benjamin Planche,

2019)

3.1 Batch Learning

In this type of learning, the system is not able to learn incrementally: we must use all

the available data to train it. It is usually not done online as it generally involves a huge

quantity of time and resources to compute. The model is firstly trained, and then is able

to run without learning anymore, while being launched into production and applying

what has already been learned. We call this offline learning. Let us say that we want to

add new data to a currently live batch learning system. In this case, a new version of

the system needs to be trained from the beginning using the complete dataset. The full

dataset contains both old and new data. Then we need to replace the old model with the

new one. The solution may be simple, but there is a downside to using the full dataset

to train. This can require prolonged hours and a new system would generally be trained

every 24 hours or even weekly. In addition, a huge amount of computing resources such

as CPU, disk space, memory space, inputs, outputs and more are required. Therefore,

we can lean on using algorithms capable of learning incrementally as a better option.

[32]

3.2 Artificial Neurons

McCulloch and Pitts firstly introduced the Artificial Neural Networks in 1943. They

demonstrated a simplified computational model of how biological neurons might work

together in their paper, “A Logical Calculus of Ideas Immanent in Nervous Activity”

[33] They explained how the neurons use propositional logic to perform complex

calculations in animal brains. All of this was nothing but the first architecture of

10

artificial neural networks. Many other types of architecture would be designed in the

following years. Until the 1960s, there was a broad belief that humans would be able

to interact with very intelligent machines, led by early successes of Artificial Neural

Networks. The early 1980s saw an invention of new network architectures. Researchers

were also developing better training techniques. This caused a revival of interest in

ANNs. During the 1990s, the majority of researchers were favoring alternative Machine

Learning techniques that could be more powerful, such as Support Vector Machines.

Better results and stronger theoretical foundations were believed to be offered by these

techniques. Nowadays the interest in ANNs is fortunately awakened again. [32]

3.3 Logical Computations with Neurons

The researchers mentioned above first came up with a very straightforward model of

the biological neuron. This came to be known as an artificial neuron. The artificial

neuron contains more than one inputs and only one output (usually both are binary).

The output is easily activated when the active inputs surpass a certain number.

McCulloch and Pitts presented how it can be conceivable to build artificial neurons into

a network and compute any logical result you want, even using such a simplified model.

In the following figure there are portrayed some ANNs that perform various logical

computations, all while considering that the activation of a neuron happens only when

at least two of its inputs are turned on (active).

Figure 4. Simple Neurons Illustrated as Logic Gates [32]

One of the simplest ANN architectures is called a Perceptron. With numbers serving as

inputs and outputs, this neuron is called a Linear Threshold Unit (LTU). The input is

each on their own connected to a value, which is called weight. The Linear Threshold

11

Unit using the following formula calculates a weighted sum: (z = w1 x1 + w2 x2 + ⋯

+ wn xn = wT · x). Afterwards a step method is applied to the sum computed previously.

Finally, the product is finally outputted: hw(x) = step (z) = step (wT · x).

Figure 5. Anatomy of the Perceptron [32]

Multiple Perceptrons stacked together along with some bias values create what we call

a Multi-Layered Perceptron, which is the core foundation of Deep Neural Networks

used nowadays. A Multi=Layered Perceptron consists of one input layer, one or more

middle layers that are hidden and one final output layer. The steps for each training

instance go as follows: firstly, the backpropagation algorithm makes a prediction that

is called forward passing. It measures the error contribution from each connection while

going through each layer in reverse (reverse pass). Lastly, the connection weights are

slightly tweaked in order to have the error reduced. The process of tweaking is called

Gradient Descent step.

Instead of the logistic function, we may use the backpropagation algorithm together

with other activation functions. Some other famous activation functions are:

1. The hyperbolic tangent function tanh (z) = 2σ (2z) – 1

It is S-shaped, continuous, and differentiable, just like the logistic function.

Unlike the logistic function, it has an output value that ranges from –1 to 1.

This range contributes to causing each layer’s output to be almost normalized,

in other words: centered on zero at the start of training. All of this leads to a

speedup of the convergence. [32]

12

2. The ReLU function

ReLU (z) = max (0, z). Although continuous, this function can sadly not be

differentiable at the point z = 0 (Gradient Descent bounces around since the

slope changes abruptly). It is, however, quick to be calculated. This function

also does not have a maximum output value and this can help reduce some

issues during Gradient Descent [32]

Figure 6. Activation Functions & their Derivatives

3.4 Computer Vision Techniques

Computer vision can be hard to define because it sits at the joint of several research and

development fields, such as computer science (algorithms, data processing, and

graphics), physics (optics and sensors), mathematics (calculus and information theory),

and biology (visual and neural processing). At its core, computer vision can be

summarized as the automated extraction of information from digital images. [32] A

central goal in computer vision is to make sense of images, that is, to extract

meaningful, semantic information from pixels (such as the objects present in images,

their location, and their number). This generic problem can be divided into several sub-

domains:

1. Object classification

2. Object identification

3. Object detection and localization

4. Object and instance segmentation

In computer vision, a feature is a piece of information (often mathematically

represented as a one or two-dimensional vector) that is extracted from data that is

relevant to the task. Features include some key points in the images, specific edges,

13

discriminative patches, and so on. They should be easy to obtain from new images and

contain the necessary information for further recognition.

Our images are complex structures with a large number of values (that is, H × W × D

values with H indicating the image's height, W its width, and D its depth/number of

channels, such as D = 3 for RGB images). This number of parameters simply explodes

when we consider larger RGB images or deeper networks. Because their neurons

receive all the values from the previous layer without any distinction (they are fully

connected), these neural networks do not have a notion of distance/spatiality. More

precisely, this means that the notion of proximity between pixels is lost to fully

connected (FC) layers, as all pixel values are combined by the layers with no regard for

their original positions. It is common practice to flatten multidimensional inputs before

passing them to these layers. CNNs can handle multidimensional data. For images, a

CNN takes as input three-dimensional data (height × width × depth) and has its own

neurons arranged in a similar volume. This leads to the second novelty of CNNs—

unlike fully connected networks, where neurons are connected to all elements from the

previous layer, each neuron in CNNs only has access to some elements in the

neighboring region of the previous layer. This region (usually square and spanning all

channels) is called the receptive field of the neurons (or the filter size) [32]

Figure 7. Simple CNN Architecture

14

CHAPTER 4

4. METHODOLOGY

4.1 VGG – a standard CNN architecture

VGG (or VGGNet), developed by the Visual Geometry Group from Oxford University,

though only achieved second place in the ILSVRC classification task in 2014,

influenced many later architectures. AlexNet was the first CNN successfully trained for

such a complex recognition task and making several contributions that are still valid

nowadays, such as:

The use of a rectified linear unit (ReLU) as an activation function prevents the

vanishing gradient problem, and thus improving training (compared to using sigmoid

or tanh). Also the application of dropout to CNNs. The typical CNN architecture

combining blocks of convolution and pooling layers, with dense layers afterward for

the final prediction. The application of random transformations (image translation,

horizontal flipping, and more) to artificially augment the dataset (that is, augmenting

the number of different training images by randomly editing the original samples. The

main motivation of many researchers was to try going deeper (that is, building a

network composed of a larger number of stacked layers), despite the challenges arising

from this. More layers typically means more parameters to train, making the learning

process more complex. Karen Simonyan and Andrew Zisserman from Oxford's VGG

group tackled this challenge with success. [34] The method they submitted to ILSVRC

2014 reached a top-5 error of 7.3%, dividing the 16.4% error of AlexNet by more than

two. In their paper (Simonyan, 2014) [34] presented how they developed their network

to be deeper than most previous ones. They actually introduced six different CNN

architectures, from 11 to 25 layers deep. Each network is composed of five blocks of

several consecutive convolutions followed by a max-pooling layer and three final dense

layers (with dropout for training). All the convolutional and max-pooling layers have

SAME for padding. The convolutions have s = 1 for stride, and are using the ReLU

function for activation. Overall, a typical VGG network is represented in the following

diagram:

15

Figure 8. VGG-16 Architecture

The two most performant architectures, still commonly used nowadays, are called

VGG-16 and VGG-19. The numbers 16 and 19 represent the depth of these CNN

architectures; that is, the number of trainable layers stacked together. For example, as

shown in the figure above, VGG-16 contains 13 convolutional layers and 3 dense ones,

hence a depth of 16 (not including the non-trainable procedures; that is, the five max

pooling and two dropout layers). The same goes for VGG-19, which is composed of

three additional convolutions. VGG-16 has approx. 138 million parameters, and VGG-

19 has 144 million.

The VGG authors then decided to replace the large convolutions with multiple smaller

ones. A simple observation made by them was that a stack of two convolutions with 3

by 3 kernels and the same receptive field as a convolution with 5 by 5 kernels. Similarly,

three consecutive convolutions of those 3 by 3 kernels resulted in a 7-by-7 receptive

field and five convolutions resulted in an 11-by-11 receptive field. Therefore, while

AlexNet had large filters up to 11 by 11, the VGG network contains more numerous

but smaller convolutions for a larger efficient receptive field. There are two main

benefits achieved from this observation. It decreases the number of parameters: The N

filters of an 11 by 11 convolution layer imply 11 by 11 by D × N = 121DN values to

train just for their kernels (for an input of depth D). While five 3 by 3 convolutions have

a total of 1 × (3 × 3 × D × N) + 4 × (3 × 3 × N × N) = 9DN + 36N2 weights for their

kernels. As long as N < 3.6D, this means fewer parameters. For instance, for N = 2D,

the number of parameters drops from 242D2 to 153D2. This makes the network easier

to optimize, as well as much lighter. It also increases the non-linearity: Having a larger

number of convolution layers, each followed by a non-linear activation function such

as ReLU, increases the networks' capacity to learn complex features (that is, by

combining more non-linear operations). (Simonyan, 2014) Also introduced a data

augmentation mechanism that they named scale jittering. At each training iteration,

they randomly scale the batched images (from 256 pixels to 512 pixels for their smaller

16

side) before cropping them to the proper input size (224 × 224 for their ILSVRC

submission). With this random transformation, the network will be confronted with

samples with different scales and will learn to properly classify them despite this scale

jittering. The network becomes more robust as a result, as it is trained on images

covering a larger range of realistic transformations. [32]

4.2 Faster R-CNN – a powerful object detection model

The Faster R-CNN architecture [1] was engineered over several years of research. More

precisely, it was built incrementally from two architectures—R-CNN and Fast R-CNN.

Faster R-CNN works in two stages:

1. The first stage is to extract a region of interest (RoI, or RoIs in the plural form).

A RoI is an area of the input image that may contain an object. For each image,

the first step generates about 2,000 RoIs.

2. The second stage is the classification step (sometimes referred to as the

detection step). We resize each of the 2,000 RoIs to a square to fit the input of

a convolutional network. We then use the CNN to classify the RoI. [1]

4.2.1 Region Proposals Network (RPN)

Regions of interest are generated using the region proposal network (RPN). To

generate RoIs, the RPN uses convolutional layers. Therefore, it can be implemented on

the GPU and is very fast. It uses anchor boxes—in the Faster R-CNN paper, nine anchor

sizes are used (three vertical rectangles, three horizontal rectangles, and three squares).

It can use any backbone to generate the feature volume and it uses a grid, and the size

of the grid depends on the size of the feature volume. The network’s last layer outputs

numbers that allow the anchor box to be refined into a proper bounding box fitting the

object. The RPN accepts an image as input and outputs regions of interest. Each region

of interest consists of a bounding box and an objectness probability. To generate those

numbers, a CNN is used to extract a feature volume. The feature volume is then used

to generate the regions, coordinates, and probabilities.

17

Figure 9. CNN Feature Map Flow

The systematic process represented in the figure above is as follows:

1. The network accepts an image as input and applies several convolutional layers.

2. It outputs a feature volume. A convolutional filter is applied over the feature

volume. Its size is 3 × 3 × D, where D is the depth of the feature volume.

3. At each position in the feature volume, the filter generates an intermediate 1 ×

D vector.

4. Two sibling 1 × 1 convolutional layers compute the ‘objectness’ scores and the

bounding box coordinates. There are two ‘objectness’ scores for each of the k

bounding boxes. There are also four floats that will be used to refine the

coordinates of the anchor boxes.

After post-processing, the final output is a list of RoIs. At this step, no information

about the class of the object is generated, only about its location.

4.2.2 Mean Average Precision Score

Average precision gives information about the performance of a model for a single

class. To get a global score, we use mean Average Precision (mAP) [35]. This

corresponds to the mean of the average precision for each class. mAP summarizes a

precision-recall curve as the weighted mean of precisions achieved at each threshold,

with the increase in recall from the previous threshold used as the weight:

𝐴𝑃 = ∑

𝑛

(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛

18

Where Pn and Rn are the precision and recall at the nth threshold. This implementation

is not interpolated and is different from computing the area under the precision-recall

curve with the trapezoidal rule, which uses linear interpolation and can be too

optimistic. [35] The Mean average precision score was used to clearly evaluate the

Faster-RCNN architecture through each model’s tests. This score was generated by

running the model against pre-labelled images and calculating the average precision of

each image.

4.2.3 Classification inside Faster-RCNN

The second part of Faster R-CNN is the classification part. It outputs the final bounding

boxes and accepts two inputs—the list of RoIs from the previous step (RPN), and a

feature volume computed from the input image.

Since most of the classification stage architecture comes from the previous paper, Fast

R-CNN, it is sometimes referred to with the same name.

Therefore, Faster R-CNN can be regarded as a combination of RPN and Fast R-CNN.

The classification part can work with any feature volume corresponding to the input

image. However, as feature maps have already been computed in the previous region-

proposal step, they are simply reused here. This technique has two benefits: Sharing the

weights: If we were to use a different CNN, we would have to store the weights for two

backbones: one for the RPN, and one for the classification, and secondly, sharing the

computation: For one input image, we only compute one feature volume instead of two.

As this operation is the most expensive of the whole network, not having to run it twice

allows for a consequent gain in computational performance. For each RoI,

convolutional layers are applied to obtain class predictions and bounding box

refinement information.

While convolutional networks can accept inputs of any size (as they use a sliding

window over the image), the final fully connected layer (between steps 2 and 3) accepts

a feature volume of a fixed size as an input. In addition, since region, proposals are of

different sizes (a vertical rectangle for a person, a square for an apple...); this makes the

final layer impossible to use as is.

To circumvent that, a technique was introduced in Fast R-CNN—region of interest

19

pooling (RoI pooling). This converts a variable-size area of the feature map into a fixed-

size area. The resized feature area can then be passed to the final classification layers.

4.2.4 RoI Pooling

The goal of the RoI pooling layer is simple; to take a part of the activation map of

variable size and convert it into a fixed size. The input activation map sub-window is

of size h × w. The target activation map is of size H × W. RoI pooling works by dividing

its input into a grid where each cell is of size h/H × w/W. Let us use an example. If the

input is of size h × w = 5 × 4, and the target activation map is of size H × W = 2 × 2,

then each cell should be of size 2.5 × 2. Because we can only use integers, we will make

some cells of size 3 × 2 and others of size 2 × 2. Then, we will take the maximum of

each cell:

Figure 10. RoI Max Pooling Example

A RoI pooling layer is very similar to a max pooling layer. The difference is that RoI

pooling works with inputs of variable size, while max-pooling works with a fixed size

only. RoI pooling is sometimes referred to as RoI max pooling. In the original R-CNN

paper, RoI pooling had not yet been introduced. Therefore, each RoI was extracted from

the original image, resized, and directly passed to the convolutional network. Since

there were around 2,000 RoIs, it was extremely slow. The Fast in Fast RCNN comes

from the huge speedup introduced by the RoI pooling layer. [32]

20

4.2.5 Intersection over Union Threshold (IOU)

The number of predictions matching or not matching the ground truth boxes defines

true and false positives. In order to decide when a prediction and the ground truth are

matching a common metric is used: the Jaccard index, which measures how well two

sets overlap (in our case, the sets of pixels represented by the boxes). Also known as

Intersection over Union (IOU), it is defined as follows:

𝐼𝑜𝑈(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

|𝐴 ∩ 𝐵|

|𝐴 + 𝐵| − |𝐴 ∩ 𝐵|

|𝐴| and |𝐵| are the number of elements that each set contains. 𝐴 ⋂ 𝐵 is the intersection

of the two sets, and therefore the numerator |𝐴 ⋂ 𝐵| represents the number of elements

they have in common. Similarly, 𝐴 ⋃ 𝐵 is the union of the sets and therefore the

denominator |𝐴 ⋃ 𝐵| represents the total number of elements the two sets cover

together. [32]

While the intersection would provide a good indicator of how much two sets/boxes

overlap, this value is absolute and not relative. Therefore, two big boxes would

probably overlap by many more pixels than two small boxes. This is why this ratio is

used—it will always be between 0 (if the two boxes do not overlap) and 1 (if two boxes

overlap completely). When computing the average precision, we say that two boxes

overlap if their IOU is above a certain threshold.

The threshold chosen for the experiments in this paper is 0.5 for the classifier and 0.7

for the RPN layer.

21

4.3 Labelling the Dataset

In the initial part of the experiments a type of labelling was required which was

supported by the current Faster-RCNN architecture we have presented before. This

labelling was done using an open source image annotation tool such as LabelImg. [36]

This tool is used to label object bounding boxes in images. The tool is run via a python

interface and it allows the user to select areas in a specific image defined as bounding

boxes and assign a label to each bounding box. It is written in Python and uses Qt for

its graphical interface. Annotations are saved as XML files in PASCAL VOC format,

the format used by ImageNet. [37]

Figure 11. LabelImg User Interface

For the label, the letter ‘N’ was used in each bounding box to represent the Nuclei of

the cells. The xml file format in which labelimg saves the files is not supported by

default by our Faster-RCNN architecture so a conversion was needed. A predefined

python script ‘xml_to_csv.py’ [8.1] was used for the conversion of the labels from xml

to ‘comma separated value’ format. This format was suitable for the architecture used

and is the final step in labelling. Labelling was done in two parts. The first part consisted

of 46 images labelled which were used for the two first models trained. 30 images were

used for training and 16 for testing. Later the dataset was doubled by adding 40 more

images and splitting them into 60 images for training and 26 for testing. This part of

the research required the most manual work with over 100 hours of labelling spread

over 3 months.

22

CHAPTER 5

5. RESULTS AND DISCUSSIONS

5.1 Initial Model 03

VGG-16 Hyper-parameters:

During the initial testing, a dataset of 44 images was used. This was split into 30 images

for training the VGG-16 network and 14 other images for testing validation. In total,

there were 2752 nuclei labels in the training dataset. The number of classes to

distinguish between was set to two; one being the ‘N’ (nucleus) and the other was

automatically set to ‘bg’ (background). The original images had a resolution of

1280x1024 and this was not resized during training or testing. The images were kept in

greyscale to provide higher efficiency against RGB. The feature map size was with a

height=64 and width=80 whereas the RPN stride was 16 pixels.

VGG-16 Initial Results:

Firstly, Anchor Box Scales of [64, 128, 256] were tested against this dataset. The

training of 115k Batches took over 30 hours on Google Colab. We can see the results

of Batch 115k in the tables below:

Table 1. Model 03 Results

Mean Overlapping

Bounding boxes

Classifier

accuracy

RPN

Classifier

Loss

RPN

Regression

Loss

24.262 0.797 0.126 0.103

Classifier Classification

Loss

Classifier Regression

Loss

Current

Loss

Elapsed time

0.415 0.091 0.735 32.27

The network was able to achieve a mean average precision of 72.8 % in terms of

accuracy.

23

In this model, one of the main challenges we had to improve was the low number of

detections. This was coming due to the network scanning for larger anchor boxes when

training the Regions Proposal Network. The anchor boxes were not in proportion to the

mean size of a nucleus and this way the network was detecting only those nucleus,

which were grouped together due to the larger window scanning for these targets. In

the next model, we decided to improve on that anchor box scale and train the model

again.

Some of the results from model_03 look like the following images:

Figure 12. Model 03 Test Results

24

M03 Classification Accuracy

 M03 Mean Overlapping Boxes M03 Loss RPN Classification

Figure 13. M03 Total Loss & Other Graphs (above)

25

5.2 Improvements in Model 04

Later the Anchor Box Scales were lowered to [32, 64, 128] in order to fit the cell size

better. 85k Batches were trained for over 28 hours on Google Colab. As expected, we

noticed changes in the results for the 85k Batch:

Table 2. Model 04 Results

Mean Overlapping

Bounding boxes

Classifier

accuracy

RPN

Classifier

Loss

RPN

Regression

Loss

26.983 0.829 0.16 0.13

Classifier Classification

Loss

Classifier Regression

Loss

Current

Loss

Elapsed

time

0.375 0.046 0.71 32.27

The lower scales led to a higher mean average precision of 82.6%, an increase by

approximately 10%.

However the images of testing suffered from this precision increase in terms of cells

being more exclusively distinguished by the VGG-16.

The increasing accuracy was a hopeful achievement but the problem of low detection

persisted in model_04. At this phase, we decided to improve upon the preprocessing of

the images and trained model_05 based on this. Some results of model_04 are listed

below:

Figure 14. Model 04 Test Results

26

M04 Classification Accuracy

M04 Mean Overlapping Boxes M04 Loss RPN Classification

Figure 15. M04 Total Loss & other graphs (above)

27

5.3 Histogram Matching Preprocessing in Model 05

Afterwards, the histogram matching technique was applied to the dataset and its size

was increased by doubling the number of labelled images of cells. As we can see from

the image below, there is a huge contrast difference between the upper left corner of

the image and the brighter lower right corner. This is because most images are not taken

in an ideal environment and the lighting/focus elements are disregarded for our dataset.

Figure 16. Difference of contrast inside a sample

For this reason, we applied a template matching technique used widely in image

processing to correct this issue and introduce a uniform set of pixel intensities for the

neural network to process. This technique consists of an image being selected as a

template to be matched and all the other images in the dataset have their histograms

adjusted in order to ‘match’ the template image intensities. One example of the process

is illustrated in the figure below. The histogram matching python code is provided in

the appendix section of this paper.

28

Figure 17. Histogram Matching Technique

This technique makes use of the cumulative distribution function of the intensities of

each pixel and based on this information it applies the template to the input to generate

a specific output. Our model then evaluates this output and since it has similar group

intensities, the resulting images with detected bounding boxes were easier for the

network to specify which regions can be nuclei and which are background pixels.

The resulting images with cells detected were far more promising than the previous

tests:

Figure 18. Model 05 Test Results

29

M05 Classification Accuracy

M05 Mean Overlapping Boxes M05 Loss RPN Classification

Figure 19. M05 Total Loss & other graphs (above)

30

In this model_05, 187 Epochs were trained with over 60 hours of enhanced cloud

computing on Google Colab. The following numerical results were reached on batch

187.000:

Table 3. Model 05 Results

Mean Overlapping

Bounding boxes

Classifier

accuracy

RPN Classifier

Loss

RPN Regression

Loss

36.638 0.819 0.254 0.186

Classifier Classification

Loss

Classifier Regression

Loss

Current Loss

0.391 0.192 1.024

After training 187k batches, the mean average precision reached was 79.21%. A

lower value than what we had before but still justified by the fact that the dataset is

doubled now and thus the training length requirements are extended to reach the same

level of mAP. As the next step an improvement of the histogram matching was

proposed by deepening the classification of images before conducting histogram

matching.

Even after such a good resulting model, we knew there was stillroom for improvement.

That is when we noticed some of the images developing sort of ‘auerolas’ the cells

when template matching was used. These bright spots surrounding the cells were a

result of an increase in contrast in a specific area of the image, which was already bright

enough. That posed a problem for our model since it might throw the network off in

not detecting any cells since the area is made of high intensity pixels. For this issue we

decided to group the images further before we continued with histogram matching. The

following results of model_06 describe this method in detail.

31

5.4 Selective-Histogram Matching Classification in Model 06

In this part, a method of deepening the manual classification of images was proposed.

This technique consisted in splitting the dataset into three subgroups depending on their

contrast level. Respectively High-, Medium- and Low-Contrast groups were created

and images were manually classified into them based on the level of contrast of each

image.

An example is demonstrated below with two images of High-Contrast (left) and Low-

Contrast (right) before and after the technique of “selective histogram matching”.

Figure 20. Images before Selective Histogram Matching

Figure 21. Images after Selective Histogram Matching

We can surely notice how the high contrast image had its contrast tuned down and

turned a bit darker, while the opposite effect is apparent in the low contrast image. This

grouping of images before applying histogram matching was made in order to reduce

differentiation between images in times of training the model but also to yield better

results during test runs.

32

 M06 Classification Accuracy

M06 Mean Overlapping Boxes M06 Loss RPN Classification

Figure 22. M06 Total Loss & other graphs (above)

33

In this final and best model so far, 130 Epochs were trained with over 40 hours of

enhanced cloud computing on Google Colab. The following numerical results were

reached on batch 130.000:

Table 4. Model 06 Results

Mean Overlapping

Bounding boxes

Classifier

accuracy

RPN Classifier

Loss

RPN Regression

Loss

34.3 0.812 0.272 0.193

Classifier Classification

Loss

Classifier Regression

Loss

Current Loss

0.414 0.168 1.047

After training 130k batches, the mean average precision reached was 78.07%. This

demonstrates a trend of declining mean average precision as we get better and better

results in the number of cells detected. This could be due to the fewer number of cells

detected could be correlated with a lesser division for the mean average denominator

and thus producing slightly higher values for the accuracy when we have few cells

detected.

Figure 23. M06 Test Results

34

CHAPTER 6

6. CONCLUSIONS

6.1 Conclusions

Through these experiments we have concluded that lowering the bounding box scale

for the FRCNN will adjust the network to achieve better accuracy in detecting small

crowded cells in an image. The dataset requires better preprocessing such as the

template matching technique used in digital image processing. This technique is a great

improvement but still introduces some areas with higher threshold of intensity, which

can throw the network off in defining the cells to be counted.

A huge improvement on the number of cells detected was the template matching

technique applied in groups. Instead of a single template for all the dataset, the image

was clustered into three groups of high, medium and low contrast and histogram-

matching technique was applied for each respective group separately. This way a better

distribution of pixel intensities was provided while keeping the image data as close as

possible to the raw data. The model was also run against raw unlabeled images and

resulted in very good detection numbers. Although one thing to be notices was the

number of cells detected was always in an average of 50-70 cells. This could be a bias

of the model based on the low density of the dataset.

6.2 Future Work

As future work, it is proposed that the current model can immeasurably help in labeling

images by utilizing the bounding box coordinates detected by the model. This way the

model can self-improve by minimizing the manual work required for labelling future

images. In addition, the histogram matching technique still requires some sort of human

labor to distinguish and classify the images in the similar groups of contrasts. A model

can be created to automatically classify the similar histogram distribution, contrast of

the images, and group them together. Then histogram matching can be applied, thus

compressing the entire preprocessing stage into one simple script.

Finally, the model can be further analyzed by fine-tuning the current model 06 with a

wider dataset of higher density labelled images of cells.

35

7. REFERENCES

[1] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks,” Jun. 2015, [Online].

Available: http://arxiv.org/abs/1506.01497.

[2] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for

Biomedical Image Segmentation BT - Medical Image Computing and

Computer-Assisted Intervention – MICCAI 2015,” 2015, pp. 234–241.

[3] C. Dollinger et al., “Controlling Incoming Macrophages to Implants:

Responsiveness of Macrophages to Gelatin Micropatterns under M1/M2

Phenotype Defining Biochemical Stimulations,” Adv. Biosyst., vol. 1, no. 6, p.

1700041, Jun. 2017, doi: 10.1002/adbi.201700041.

[4] X. Polisi, A. Halili, C.-E. Tanase, A. Uka, N. E. Vrana, and A.

Ghaemmaghami, “Computer Assisted Analysis of the Hepatic Spheroid

Formation BT - Computational Bioengineering and Bioinformatics,” 2020, pp.

117–126.

[5] A. Uka, X. Polisi, A. Halili, C. Dollinger, and N. E. Vrana, “Analysis of cell

behavior on micropatterned surfaces by image processing algorithms,” in IEEE

EUROCON 2017 -17th International Conference on Smart Technologies,

2017, pp. 75–78, doi: 10.1109/EUROCON.2017.8011080.

[6] C. X. Hernández, M. M. Sultan, and V. S. Pande, “Using Deep Learning for

Segmentation and Counting within Microscopy Data,” Feb. 2018, [Online].

Available: http://arxiv.org/abs/1802.10548.

[7] I. Suleymanova et al., “A deep convolutional neural network approach for

astrocyte detection,” Sci. Rep., vol. 8, no. 1, p. 12878, Dec. 2018, doi:

10.1038/s41598-018-31284-x.

[8] J. Barthes et al., “Controlling porous titanium/soft tissue interactions with an

innovative surface chemical treatment: Responses of macrophages and

fibroblasts,” Mater. Sci. Eng. C, vol. 112, no. August, 2020, doi:

10.1016/j.msec.2020.110845.

[9] K. Sun et al., “High-Resolution Representations for Labeling Pixels and

Regions,” Apr. 2019, [Online]. Available: http://arxiv.org/abs/1904.04514.

[10] J. F. Bonnefon, A. Shariff, and I. Rahwan, “The social dilemma of autonomous

vehicles,” Science (80-.)., vol. 352, no. 6293, pp. 1573–1576, 2016, doi:

36

10.1126/science.aaf2654.

[11] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Niessner,

“FaceForensics++: Learning to detect manipulated facial images,” Proc. IEEE

Int. Conf. Comput. Vis., vol. 2019-Octob, pp. 1–11, 2019, doi:

10.1109/ICCV.2019.00009.

[12] Z. Luo, Y. Zhang, L. Zhou, B. Zhang, J. Luo, and H. Wu, “Micro-Vessel

Image Segmentation Based on the AD-UNet Model,” IEEE Access, vol. 7, pp.

143402–143411, 2019, doi: 10.1109/ACCESS.2019.2945556.

[13] O. B. Hoque, M. I. Jubair, M. S. Islam, A. Akash, and A. S. Paulson, “Real

Time Bangladeshi Sign Language Detection using Faster R-CNN,” in 2018

International Conference on Innovation in Engineering and Technology

(ICIET), 2018, pp. 1–6, doi: 10.1109/CIET.2018.8660780.

[14] C. N. Vasconcelos and B. N. Vasconcelos, “Convolutional Neural Network

Committees for Melanoma Classification with Classical And Expert

Knowledge Based Image Transforms Data Augmentation,” Feb. 2017,

[Online]. Available: http://arxiv.org/abs/1702.07025.

[15] D. Wang et al., “AFP-Net: Realtime Anchor-Free Polyp Detection in

Colonoscopy,” Sep. 2019, [Online]. Available:

http://arxiv.org/abs/1909.02477.

[16] Z. Gao, L. Wang, L. Zhou, and J. Zhang, “HEp-2 Cell Image Classification

With Deep Convolutional Neural Networks,” IEEE J. Biomed. Heal.

Informatics, vol. 21, no. 2, pp. 416–428, 2017, doi:

10.1109/JBHI.2016.2526603.

[17] A. Kaku et al., “DARTS: DenseUnet-based Automatic Rapid Tool for brain

Segmentation,” Nov. 2019, [Online]. Available:

http://arxiv.org/abs/1911.05567.

[18] X. Dong et al., “Air, bone and soft-tissue Segmentation on 3D brain MRI

Using Semantic Classification Random Forest with Auto-Context Model,”

Nov. 2019, [Online]. Available: http://arxiv.org/abs/1911.09264.

[19] M. Frey and M. Nau, “Memory Efficient Brain Tumor Segmentation Using an

Autoencoder-Regularized U-Net BT - Brainlesion: Glioma, Multiple Sclerosis,

Stroke and Traumatic Brain Injuries,” 2020, pp. 388–396.

[20] X. Chen and A. Gupta, “An Implementation of Faster RCNN with Study for

Region Sampling,” Feb. 2017, [Online]. Available:

37

http://arxiv.org/abs/1702.02138.

[21] H. Tang, D. R. Kim, and X. Xie, “Automated pulmonary nodule detection

using 3D deep convolutional neural networks,” in 2018 IEEE 15th

International Symposium on Biomedical Imaging (ISBI 2018), 2018, pp. 523–

526, doi: 10.1109/ISBI.2018.8363630.

[22] P. Doll, R. Girshick, and F. Ai, “Mask R-CNN ar.”

[23] Z. Tang, K. Chen, M. Pan, M. Wang, and Z. Song, “An Augmentation Strategy

for Medical Image Processing Based on Statistical Shape Model and 3D Thin

Plate Spline for Deep Learning,” IEEE Access, vol. 7, pp. 133111–133121,

2019, doi: 10.1109/ACCESS.2019.2941154.

[24] E. Carver, Z. Dai, E. Liang, J. Snyder, and N. Wen, “Improvement of

Multiparametric MR Image Segmentation by Augmenting the Data with

Generative Adversarial Networks for Glioma Patients,” Oct. 2019, [Online].

Available: http://arxiv.org/abs/1910.00696.

[25] B. Seo et al., “Cardiac MRI Image Segmentation for Left Ventricle and Right

Ventricle using Deep Learning,” Sep. 2019, [Online]. Available:

http://arxiv.org/abs/1909.08028.

[26] C. Wang, Z. Zhao, Q. Ren, Y. Xu, and Y. Yu, “Dense U-net Based on Patch-

Based Learning for Retinal Vessel Segmentation,” Entropy, vol. 21, no. 2, p.

168, Feb. 2019, doi: 10.3390/e21020168.

[27] J. H. Tan, U. R. Acharya, S. V. Bhandary, K. C. Chua, and S. Sivaprasad,

“Segmentation of optic disc, fovea and retinal vasculature using a single

convolutional neural network,” J. Comput. Sci., vol. 20, pp. 70–79, May 2017,

doi: 10.1016/j.jocs.2017.02.006.

[28] T. A. Soomro et al., “Impact of Image Enhancement Technique on CNN

Model for Retinal Blood Vessels Segmentation,” IEEE Access, vol. 7, pp.

158183–158197, 2019, doi: 10.1109/ACCESS.2019.2950228.

[29] X. Feng, K. Qing, N. J. Tustison, C. H. Meyer, and Q. Chen, “Deep

convolutional neural network for segmentation of thoracic organs-at-risk using

cropped 3D images,” Med. Phys., vol. 46, no. 5, pp. 2169–2180, May 2019,

doi: 10.1002/mp.13466.

[30] A. Duarte, C. V. Hegde, A. Kaku, S. Mohan, and J. G. Raya, “Knee Cartilage

Segmentation Using Diffusion-Weighted MRI,” Dec. 2019, [Online].

Available: http://arxiv.org/abs/1912.01838.

38

[31] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning Algorithm for

Deep Belief Nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, May 2006,

doi: 10.1162/neco.2006.18.7.1527.

[32] B. Planche and E. Andres, Hands-On Computer Vision with TensorFlow 2.

2019.

[33] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity,” Bull. Math. Biophys., vol. 5, no. 4, pp. 115–133, Dec. 1943,

doi: 10.1007/BF02478259.

[34] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for

Large-Scale Image Recognition,” Sep. 2014, [Online]. Available:

http://arxiv.org/abs/1409.1556.

[35] “sci-kit learn mAP.” https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.ht

ml#sklearn-metrics-average-precision-score.

[36] “LabelImg.” https://github.com/tzutalin/labelImg.

[37] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-

scale hierarchical image database,” in 2009 IEEE Conference on Computer

Vision and Pattern Recognition, 2009, pp. 248–255, doi:

10.1109/CVPR.2009.5206848.

39

8. APPENDIX

8.1 Python Codes

xml_to_csv.py

40

histogram_matching.py

41

frcnn_train.py

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

