
INTERCONNECTING ACROSS TOOLS AND DESIGN PROFESSIONALS THROUGH A

SPATIAL LAYOUT OPTIMIZATION PROCESS

A THESIS SUBMITTED TO

THE FACULTY OF ARCHITECTURE AND ENGINEERING

OF

EPOKA UNIVERSITY

BY

ANISA CENAJ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ARCHITECTURE

JUNE, 2023

i

Approval sheet of the Thesis

This is to certify that we have read this thesis entitled “Interconnecting across tools

and design professionals through a spatial layout optimization process” and

that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of

Master of Science.

Assoc. Prof. Dr. Edmond Manahasa

 Head of Department

Date: June, 26, 2023

Examining Committee Members:

Dr. Fabio Naselli (Architecture)

Dr. Ina Dervishi (Architecture)

Dr. Anna Yunitsyna (Architecture)

MSc. Manjola Logli (Architecture)

MSc. Nerina Baçi (Architecture)

ii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name Surname: Anisa Cenaj

Signature:

iii

ABSTRACT

INTERCONNECTING ACROSS TOOLS AND DESIGN

PROFESSIONALS THROUGH A SPATIAL LAYOUT

OPTIMIZATION PROCESS

Cenaj, Anisa

M.Sc., Department of Architecture

Supervisor: Dr. Anna Yunitsyna

Architectural design is in particular interesting for the fact that it involves not

only quality of layout-use, esthetics and overall performance and cost but also

massively depends on usage of computer capabilities. Computation based approaches

in design have been increased in the last decades and rapidly became popular among

architects and designers. The programs and their implementation can be beneficial for

the design problems which are complex. Computer automation is efficient in terms of

both productivity and time consumption. Consequently, it should be taken in

consideration as one of the possible and powerful architectural tools of the future.

This study presents an automated computational design process for achieving

satisficing spatial layouts for detached houses across pre-defined parameters. The

proposed method is based on computation algorithms integrating human-scale inputs

to configure adequate spatial configurations using Python programming language. To

achieve generative design automation, this research demonstrates a unique algorithm

(centrum) prepared from scratch based on the centroid of spaces. The centrum

algorithm proposed in this study, is capable of generating several layouts in a short

duration of time based on a set of local or user-defined constraints. Additionally, there

are integrated a set of criteria to depict the efficient layouts based on goodness value.

As a last step of the workflow, the proposed method incorporates the AutoCAD

script modelling to prepare an individual project file which is then imported into the

iv

CAD package. The proposed generative design constantly enables the user to interact

with it from an early design stage. Moreover, it illustrates the interconnectivity

between different computational tools and techniques for a participatory feedback loop

across interacting actors like designers and non-designers. Finally, the entire

automation procedure is provided to the user in the form of web-application. This

Graphical User Interface (GUI), not only allow the user to interact with each of the

automation phases, provide inputs, modify constrains but also gives highest

flexibilities in updates as well as usage. Consequently, the user can use any device and

operating system to run the application locally or server based.

Keywords: Architectural Design Optimization, AutoCAD script modelling, Computer

Graphics, Detached Houses, Generative Design, Python programming, Spatial

allocation

v

ABSTRAKT

NDËRLIDHJA PËRMES MJETEVE DHE PROFESIONALËVE TË

DIZAJNIT NËPËRMJET PROCESIT TË OPTIMIZIMIT TË

PLANIFIKIMIT HAPËSINOR

Cenaj, Anisa

Master Shkencor, Departamenti i Arkitekturës

Udhëheqësi: Dr. Anna Yunitsyna

Dizajni arkitektonik është veçanërisht interesant për faktin se ai përfshin jo

vetëm cilësinë e përdorimit, estetikën dhe performancën dhe koston e përgjithshme,

por gjithashtu varet masivisht nga përdorimi i aftësive të kompjuterit. Qasjet e bazuara

në llogaritje kompjuterike në dizajn janë rritur në dekadat e fundit dhe janë bërë me

shpejtësi të njohura në mesin e arkitektëve dhe projektuesve. Programet dhe zbatimi i

tyre mund të jenë të dobishëm për problemet e projektimit të cilat janë komplekse.

Automatizimi kompjuterik është efikas si për sa i përket produktivitetit ashtu edhe

konsumit të kohës. Rrjedhimisht, duhet të merret në konsideratë si një nga mjetet e

mundshme dhe të fuqishme arkitekturore të së ardhmes.

Ky studim paraqet një proces të automatizuar të projektimit për arritjen e

paraqitjeve të planeve hapësinore për objekt banimi individual përmes parametrave të

paracaktuar. Metoda e propozuar bazohet në algoritme llogaritëse që integrojnë inputet

në shkallë njerëzore për të konfiguruar planet e duhura hapësinore duke përdorur

gjuhën e programimit Python. Për të arritur automatizimin gjenerativ të dizajnit, ky

hulumtim demonstron një algoritëm unik “centrum” të përgatitur nga e para bazuar në

qendrën e hapësirave. Algoritmi centrum i propozuar në këtë studim, është i aftë të

gjenerojë disa planimetri në një kohëzgjatje të shkurtër kohore bazuar në një grup

kufizimesh lokale ose të përcaktuara nga përdoruesi. Për më tepër, ka një sërë kriteresh

të integruara për të përzgjedhur paraqitjet efikase bazuar në vlerën e “Goodness”.

Si hap i fundit i rrjedhës së punës, metoda e propozuar përfshin modelimin e

vi

skriptit AutoCAD për të përgatitur një skedar projekti individual i cili më pas

importohet në paketën CAD. Dizajni gjenerues i propozuar vazhdimisht i mundëson

përdoruesit të ndërveprojë me të që në fazën e hershme të projektimit. Për më tepër, ai

ilustron ndërlidhjen midis mjeteve dhe teknikave të ndryshme llogaritëse ndërmjet

aktorëve ndërveprues si projektuesit dhe jo-dizenjuesit. Së fundi, e gjithë procedura e

automatizimit i ofrohet përdoruesit në formën e aplikacionit në internet. Kjo ndërfaqe

grafike e përdoruesit, jo vetëm që lejon përdoruesin të ndërveprojë me secilën nga

fazat e automatizimit, të sigurojë hyrje, të modifikojë kufizimet, por gjithashtu jep

fleksibilitet më të lartë në përditësime si dhe në përdorim. Rrjedhimisht, përdoruesi

mund të përdorë çdo pajisje dhe sistem operativ për të ekzekutuar aplikacionin në nivel

lokal ose të bazuar në server.

Fjalët kyçe: Optimizimi i dizajnit arkitektonik, Modelimi i skripteve AutoCAD,

Grafika kompjuterike, Objekte banimi indvidual, Dizajni Gjenerativ, Programimi

Python, Shpërndarja hapësinore

vii

To my family

viii

ACKNOWLEDGEMENTS

First and foremost, I would like to begin by expressing my deepest gratitude to

Almighty God for providing me with health, strength, guidance, and inspiration

throughout my academic pursuits.

Next, I am immensely grateful to my family and fiancé for their unwavering

support, encouragement, and understanding. Their love and belief in me have been

instrumental in reaching this milestone in my academic journey.

I would like to extend my appreciation to my supervisor, Dr. Anna Yunitsyna,

for her guidance and continuous support throughout the entire process of conducting

my master thesis.

I would also like to acknowledge the esteemed faculty members who have

played a significant role in my academic development. I express my gratitude to Dr.

Desantila Hysa for her valuable insights and contributions, to Prof. Dr. Hüseyin

Bilgin and to the rector of Epoka University, Prof. Dr. Ahmet Öztaş, for their

support, and for providing me with the opportunity to conduct further publications

based on the findings of my master's thesis.

Lastly, I would like to thank all the participants who generously contributed

their time to this research.

ix

TABLE OF CONTENTS

ABSTRACT .. iii

ABSTRAKT ..v

ACKNOWLEDGEMENTS... viii

TABLE OF CONTENTS .. ix

LIST OF TABLES... xiii

LIST OF FIGURES ...xv

CHAPTER 1 ..1

INTRODUTION ..1

1.1 Motivation .. 1

1.2 Problem Statement ... 2

1.3 Scope and Objectives ... 3

1.4 Thesis Outline .. 4

CHAPTER 2 ..6

LITERATURE REVIEW ..6

2.1 Computational Design definition ... 6

2.2 Generative Design Systems ... 7

2.2.1 Cellular Automata... 7

2.2.2 L-systems .. 8

2.2.3 Shape Grammar .. 10

2.2.4 Evolutionary Method .. 11

2.2.5 Swarm Systems... 13

2.2.6 Voronoi Diagrams .. 14

2.2.7 Agent-based Model... 15

2.3 Generative Design Methods ... 16

2.3.1 Matrix Method .. 17

2.3.2 Polygon Method ... 17

2.3.3 Grid Method ... 18

x

2.4 Constraints ... 18

2.4.1 Design Constraints .. 20

2.4.2 Algorithmic Constraints ... 24

2.4.3 User-Defined Constraints ... 25

2.4.4 Local Constraints .. 26

CHAPTER 3 ..29

METHODOLOGY ..29

3.1 Detached House Definition .. 29

3.1.1 Grouping of spaces in functional areas... 30

3.1.2 Typological categories of floor plans ... 31

3.1.3 Elements of a residential building .. 33

3.2 Software Programming Description .. 34

3.3 Programming structure used for automation procedure................................... 36

3.4 First Phase .. 39

3.4.1 Space layout assignment ... 39

3.4.2 Space Orientation ... 40

3.4.3 Path coordinates calculation ... 42

3.4.4 Corner prevention ... 43

3.4.5 Generation of possible room combinations .. 45

3.4.6 Fixing clashes ... 46

3.4.6.1 Overlap prevention of two or more spaces ... 46

3.4.6.2 Filtering Entrance.. 48

3.4.7 Raw plan layout generation .. 48

3.5 Second Phase ... 50

3.5.1 Validation of a good architectural plan layout ... 50

3.5.2 Perimeter over Area (Compactness) ... 51

3.5.3 Room Adjacency (Functionality) ... 52

3.5.4 Parcel Occupancy ... 54

3.5.5 User interaction ... 55

3.6 Third Phase .. 58

3.6.1 Definition of AutoCAD Scripting .. 58

3.6.2 Preparation of the AutoCAD environment ... 58

xi

3.6.3 Drawing outer walls.. 59

3.6.4 Drawing inner walls.. 61

3.6.5 Drawing windows ... 63

3.6.6 Naming the rooms .. 64

3.6.7 Allocating doors and furniture .. 65

3.6.8 Drawing dimensions ... 67

3.6.9 Preparation of the template ... 68

3.6.10 Turning on the layers .. 69

CHAPTER 4 ..71

ANALYSIS AND RESULTS ...71

4.1 Overview .. 71

4.2 Analyses for algorithm checks ... 71

4.2.1 Verifications regarding first phase ... 71

4.2.1.1 Demonstration of space layout assignment... 72

4.2.1.2 Verification of space orientation ... 72

4.2.1.3 Verification of path coordinate calculation and corner preventions 73

4.2.1.4 Permutation combinations, overlap prevention and raw plan generation

 74

4.2.2 Verifications done for second phase ... 75

4.2.2.1 Verification of general information .. 75

4.2.2.2 Checks for compactness .. 76

4.2.2.3 Checks for functionality .. 77

4.2.2.4 Checks for parcel occupancy .. 78

4.2.3 Verifications done for third phase .. 78

4.3 Analyses for architectural layout checks ... 79

4.2.4 Normalization of fitness parameters ... 80

4.2.5 Customization of adjacency matrix parameters .. 84

4.2.6 Calibration of algorithm ... 86

4.4 Analyses for computational checks (CPU) .. 87

CHAPTER 5 ..89

DISCUSSION AND CONCLUSION ...89

5.1 Overview .. 89

xii

5.2 The study innovation.. 90

5.3 Limitations ... 92

5.4 Future work .. 92

REFERENCES ..94

APPENDIX ...102

xiii

LIST OF TABLES

Table 1: Detailed constraints collected from a wide list of publications regarding

Geometric design constraints ... 20

Table 2: Architectural design constraints ... 22

Table 3: Functional and Physical design constraints.. 22

Table 4: Efficiency design constraints ... 23

Table 5: Topology design constraints .. 24

Table 6: Algorithmic constraints .. 25

Table 7: User Defined Constraints based on their preferences 25

Table 8: Local constraints of Living Room .. 26

Table 9: Local constraints of Kitchen .. 27

Table 10: Local constraints of Bedroom .. 27

Table 11: Local constraints of Bathroom ... 28

Table 12: Necessary spaces of a house .. 30

Table 13: Typologies of floorplans based on the way of the organization referred to

Albanian housing design standards [80] .. 31

Table 14: Standards of the surfaces of the different plan typologies 34

Table 15: Definitions of the Python libraries implemented in the code 35

Table 16: Space orientation Matrix Input ... 41

Table 17: Adjacency Matrix Input ... 53

xiv

Table 18: Weight / coefficient of fitness values for different scenarios 80

xv

LIST OF FIGURES

Figure 1: The workflow of the Algorithmic Design prepared for this study 4

Figure 2: The schematic view of the computational design method branches involved in

architecture design .. 6

Figure 3: Design evolution using an Interactive Cellular Automata [9] 8

Figure 4: Modular L-System [19] .. 9

Figure 5: Basic Shape Grammars models generated [34] .. 11

Figure 6: Example floor plan proceeded with Evolutionary Method [40] 12

Figure 7: Tensegrities construction generated based on swarm system as a mimic of

nature [47] .. 13

Figure 8: Generation process of the Voronoi diagram [53] ... 15

Figure 9: Visualized room occupancy in automated optimization process with Agent-

based Model [56] .. 16

Figure 10: The schematic view of constraints and sub-divisions 19

Figure 11: Main spaces of a Detached House arranged in relation to the north direction

 .. 29

Figure 12: Algorithmic flow chart of the general programming structure used for the

automation procedure ... 38

Figure 13: A conceptual idealization of spatial layout inputs .. 40

Figure 14: Example of traveling path for one space unit ... 42

xvi

Figure 15: Path coordinate calculations. The concept of coordinates for one space

example, and the path coordinates for a space which is forbidden to be oriented in one of

compass direction ... 43

Figure 16: Demonstration of minimum distance ensured for space connectivity on corners

 .. 44

Figure 17: The graphical description of the combinations using path coordinates for

different spaces, and the respective result of space arrangements 46

Figure 18: Illustration of different cases of possible combinations and overlap evaluation

 .. 47

Figure 19: An example for the correct location of rooms in a plan layout referred to

entrance (right), and incorrect location of space unit through the entrance (left) 48

Figure 20: Algorithmic flow chart of first phase used in plan layout design automation

method .. 49

Figure 21: Validation of parcel occupancy, not fully occupied parcel (on the left), fully

occupied parcel (on the right) ... 54

Figure 22: The graphical user interface to update fitness values and Adjacency Matric 56

Figure 23: Web Application prepared for the outcome presentations and user interaction

 .. 56

Figure 24: Algorithmic flow chart of the second phase used in plan layout design

automation method ... 57

Figure 25: First step of outer wall drawings - reflecting exterior coordinates 60

Figure 26: First step of outer wall drawings - reflecting offset coordinates 60

Figure 27: First step of outer wall drawings - reflecting hatching with a specifying pattern

 .. 61

xvii

Figure 28: (On the left) example of rejected coordinates provided by python shapely

library, (on the right) example of accepted coordinates provided by python shapely library

 .. 62

Figure 29: Demonstration of steps followed to draw inner walls: a) drawing the polylines,

b) offset of the polylines, c) applying hatch ... 63

Figure 30: (In the left) representation of calculated coordinates for the arrangement of the

window block, (in the right) the insertion of window blocks in the previously window

calculations ... 64

Figure 31: Calculation of center points and allocation of text while naming each of the

rooms .. 65

Figure 32: Sample of a part of the matrix used for the definition of rules and constraints

for furniture and doors. ... 66

Figure 33: Possible orientations of the door for the first corner in one room 67

Figure 34: Illustration of the dimensions for the left side for the plan layout. 68

Figure 35: Demonstration of the arrangement of the template related to the plan drawing

 .. 69

Figure 36: Algorithmic flow chart of the third phase used in plan layout design

automation method ... 70

Figure 37: The GUI prepared as web application for user interaction 72

Figure 38: Analyses performed for space orientation based on compass direction 73

Figure 39: Several location of entrance confirming path coordinates 74

Figure 40: Analysis conducted by the algorithm for the overlap prevention 75

Figure 41: (On the left) parameters calculated by the algorithm, (on the right) the

parameters calculated in AutoCAD .. 76

xviii

Figure 42: (on the left) a maximum compactness value reached, (in the middle) an average

value of compactness reached, (on the right) a low compactness value reached. 77

Figure 43: (on the left) a maximum functionality value reached, (in the middle) an average

value of functionality reached, (on the right) a low functionality value reached. 77

Figure 44: (on the left) a maximum parcel occupancy value reached, (in the middle) an

average value of parcel occupancy reached, (on the right) a low parcel occupancy value

reached. ... 78

Figure 45: Finalized version of the AutoCAD drawing ... 79

Figure 46: Comparative assessment for the top six plans based on compactness value 81

Figure 47: Comparative assessment for the top six plans based on functionality value 82

Figure 48: Comparative assessment for the top six plans of parcel occupancy value ... 82

Figure 49: The influence of each fitness value category in compactness, functionality and

parcel occupancy .. 83

Figure 50: The adjacency matrix modification parameters and their influence in the

functionality value .. 85

Figure 51: Analysis for calibration purposes. The original plan (on the left), the twin

generated plan (on the right) .. 86

Figure 52: The improvement in execution time for scenarios with 1 CPU core (on the left)

and 6 CPU cores (on the right) from the same device .. 87

1

CHAPTER 1

INTRODUTION

1.1 Motivation

Prior to the rise of technology, architects utilized paper and pencils as guides

to manually draw plans and develop concept ideas. Over the past twenty years,

computing technology has made enormous strides. With new methodologies, software

development tools and programming languages, the software industry has also

developed significantly, where architecture is not an exclusion.

The broader incentive of the study is making the optimum use of computational

tools in architectural design, not just by speeding up the processing of design data, but

also by enhancing the designer’s intellectual abilities. Since its first inception, the

architectural design process has aspired to produce efficient buildings. In addition to

the process itself, the design evaluation methods, education, and criteria are subject to

change and dependent massively on current research and technology.

The development of technology especially for architectural purposes has not

only save the architect’s time but also provided various innovative and new design

solutions. In the discipline of architecture, there is now a tendency toward the use of

automated procedures. Plan layout automation for residential building design is a

significant subcategory of computational design. Furthermore, it is known to be as one

of many topics that has attracted the attention of researchers in various layout

configuration problems as building arrangement in urban design, interior design,

furniture arrangement and texture atlases [1].

The common tools for drafting floor plan layouts are mostly known by applying

various software such as Computer Aided Design (CAD). The process of planning

becomes more open to errors when the designer is faced with varying levels of

ambiguity in multidimensional complications. Despite the development of the

commercial design software and tools, the professional designers are in need of more

sophisticated computational design methods for simulating and generating floor plan

2

layouts. Therefore this study aims on providing additional computational tool which

would ease designers work and lead to more accurate solutions.

1.2 Problem Statement

Designing a floorplan is an imperative aspect of architectural design. Among

the primary focuses of automation in floorplan layout is how computers can be

incorporated into the process. There has been considerable interest in this field of

research for approximately fifty years [2]. Even though it provides very good solutions

on layout automations, the Generative Design (GD) methods have been considered

with some skepticism from researchers and architects. For instance, the continuous

usage of GD by an architect may bring more robotic solutions and somehow limits the

inspirations. A culture of passiveness has been attributed to algorithms by architect

Peter Eisenman, which is characterized by an immediate response from the computer

that numbs critical thinking [3]. In addition to this problem the algorithm prepared for

GD method is based on user inputs. As a consequence of this, the outcomes are said

to have its own limitations depending on the number of inputs defined. The main

advantage of GD method is to automate the generation of spatial layout design which

can bring solutions to not only architects but also stockholders. Nevertheless, knowing

the complex nature of this procedure which is based in algorithms, it can be used only

by trained individuals or architects.

The algorithms prepared in this scientific thesis will mainly target the

automation detached housing plans. The importance of GD methods in architectural

layouts in general as well as in housing are mainly space and time optimization.

According to INSTAT the overall increase of Albanian building sector from year 2021

to 2022 is about 58.2% more [4]. The increased demand in this sector has shown

multiple cases of layout replications in different housing blocks. It is strongly

supported by researchers that GD is a very good and suitable procedure on avoiding

the re-usage of the same plan layout. In addition, it provides a rapid cost estimation as

well as real time and large set of layouts which may enrich and satisfy the relationship

between the architect and the owner.

3

The construction sector is always facing several challenges from the initial

design idea to the final implementation. This is a phenomena which is often seen in

Albania from the early period of communism until recent years. During the

communism period, in order to save architectural fees and maintain quality control,

they used to design a few layouts and then implement throughout different regions of

Albania. The same tradition is followed by some construction sectors nowadays. By

considering appropriate GD methods this issue can be fixed for not only new

constructions but also retrofitting old architectural design. Moreover, the location of

Albania is part of moderate to high seismic region [5]. The Durrës earthquake which

happened on November 26, 2019 led to many causalities in both human and materials.

It was reported that about 2500 houses were destroyed by the earthquake, leaving

about 15000 people homeless [6]. The pilot plan initiated by the government to help

the homeless people resulted on a building block of the same building plan. In such

circumstances, the implementation of the algorithm can provide various design layouts

to adopt a heterogeneous building block. Finally, such procedures can be a bright

future and contribution of our society by properly training the upcoming generations

involved in architectural education.

1.3 Scope and Objectives

The scope of this research is the compilation of an algorithm that generates

readable space layout plans, and distinguishes different plans from each other by

applying certain filtering rules defined by user. It focuses on analyzing spatial

configuration of residential buildings, specifically on detached houses by implying

mathematical equations. The plan layout generation procedure demonstrated in this

thesis is proposed uniquely from the other methods observed in literature. The

algorithms are written in python programming language. The inputs of this application

are based on local design regulation but also flexible to be adopted for other versions.

The final output generates several filtered house plan layouts based on user

restrictions. These layouts are then analyzed by the architect or the user and can be 2D

modeled in CAD software automatically by the application. Hence, additional target

of this thesis is to provide a facility of this application in plan conversion to the

4

commercial software.

The objectives to achieve the abovementioned targets are part of a well

prepared flowchart. Initially user has to define the main inputs which will be used also

as constraints for the plan generations by the GD method. Using the method

implemented in the algorithm which is based on the rule of centroids and controlled

by a reference point for each space, first layouts are saved in the application memory.

In this way the procedure is of iterative one and aims to combine all possible plan

configurations. Once all the combinations are achieved, another objective of this

system is to filter the efficient layouts based on previously defined constraints. The

selected layouts finally show different design versions and can be used for further

decisions.

The architect can select one of the generated layouts based also in the owner

requirements. Furthermore, a good objective of this study is to adopt the application

layouts to commercial software. The conversion is based on AutoCAD scripting and

integrated in the same application package. Finally the application renders the selected

graphical layouts and saves all previous solutions. Figure 1 shows the workflow of the

generative design algorithm prepared for this study.

Figure 1: The workflow of the Algorithmic Design prepared for this study

1.4 Thesis Outline

In the first chapter of this study it is introducing the main scope of this thesis

on the automation procedure developed in Python programming language for detached

houses. The second chapter (literature review), illustrates a wide literature on previous

5

studies on the same matter. Furthermore, the third chapter gives a detailed method on

the implementation of constraints as well as developing each part of the algorithm to

achieve the targets of this study. The analysis and results are then demonstrated in the

fourth chapter from which the main outcomes are validated based on the previous

studies. Finally, the fifth chapter concludes this research study with discussions and

final remarks about the findings of the automation process developed for the detached

houses.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Computational Design definition

Computational design deals with automated methods involved in architectural

tasks. In literature, there are known three main computational design branches such as

Parametric Design, Generative Design and Artificial Intelligence-based methods. In

this study, the sub-branches of the Generative Design (GD) procedures are studied.

Figure 2 demonstrates the general tree of computational design methods involved

especially in architecture. GD approach can be defined as the generation process of

several design possibilities based on a set of rules. This approach is based on a system

of algorithms which execute multiple procedures which provide multiple design

variations [7]. Such systems are dependent on set of rules and parameters pre-defined.

The list of rules and parameters will be used to limit the number of outputs to match

specific design requirements in a logical and meaningful way.

Figure 2: The schematic view of the computational design method branches

involved in architecture design

7

2.2 Generative Design Systems

Among the most well-known GD systems are Cellular Automata, L-systems,

Shape Grammars, Evolutionary Method, Swarm Systems, Vronoi Diagrams, Agent-

based Model [7]. The target procedure used in this study will be evolutionary method

using the unique procedure of Orbital Travel Method which will be called as Centrum

method.

2.2.1 Cellular Automata

Cellular Automata (CA) are mathematical models designed to display their

knowledge of complex systems. They are all structures of a series of cells, where each

cell has a certain state which is determined by some rules [8]. CA consist of three main

elements which are Cells, State and Rules. "Unit" cells are the basis of cellular

automaton structure. Each cell has a true state that can be varied. States can be binary

(such as "alive" or "dead") or multi-valued, such as integers, while rules determine

how cells change from one state to another based on their current state and the state of

other cells around. These rules can be simple or complex and can affect the

development and behavior of the system in different ways. Cellular Automata often

build their rules based on natural phenomena, taking inspiration from the development

of biological systems. In the context of generative design, cellular automata are used

to model and evolve different forms and structures. A cell automaton can represent a

design space, where each cell represents a piece of material or finished shape. The use

of CA rules can influence the changing state of cells through transformations,

interactions, growth and differentiation. Figure 3 illustrates examples from interactive

Cellular automata approach. This automation procedure deals not only with the design

evolution but also with the tridimensional plan of the design.

8

Figure 3: Design evolution using an Interactive Cellular Automata [9]

Urban planning to solve traffic problems is a literature that used Cellular

Automata to generate new urban design [10]. In the present research, a

cellular automaton was implemented for modeling an urban area's road network to

determine potential modifications and enhancements in urban planning. The

automaton principles specify how road network cells should change state in response

to various conditions such as traffic interactions, and road space utilization. Using the

CA, the researchers were able explore with many variations in urban planning, such

as adding additional roads, changing the road plan, or increasing the space for public

transportation. Simulations using cellular automatons displayed the impact of changes

in these components on road traffic and circulation spread in the region being

investigated. The study's findings are applied to make suggestions and provide

guidance to urban planners to improve road network structure and design. Many other

works use the Cellular Automata method to investigate and improve elements of urban

design, inspired from natural events and their development processes [11, 12, 13, 14,

15, 16].

2.2.2 L-systems

L-systems, are a mathematical structure similar to cellular automata that is used

to model and analyze the relationship between components in a system of design

inspired by organisms in nature. This system is used in a variety of design fields,

9

including architecture [17]. L-systems are made up of three major components:

components, links, and dynamic changes. The L-system components can represent

design elements such as material, parameters, or other design aspects [18]. Interaction

and influence between design elements are represented by links. These links could

include rules, constraints, preferences, or any other information that influences the

design evolution process. Meanwhile, Dynamics describes the evolution and change

of the design system. In Figure 4 is shown an example of modular L-System with

minimal inputs. This generates a complex output which potentially can be adaptive.

Figure 4: Modular L-System [19]

An L-system was used in the literature to model and develop 3D objects with

various organic shapes [20]. The interacting parts of the 3D object were represented

by components in the L-system, while links referred to the connections and

interactions between them. Applying the rules of this approach in relation to design

parameters and criteria enabled the production and exploration of various variations

of organic-shaped objects. This consisted of transforming and changing shapes,

increasing and decreasing the size of object elements, and changing the texture. The

findings of this study will be used to develop guidelines and recommendations for the

design and production of 3D objects with organic shapes. The usage of the L-system

10

in this context opens the way for innovations in the design and development of 3D

objects and not only [21, 22, 23], in addition to relying on the complex interaction of

the system's elements.

2.2.3 Shape Grammar

Shape grammars in generative design refer to the use of grammatical rules and

structures to generate design patterns automatically and freely. This approach utilizes

a rule-based and parameter-based system that allows for the iterative and automated

production of various shapes [24]. Segments, linking elements, fragments, and

units are all basic design elements in a shape grammar. These elements combine to

form complex patterns based on grammatical rules and constraints. Grammar rules and

parameters like rotation, reflection, and scale increase design flexibility, allowing for

quick changes and deep exploration [25]. In practice, generative design can use

grammatical forms to develop architectural structures, urban landscapes, industrial

products, and much more [26, 27, 28, 29, 30, 31, 32, 33]. Figure 5 represents an

example of models generated by shape grammars method by having an initial shape

and rules to proceed the automation. In the end this procedure leads to several unit

combinations.

11

Figure 5: Basic Shape Grammars models generated [34]

Researchers used shape grammar to generate rules applicable at the urban level

[30]. This approach was used to specify and describe how different elements of urban

design can be combined and organized to form a functional and aesthetically pleasing

master plan. In addition, they determined variables such as building size, open space,

roads, parks, and shopping areas. Following the identification of these elements, they

developed a design grammar which contained rules and parameters for the

arrangement and interaction of these components. In addition, these were adapted it to

a particular urban area to generate various designs.

2.2.4 Evolutionary Method

The evolutionary method is an approach for developing and producing new

shapes and patterns that uses algorithms grounded in concepts from biological

evolution theory [35]. While implemented in the framework of generative design, the

evolutionary method generates and improves patterns using methods similar to natural

selection. This works through integrating design components with design population

12

evolution processes to generate and select the most effective possible designs and

patterns automatically. This approach starts with the development of an initial

population of diverse possible patterns or components. The use of evolutionary

algorithms including genetics, develops these models through mutation and crossover

processes, integrating, adjusting, and identifying the most appropriate and effective

models based on specific criteria. The simulated population evolves and adapts to the

design requirements gradually. Models with greater quality and more appropriate

features are developed and improved, while those with less capable features are

removed or transformed. The evolutionary method has been used and researched in a

variety of architectural fields [36, 37, 38, 39].

Figure 6: Example floor plan proceeded with Evolutionary Method [40]

A researcher demonstrates the usage of the evolutionary method in the design

of a floor plan design as shown also in the Figure 6 [40]. Evolutionary algorithms were

used in this study to develop and enhance housing plans based on criteria such as

spatial efficiency, functionality, space interaction, and living conditions. This

procedure starts with the generation of initial floor plan design using random or rule-

based algorithms. The evolutionary algorithm followed up and chose the most suitable

layouts based on the defined criteria. The chosen designs serve as "parents" for

operations such as genetic crossover and mutation, which produce new and improved

designs. This process is repeated and optimized to achieve more effective and

appropriate results. The findings of this research are utilized for providing suggestions

as well as guidelines for the development of housing plans. The application of

evolutionary methods enables the identification of new approaches and the

13

optimization of living spaces based on predefined criteria. This may include spatial

organization, orientation, room and common spaces, and other architectural

interactions.

2.2.5 Swarm Systems

Swarm systems are computational models that simulate the behavior of insects

or animals in groups by utilizing the concepts of multiple intelligences [41]. Swarm

systems (that can represent architectural elements, design elements, or other objects)

proceed independently and interact with one another and the surrounding environment

in these systems. They adhere to predetermined rules for orientation, departure, and

interaction with other members of the group as well as with objects around them.

Swarm systems use complex algorithms to change their behavior and position in order

to achieve specific targets. In addition they are characterized by self-organization [42].

By applying this system may result in the development of a wide range of designs and

models that promote innovation and creativity. One example is shown in the Figure 7

by illustrating how the swarm system produces a tensegrities construction by

implementing natural mimics. This approach employs collective intelligence in order

to find unexpected and new solutions also to architectural projects and designs. Swarm

systems have been used in architecture to produce multiple drawings of building

facades, spatial organization, and urban planning [43, 44, 45, 46].

Figure 7: Tensegrities construction generated based on swarm system as a mimic

of nature [47]

14

In literature, Swarm systems have been implemented to improve street planning

in a large city [48, 49]. The objective proved to determine the best and most efficient

routes to reduce traffic, travel time, and impact on the environment. The procedure

starts with a simulation of a group of components representing possible pathways.

These components moved through the city space independently, adhering to

established rules for orientation, interaction with buildings and street conditions.

Components' routes changed and adjusted as the Swarm system iterated and improved

in achieving an optimal urban plan. This included changing the trajectory of the roads,

interconnection between them, and determining essential locations for the

construction of the pathways. This study's findings present an optimized urban

circulation map that reduces congestion and travel time for city residents.

Furthermore, by identifying preferred routes for fast and efficient transportation, this

process was capable of influencing environmental pollution.

2.2.6 Voronoi Diagrams

Voronoi diagrams are tools that are used to generate new structures and patterns

according to the division of space into specific areas. Based on the interaction of given

points, these diagrams are utilized to arrange and shape space [24]. Additionally

they serve to define the interdependence and convenience of the topology of

architectural elements or 3D objects. These diagrams are made by dividing space into

areas that are closer to and further away from specific points. This results in a round

structure with distinct divisions among various parts of the space. The diagram

illustrated in Figure 8, is made up of a series of polygonal cells, each of which

surrounds a single point and incorporates all points in space that are closer to that seed

point than to any other. In addition, Voronoi diagrams can be used to generate complex

building facades in the field of architecture. They can help determining the shapes and

structures of different parts of the facade based on the distribution of space around

them by placing reference points on the facade surface [50, 51, 52]. This can produce

creative visual effects and give the impression of geometric processing.

15

Figure 8: Generation process of the Voronoi diagram [53]

Voronoi diagrams were used by researchers to help in forming the facade of a

new building [50]. The aim was to achieve a practical and aesthetically pleasing facade

by separation of space into areas which affect the form and arrangement of the facade

components. The procedure started with the positioning of reference points on the

facade's surface. These points become the basis for Voronoi diagrams. These were

generated by dividing the facade space into different areas based on the proximity of

the reference points using the necessary algorithms. Following the development of

Voronoi diagrams, space division can be used to produce details and various elements

on the facade such as exterior panels, windows, and other design components. This

can give the building facade a structured and geometrically elaborate design. The

findings of this study ensured that the space was organized in order to create a unique

and special form for the facade, giving it a distinct identity.

2.2.7 Agent-based Model

In generative design, agent-based models are utilized to generate new models

based on the activity and interaction of defined agents [54, 55]. These models depict

complex systems by employing individualized agents that act and interact in a specific

space. Agent-based models are used to describe and simulate the interaction processes

of buildings, equipment, or other elements in an architectural environment. Agents are

self-contained, intelligent entities with their own set of properties and behaviors.

Agent-based models can be applied to the design of new cities to simulate resident

behavior and influence space organization. Different agents may have different

preferences, such as residential location, service accessibility, or cultural preferences.

16

Agent models may assist in the identification of potential locations for buildings, city

infrastructure, and other services in order to optimize them for the needs and

preferences of residents. In Figure 9 is illustrated an example of automated

optimization by using agent rules for the generation of building form and room

occupancy.

Figure 9: Visualized room occupancy in automated optimization process with

Agent-based Model [56]

The Agent-based model approach has been implemented in several designs,

including those of [57, 58]. The researchers use their method to design a virtual city,

through a set of rules to control the behavior of virtual agents. These rules define how

the agents should interact with one another and with the environment, including how

they move and interact with objects in the environment. To guide the design process,

the researchers also incorporate feedback from human designers. The resulting virtual

city is a complex and dynamic system that responds to the behavior of virtual agents

as well as changing environmental conditions. The authors show how their method

can generate a variety of design solutions, each with a unique set of constraints.

2.3 Generative Design Methods

Generative design is a paradigm that automates the production and assessment

of design alternatives based on predefined goals and criteria by combining the

constructive qualities of mathematical and visual optimization approaches. It is

17

capable of performing a variety of tasks, including conceptual design, parametric

design, topology and shape optimization. Generative design may be used to solve

layout challenges utilizing various approaches such as matrix, polygon, and grid.

Depending on the nature and complexity of the problem, each approach has

advantages and drawbacks.

2.3.1 Matrix Method

The matrix method is a widely used approach for generative design of plan

layouts. It involves representing the design space as a matrix, where each cell

corresponds to a specific area or element. Various algorithms, such as genetic

algorithms and simulated annealing, can be applied to iteratively optimize the layout

based on defined constraints and objectives [59]. The matrix method offers flexibility

in defining design rules and allows for easy integration of spatial relationships between

different elements. It has been successfully applied in architectural design, facility

layout planning, and urban design.

2.3.2 Polygon Method

The polygon method, also known as the Voronoi diagram method, is another

popular technique for generative design of plan layouts. It is based on the concept of

dividing the design space into polygons that represent different zones or regions. The

layout optimization process involves adjusting the boundaries of these polygons to

achieve desired objectives, such as maximizing connectivity or minimizing distances

between elements [60]. The polygon method offers advantages in generating organic

and irregular layouts, making it suitable for landscape design, urban planning, and

terrain modeling. However, it can be computationally expensive and sensitive to the

initial configuration of polygons.

18

2.3.3 Grid Method

The grid method involves dividing the design space into a grid of cells and

assigning different attributes or functions to each cell. The optimization process aims

to determine the most suitable allocation of functions within the grid, considering

constraints and objectives. The grid method provides a structured and modular

approach to plan layout generation, making it suitable for applications such as building

floor plans, transportation networks, and utility distribution. It allows for efficient data

management and simplifies the implementation of automation and parametric design

techniques [61, 62, 63]. However, the grid method may lack the flexibility to capture

complex spatial relationships and can result in regular and repetitive layouts if not

carefully designed.

2.4 Constraints

The set of constraints defined for the Centrum method in this study are

collected from a wide list of publications, books and guidelines. These constraints will

be integrated into the algorithm based on the Graphical User Interface. In the field of

plan layout generation, there are several constraints that must be considered to

generate an efficient and functional design. One of the major struggle in plan layout

generation is that some of these constraints may be contradictory to each other, and

some constraints may appear to be repetitive, even though they are classified

differently [64, 65, 62, 66, 67, 68, 69]. Balancing these conflicting and repetitive

constraints is a key challenge in plan layout generation, and requires a systematic

approach to ensure that the final design meets the desired criteria. To achieve the target

of Generative Design for Detached Houses, constraints are subcategorized into

Design, Algorithmic, Local and User-defined parameters as shown in Figure 10.

19

Figure 10: The schematic view of constraints and sub-divisions

Based on the schematic view shown in the Figure 10, a detailed list of these

constraints for each of the sub-branch are listed and descripted below.

20

2.4.1 Design Constraints

Design constraints play a crucial role in the generation of plan layouts in

architecture and interior design. These constraints include factors such as geometric,

architectural, efficiency, topology and functional requirements of the space. Adhering

to these constraints is essential in order to ensure that the final design is safe, feasible,

and functional. However, balancing these constraints with the aesthetic goals of the

design can be a challenge. In literature, [63, 70, 62, 71, 64, 72, 73, 67, 68, 69]

researchers have proposed various techniques and algorithms to optimize the plan

layout generation process, taking into consideration several design constraints. By

incorporating these techniques, designers can generate a significant number of plan

layouts that can be accepted as functional proposals. In Table 1 is defined a wide list

of constraints collected from a wide list of publications and categorized as geometric

constraints [63, 70, 62, 71].

Table 1: Detailed constraints collected from a wide list of publications regarding

Geometric design constraints

No. Design Constraints - Geometric

1
Requiring Units to be placed within the main building boundary or other

designated group boundaries.

2 Prohibition of the intersection of two Units from occupying the same space.

3
Requiring a minimum amount of overlap between two or more units to

prevent overlap and establish a clear relationship between them.

4
Forcing units to align with or be placed near the edge to ensure that are

properly positioned relative to other elements in the design.

5
Bounding the area of a Unit with minimum area, maximum length/width

and minimum length/width.

6 Preserving a specific aesthetic appearance or avoiding elongated, narrow

rooms that may not be functional.

7
Limiting construction costs to a specific budget, i.e. in terms of material

cost.

21

8 Ensuring a minimum level of natural lighting for designated rooms.

9
Ensuring that rooms are positioned in a way that promotes easy access and

circulation.

10
Positioning of the main rooms in order to meet the requirement for natural

lighting.

11 Positioning auxiliary rooms in order to meet the design requirement.

12
Gaps are projected between the first and last rooms to ensure that the main

entrance may be realized.

13 The building's size is restricted and determined by the user or designer.

14 For simplicity in programming, rooms are limited to rectangular shapes.

15
The dimensions of the Rooms must be provided as input by the client or

designer.

16 The dimensions of all apartments are predetermined and provided as input.

17 As an input, any distance limitation between two rooms may be provided.

18 Corridors are not prescribed but should be as short as feasible.

Among design constraints there are many categorization listed from the

different researchers. Architectural constraints are one of them used to guide in regards

to essential architectural principles as the room size, aesthetical style and structural

elements. These constraints are collected from different literatures in Table 2 [71, 64,

72, 73, 67, 68, 69]

22

Table 2: Architectural design constraints

No. Design Constraints - Architectural

1 The Room's size should be approximately equal to the specified area.

2
Ensuring that the room is not too large or too small, or maintaining a specific

aesthetic style.

3
The Rooms should be positioned in order to have common structural

elements.

Functional constraints are utilized to contribute to the plan layout regarding

functional and physical aspect of the building plan as it includes the room adjacency

[71] which is one of the crucial principles that a professional designer has to take into

consideration while designing a residential layout. Some other factors that are revised

from the researchers are cost budget and natural light. All these constraints are

summarized in Table 3 from different studies [64, 74, 63, 73, 67, 69, 75] .

Table 3: Functional and Physical design constraints

No. Design Constraints - Functional / physical

1
Ensuring that a minimum amount of glass surface area is included in the

design to provide natural lighting.

2
Communal spaces within a building design compared to the total number of

rooms.

3 The living area, kitchen, and dining room should all work as a single

functional unit.

4 Private Rooms should be positioned in order to not be isolated from natural

light.

5 Two toilets should not be adjacent to each other in layout composition.

6 It is recommended that the living room have access to exterior spaces such as

a garden, patio, or huge balcony.

7 Keeping the design costs within a minimum budget limit for the user.

23

8 The units must be located within the main building boundary as initially

defined.

9 Preventing two units from intersecting and occupying the same space.

10
The doorways must be included in the design layout at to prevent design

errors.

11 The windows must be ensured to ensure natural light in almost every Unit.

12 The area of Units must be minimal as an initial input from the user.

13 The user must provide an initial input specifying a minimum ratio of units.

14 The window width of a Unit cannot be larger than the wall width.

15 Certain rooms must have a minimum amount of natural lighting.

Design constraints are massively used by various researchers in order to

increase the efficiency of the generated plan layouts. For instance, in Table 4 it is

shown an example of maintaining sufficient distance between two or more spaces

which is directly influenced by the area of these two areas involved [71].

Table 4: Efficiency design constraints

No. Design Constraints - Efficiency

1
Two of the solutions at least would be identical if the specifications of the

Units are the same type and size.

2
Depending on the surface area of the room, a maximum distance between any

two cells in the same room is defined.

Additionally, topology constraints summarized in Table 5 plays a crucial role

to the entire stage of the design due to foundation rules and logical instructions that

have to be considered during the process. These requirements consist of overlapping

between two or more spaces and room connectivity [64, 63, 70].

24

Table 5: Topology design constraints

No. Design Constraints - Topology

1 Overlap Constraint guarantees that two units do not occupy the same area.

2 Connectivity constraints, for instance how a certain room must be assigned.

3 Path constraints may be necessary among all room combinations.

4
Constraints on planarity ensure that the geometry can be achieved using a

two-dimensional floorplan.

5 Assuring that units are compelled to be linked to an exterior wall.

2.4.2 Algorithmic Constraints

Algorithmic constraints define the rules and conditions that guide the layout

generation process, ensuring that the ultimate design is near an optimal spatial plan

composition. The selection of appropriate algorithmic constraints is crucial to the

success of the layout generation process, as it helps to ensure that the final design

meets the necessary requirements and constraints. Different researchers have proposed

various algorithms for plan layout generation as also shown in Table 6, taking into

consideration various algorithmic constraints [66]. These algorithms range from rule-

based systems to machine learning approaches, each with its own set of strengths and

limitations. Designers can generate plan layouts that are not only functional and

feasible, but also visually appealing and efficient by incorporating appropriate

algorithmic constraints. The formulation of new and more improved algorithms for

plan layout generation remains an active area of study in the field.

25

Table 6: Algorithmic constraints

No. Algorithmic Constraints

1
Constraint graph format to model layout restrictions. It defines the interactions

between elements in a layout, such as relative sizes, positions, and alignments.

2
Use of efficient algorithms to identify practical solutions by formulating layout

generation as a constraint satisfaction issue and

3
Shape grammar rules specify the decomposition and the transformation of layout

elements depending on the constraints stated.

2.4.3 User-Defined Constraints

These constraints are defined by the user and are customized to their specific

design needs. They may include, among other things, total built area, room number,

size, and location. By incorporating user-defined constraints into the layout generation

process, designers can ensure that the final design meets the specific needs and

preferences of the client. Various strategies have been presented for integrating user-

defined constraints into the plan layout generating process, as shown in Table 7 [68,

60]. These techniques span from interactive design tools to machine learning

algorithms that can learn from user input. The incorporation of user-defined

constraints in plan layout generation helps enhance the design process by allowing it

to be more personalized and adapted to the client's unique needs. As a result, user-

defined constraints plays a vital role in ensuring that the final design is not only

practical and feasible, but also fulfills the client's specific needs and preferences.

Table 7: User Defined Constraints based on their preferences

No. User Defined Constraints

1
The user-defined constraints are customized to match their individual design

goals and preferences.

26

2.4.4 Local Constraints

Local constraints are crucial elements that must be considered while

automating house plan layouts. The Albanian housing design standards defines a

number of limits and criteria that must be followed while constructing a housing plan

[76]. These local constraints must be respected and used as a guide when automating

residential plans to generate designs that are appropriate and well integrated with the

local environment. Furthermore, the standard book defines limitations concerning the

minimum area of the rooms, the height of the ceilings, the requirements for natural

lighting, and the systemization of the apartment's hygiene. These local constraints are

based on residents' needs, as well as their well-being and safety. In Table 8 are shown

the constraints regarding the living room that shall be considered while drafting a

residential plan layout.

Table 8: Local constraints of Living Room

No. Local Constraints – Living Room

1
The minimum dimensions for the living room have to be specified and must

be followed in the design.

2
Having the desired orientation and adequate lighting to meet the specific

requirements of the design.

Some important rules for kitchen layout and design have been suggested by the

Albanian housing design standards. These rules are intended to create a functional and

ergonomic environment in the kitchen, allowing the user to easily use and access

cooking equipment and materials. The Table 9 summarizes some of the main rules that

have to be applied.

27

Table 9: Local constraints of Kitchen

No. Local Constraints – Kitchen

1 The specific design or layout of the kitchen area is defined initially.

2
The minimum area, width, and length dimensions for the Cooking Space are

specified.

3
Defining the specific requirements or guidelines for ensuring proper

ventilation in the kitchen area.

4
The minimum area, width, and length dimensions for the Dinning Space are

specified.

Different organizational rules have been recommended for the bedroom design.

These rules are intended to provide residents with a comfortable, relaxing, and

conducive sleeping environment. The Table 10 shows some of the rules regarding the

minimum room dimensions and size, orientation and ventilation.

Table 10: Local constraints of Bedroom

No. Local Constraints – Bedroom

1 The specific design or layout of the Bedroom area is defined initially.

2 Defining the minimum size requirement for a bedroom of a chosen layout.

3
Setting a requirement for the minimum width of a bedroom in a specific

layout.

4
The minimum dimensions for the bedroom have to be specified and must be

followed in the design.

5
Defining the specific requirements or guidelines for ensuring proper

orientation and lighting

6
Defining the specific requirements or guidelines for ensuring proper

ventilation and hygienic needs.

Moreover, there have been established certain principles for bathroom

28

arrangement and design. These guidelines are intended to provide a functioning and

acceptable environment for the apartment's occupants. In the Table 11 are summarized

some of the crucial instructions.

Table 11: Local constraints of Bathroom

No. Local Constraints – Bathroom

1
Specifying the proper orientation and lighting requirements for a toilet or a

bathroom.

2
Ensuring proper ventilation by defining the specific requirements or

guidelines for a toilet or a bathroom.

3
Defining the specific positioning by the guidelines to ensure a proper plan

composition.

These suggested rules in Albanian design standards of the premises of a

residential plan are prepared based on the experience and knowledge of architects and

engineers, with the goal of providing suitable and well-organized premises where users

can utilize an efficient environment.

29

CHAPTER 3

METHODOLOGY

3.1 Detached House Definition

The detached house, known as a single-family house in the literature, as a type

of private residence is independent and functions separately and individually from

other buildings. As part of free-standing structure, the detached house can be

categorized as one, two or three stories. They are usually characterized by living

systems composed of the main structure built and the garden which surrounds all it

sides [77]. Typically, a single family houses are designed to provide residents with all

the essential living spaces as Living room, kitchen, dining room, bedrooms and

hygienic-sanitary units. They offer a high degree of privacy and independence, as the

residents have complete control over their own living spaces and can customize them

to suit their needs and preferences [78].

Figure 11: Main spaces of a Detached House arranged in relation to the north

direction

30

Detached houses offer greater flexibility in terms of orientation compared to

other housing types, as they can be situated in any orientation, independent of the north

direction [79]. This design characteristic allows for maximum use of natural light and

optimal solar access throughout the day [80, 81]. The positioning of the house can also

be optimized to take advantage of prevailing winds and promote natural ventilation

[82]. In Figure 11 are shown possible arrangements of the main functional zones and

entrance in relation to the north direction. The layout of a detached house is designed

to provide maximum privacy and separation from noisy roads. Typically, the objects

are isolated from the street by a garden, and the entrances to the house can be

positioned from different sides of the building to increase privacy. Furthermore,

detached houses often include the potential for future extensions to accommodate

growing families or changing needs [83].

3.1.1 Grouping of spaces in functional areas

The grouping of living spaces is divided into two functional areas: the day-time

and night-time zone. The living area consists of the living room and the kitchen.

Finding the noisiest parts of the house, they are placed near the entrance. The night

area consists of the bedroom and the sanitary units, arranged next to them. The

bedrooms require quietness, therefore they are located away from the entrance area.

Taking into account the vital functions, as well as the possibilities of combining

them, the necessary premises of a house are shown in Table 12 referred to Albanian

housing design standards [82].

Table 12: Necessary spaces of a house

No. Living Spaces Auxiliary Spaces

1 Living room / Day room Entrance space

2 Bedroom Kitchen

3 - Hygienic-Sanitary unit

4 - Storages

31

In addition to the essential units, open spaces such as loggias, balconies,

terraces, perform many useful functions.

3.1.2 Typological categories of floor plans

Organizing the spaces in a floor plan layout plays a critical role in determining

the overall functional and aesthetic appeal of the building or structure. They should be

designed considering carefully the needs and preferences of the occupants merged

with the architectural design principles. In a well-designed floor plan, socializing and

privacy are crucial stage, therefore, open and closed spaces can be arranged

accordingly. This plays an important role in producing an efficient, comfortable and

practical living space. In Table 13 are presented the categories of typologies of floor

plans, based on the way of organization of the object [82].

Table 13: Typologies of floorplans based on the way of the organization referred to

Albanian housing design standards [82]

No. Typology Illustration

1 Floor plan with corridor

The apartment is organized according to a

long axis, in which the rooms are lined up on

one side or on both sides.

2 Floor plan with inserted boxes

The apartment is considered as a wide empty

space, in which a cube (a box) is inserted, or

walls, which can be a kitchen, a bathroom or a

sanitary unit.

32

3 Floor plan with living room, as distribution

center

The floor plan of the apartment is developed

around the living room, which becomes the

center of distribution and passages.

4 Floor plan with separate functional areas

In the plan of the apartment, the functional

areas are clearly separated, with the aim of

preserving privacy. Each area contains a

corridor that connects to the entrance.

5 Organic layout

The layout is based on the study of the

resident's movement during various activities.

Walls are placed around areas of concentrated

movement.

6 Permeable layout

It is a variant of organic planning.

Characteristic is the absence of a corridor,

which enables the division into day and night

areas.

7 Circular layout

It creates numerous possibilities of connecting

functional areas between them.

33

8 Variable layout

Creates the possibility of changing the internal

organization, in function of the needs of the

residents. The shapes and sizes of the rooms

can be changed by means of movable walls.

The typology that we have taken into consideration for this study is the circular

plan, which generates different possibilities of connecting the functional spaces

between them. In a circular layout, all spaces have a common center. In addition to

facilitating the processing of the algorithm and coding, this typology produces a sense

of harmony in organization of the space. The connection of many functional areas in

a single area can stand in reducing the time to move from one unit to another, making

the livability more comfortable [78].

3.1.3 Elements of a residential building

The spatial organization which is considered in this study includes these main

spaces of a house layout that are defined as below referred to Albanian housing design

standards [82]:

The entrance has the function of connecting the different spaces of the home,

making them independent from each other and providing everyone with the necessary

privacy.

The living room is the main space in the apartment, because it is where all the

members of the family gather together. Therefore this space helps in. the best possible

organization of family life.

The kitchen is the resident's main place for household work, which includes

preparing and cooking food. The size of the kitchen depends not only on the size of

34

the furniture, but also on the free surface needed for their use, as well as the creation

of normal conditions for the resident.

The Bedrooms is of great importance, since the most important life activity,

which is sleeping, is performed. Their surface area depends on the number of people

sleeping in them. The typologies of bedrooms are Master bedroom, Bedroom for two

people and Bedroom for one person.

Hygienic-sanitary spaces are used to maintain cleanliness and personal

hygiene of the residents. Its surface area depends on the number of sizes or devices,

furthermore on the surface needed for their use.

Table 14 shows the norms of the surfaces of different types of housing referred

to Albanian housing design standards [82].

Table 14: Standards of the surfaces of the different plan typologies

No. Spaces
1+1 typology

 (m2)

2+1 typology

 (m2)

3+1 typology

 (m2)

1 Master Bedroom 12 12 12

2 Bedroom - 8 12

3 Bedroom - - 8

4
Living room

+ Open kitchen area

12

2.52

13

2.52

14

2.52

5
Kitchen

Kitchen + dining area

4.2

6.16

4.2

6.8

4.2

8

6 Bathroom 3.6 – 4.2 3.6 – 4.2 3.6 – 4.2

7 Storage 1 – 1.5 1 – 1.5 1 – 1.5

8 Corridor 4 - 5 6 - 7 6 - 7

3.2 Software Programming Description

The generation of plan layouts is a crucial aspect of software programming, as

it allows for the creation of effective designs for various applications. In recent years,

the use of Python programming language has become increasingly popular for the

35

implementation of such algorithms [84]. Python is a free, widely used programming

language that is easy to learn and quick to implement [85]. Its syntax is short and clear,

which can be used even by non-professionals. This makes Python a good choice for

plan layout automation, especially for architects. The increasing demand for python

over years, is characterized by huge user community as well as massive open

resources. Therefore, programming with Python language is practical and supported

by large number of examples throughout forums and guidelines [85].

This language provides numerous and powerful libraries that facilitate and

simplify the process of programming and developing various applications. Some of

the libraries implemented in this study are listed and explained in the Table 15.

Table 15: Definitions of the Python libraries implemented in the code

No. Library Definition

1 time

Used to apply delays in seconds for different stages of

algorithms provided in this study. Usually implemented to

detect various functions by slowing the processing time for

debugging purposes [86].

2 shapely Utilized while dealing with constraints stage of the

overlapping spaces. It is a very wide library which provides

multiple functions, but in this study it is used for determine

either several polygons are crashing with each other. This

would label the plan as incorrect [87]

3 import.lib Implemented to export the data of the algorithms into to .txt

files which will later be recalled by other functions in different

phases [88].

4 tkinter A graphical user interface (GUI) is demonstrated in this study

for a better visualizations of the plan layout automaton using

tkinter library [89].

5 datetime Additionally to the main thesis scope, it is presented an

advanced stage for faster processing procedures using parallel

programming in several CPUs. To accurately measure the

duration, datetime is implemented as a suitable library of

python [90].

6 intertools Powerful library which generates several permutation

combinations [91].

36

3.3 Programming structure used for automation procedure

Plan layout automation is a complex process that needs a lot of coordination

and detailed organization. The automation of housing plan has many advantages both

in terms of speed of work and in terms of increasing employee productivity. The

division of the work presented in this study is developed into three phases due to a

better management of the work organization as well as facilitating the modification or

updating of the code at any moment during the work. This will be done by dividing

the code into small parts, known as functions, for each of the phases. Also, this strategy

will allow the modification of the code in an easy way, minimizing the risk of negative

impact on other parts of the code. By sorting out the work areas into phases, it becomes

possible to give the code the necessary attention in each stage and in this approach an

efficient product can be generated while it suitable for debugging at any time.

The first phase presented in this study deals with the development of the

algorithms prepared to ensure the basic, unfiltered, invalidated plan layouts.

Therefore, in the end of phase one, it is expected to have a set of plan layouts in a raw

format. The entire process is ensured by considering multiple calculations and filters.

The code itself is structured into functions for better management and execution. This

stage will contain all the necessary information to organize the living spaces in a plan

layout. Moreover, some algorithmic restrictions and rules for the spatial organization

will be established, in order to ensure that possible patterns are generated correctly and

acceptable as a functional plan layout. These limitations are the basic elements in the

organization of a plans such as, overlap prevention between two or more units and

permitting the connection of each component with the central access. This will

guarantee error-free plans for the upcoming stages and hence increase the efficiency

of the algorithm. The entire process, from the user inputs in terms of space

functionalities, orientation-direction, until the generation of the raw layouts is

developed using a graphical user interface for better visualizations.

The second phase consists in the process of filtering the plans generated before

based on validation rules and criteria. The development of plans in the first phase

offers a wide range of possibilities, but not all of these combinations are acceptable or

reasonable for the user. In phase two, several restrictions are configured in the code

based on regulations, guidelines and suggestions taken into account from a wide

37

literature review as well as Albanian housing design standards [82]. All these criteria

and filters provide an overall validation of the plan which in evolutionary procedures

is known as Goodness value parameters. The goodness value will be used to identify

the best and suitable plans to use. The criteria set to establish the limitations and

evaluations of the plans depend on the purpose of the residential plans and the needs

of the user. At the end of this phase, it is stored a set of housing plans that are evaluated

by the Fitness functions. This set of acceptable plans are efficient and acceptable to

the user and professional designers.

The importance of the third phase lies in the graphic visualization, since the

algorithm must be suitable for understanding by the user and for the stockholders. To

reach this goal, the plan layouts validated in the second phase, are exported to drawing

software. As one of the well-known commercial software used widely by architects is

AutoCAD, phase three ensures the development of a script to re-draw the plan details

in this software. Consequently, all validated and selected plans can be transferred to

be re-generated more easily at this stage. The architect has the opportunity to make the

necessary changes to complete the architectural project. In this way, the automation of

the housing planning process can greatly facilitate the work of architects and

encourage more effective and efficient work in the architectural industry. In Figure12

it is presented an algorithmic flow of the general programming structure used for the

automation procedure of this study.

38

Figure 12: Algorithmic flow chart of the general programming structure used for the

automation procedure

39

3.4 First Phase

The initial phase of the methodology deals with the organization and operation

of housing plan automation. This stage starts with determining the number of spaces

desired by the client or the architect. Following this decision, the path is calculated

and the possible combinations of the spaces are generated considering the orientation

and corner prevention constraints. It is important to mention that all these spaces will

circulate around the corridor, which will be referred to as a stationary point. In order

to reduce the number of possible combinations, generated layouts passes some

conditions that are the primary rules in an appropriate architectural design plans. These

rules include overlapping between two or more spaces and filtering the entrance. All

the relevant steps that will be developed in this phase will be explained in detail below.

3.4.1 Space layout assignment

One of the main factors considered during the automation of housing plans is

the determination of the number of spaces. This is an important parameter that affects

the organization and operation of a plan layout. Accordingly, they can be defined by

the client or the professional designer and serves as a starting point for the algorithm

to generate a floor plan.

Since this study focuses on the typology of circular layout floor plans, the first

space that is taken into consideration is the distribution space, otherwise known as the

corridor or hall, which functions as an immovable stationary point in the organization

of the spaces during this algorithmic processing. The hall provides access to other

spaces and can be changed based on the standards of housing design or the needs of

the user. These standards may include specific requirements for room size, orientation,

and adjacency. The designer must consider the needs and preferences of the customer

to decide the number of spaces to ensure the minimal inputs for the automation

procedure. However, by default configurations in the current automation algorithms

for the hall parameters are defined based on the guidelines [82]. In the plan layout

automation, the number of spaces is a crucial element, as it has an impact on the overall

size and form of the structure or building. Moreover, the location of hall as well as

40

other rooms, plays an important role for the procedure developed in this study as it

belongs to the centroid based method.

Figure 13: A conceptual idealization of spatial layout inputs

A conceptual example of the parameters that the user can choose to start the

algorithm’s work in relation organization of the spaces is presented in Figure 13. All

spaces are available to the user and has the opportunity to choose them according to

the desired or required typology of the residential plan. These typologies can range

from 1+1, 2+1 or 3+1.

3.4.2 Space Orientation

The orientation of spaces is crucial in building design since it has an impact on

many aspects of the daily life of residents. This is an important parameter to

understand how to plan the housings so that they have a thermal stability, a natural

ventilation system and a good natural lighting. Specifically, the spread of natural light

is a key factor in building a brighter and comfortable environment for occupants. In

general, the orientation of the spaces according to the directions North, South, East

and West should be adapted to the conditions of the climate and environment where

the residence is located. A good optimization of the orientation plan can help reduce

energy costs and improve the quality of life at home.

The regulation of the Albanian standards gives some specific suggestions for

the orientation of the spaces according to the North, South, East and West directions

[82]. Table 16 defines the parameter criteria for arranging these spaces.

41

Table 16: Space orientation Matrix Input

 LR D K MB B MBA BA S

North -1 +1 -1 -1 -1 +3 +3 +3

South +3 +3 +2 +2 +2 -1 -1 -1

East +1 +2 +3 +3 +3 +1 -1 -1

West +2 +2 +1 -1 -1 +2 +2 +1

The space orientation matrix shown above helps to determine the distribution

of different spaces in a house based on the four cardinal points of the compass. Using

this table, the values of each space indicate their orientation relative to the directions.

Negative values (-1) in the matrix indicate that a space in a house should not be

oriented in that direction, while positive values (+1, +2, +3) indicate the suggestion to

orient the space in that direction. The higher the value of a space in the matrix, the

stronger the suggestion of orientation in the given direction.

The table shows that the corresponding values for the orientation of the living

room have a strong suggestion for the orientation towards the South and a lower

preference for the orientation towards the North. Likewise, the dining room and

kitchen have a preference towards East and South, with values ranging from (+2) to

(+3). In this way, the optimal use of natural light will affect the reduction of electricity

for lighting as well as the required ventilation of these spaces.

On the other hand, for bedrooms Table 16 shows a strong suggestion for

orientation towards the East reaching the value (+3). If it is oriented in this direction,

it will be exposed to natural sunlight in the morning. This can affect the human’s

circadian rhythm (body's natural rhythm), helping in waking up easier in the morning

and feel more refreshed [92].

The orientation of the utility spaces in the North direction with the suggested

value of (+3), allows natural light to enter optimally and can ensure ventilation. This

orientation can allow fresh air to enter the toilet naturally and lead to a cleaner

environment. However, to place these spaces in the north direction, it is important to

consider other factors of the project. Architects must ensure that it is placed in a

position that will not interfere with other spaces in the house and will provide an

42

appropriate level of privacy. In addition, the individual needs of residents and personal

preferences regarding the location of such units in the home should also be taken into

account.

Therefore, it remains crucial to emphasize that the space orientation matrix

generated for plan layout automation does not guarantee a finalized version for the

organization of the spaces in a detached house. Indeed, the utilization of the matrix

must be taken into account in ratio with additional factors such as building location,

climatic conditions, terrain configuration and more. Nevertheless, the orientation

guidelines must be taken into account as they provide important tools for engineers

and architects in the house planning process.

3.4.3 Path coordinates calculation

The calculation of path coordinates will be introduced after the user has

specified the number of spaces and their direction. The concept is based on the

principle of “space-traveling” around the main unit of the house, the hall. In this way,

the hall remains static while each of the spaces defined by user performs a 360-degree

rotation around it as shown in Figure 14.

Figure 14: Example of traveling path for one space unit

43

For coding purposes, the rotation of each space is defined by the “path-

coordinates”. This involves the calculation of several coordinates to ensure the 360-

degree travel-path around the main unit. As demonstrated in Figure 14, the calculation

of path coordinates is required independently for each of the spaces as they have

different sizes. Moreover, based on the orientation inputs provided by the user, the

path coordinates are calculated accordingly only for the suitable directions, North,

South, West and/or East as shown in Figure 15.

Figure 15: Path coordinate calculations. The concept of coordinates for one space

example, and the path coordinates for a space which is forbidden to be oriented in

one of compass direction

The coordinates are calculated based on several parameters. Initially the

dimensions of the hall play an important role because it is taken as the reference point

for each coordinate. In addition, the size and orientation of each space may influence

the path coordinates and shall be considered separately. Furthermore, the coordinates

must only be adopted for the directions suggested by guidelines.

3.4.4 Corner prevention

In order to fix and prevent connectivity errors between the stationary unit and

other spaces in the automation of housing plans, it is important to apply certain logical

constraints. One such criterion is the filtering of each space coordinate to ensure that

44

the hall maintains a minimum distance in the most critical area, defined as corners. To

achieve this task, each coordinate of the spaces travelling around the hall is checked

through a filtering process.

The filtering process requires that each coordinate of the spaces be checked and

changed in order to maintain a minimum distance in the corner. This means that if two

spaces are located at a very close distance in the corner, then they will be arranged in

a pattern that they have at least a minimum distance from each other. This will allow

communication between rooms and prevent non-functionality of the circulation plan.

Therefore, on the right of the figure shown below, the constraint parameter is

represented by the label "a"

Figure 16: Demonstration of minimum distance ensured for space connectivity on

corners

The equation which would adequately determine the location of the room

regarding the centroid of the Hall would be as shown below:

𝑋 = 𝐶𝑋 +
1

2
𝑅𝑋 +

1

2
𝑅𝑋 (1)

𝑌 = 𝐶𝑌 +
1

2
𝑅𝑌 +

1

2
𝑅𝑌 (2)

Where: Cx is the width of the Hall, Cy is the length of the Hall, Rx is the width

of the room i and Ry is the length of the room i. These two equations can generate all

possible coordinates for the position of the room.

The preliminary set of coordinates on the left demonstrates a 360-degree

45

movement around the stationary point in any direction. However, the algorithm should

be adopted according to logical cases. Therefore, the equation of the motion

coordinates would change by integrating the corner constraint, as shown below:

𝑋 = 𝐶𝑋 +
1

2
𝑅𝑋 +

1

2
𝑅𝑋 − 2𝑎 (3)

𝑌 = 𝐶𝑌 +
1

2
𝑅𝑌 +

1

2
𝑅𝑌 − 2𝑎 (4)

The modified equations must be included into several calculations to define all

the coordinates needed. The methodology developed to calculate the path coordinates

is based on two nested loops in python programming language, for both orthogonal

directions of the spaces. Some criteria are implemented to achieve the valid

coordinates and ignore the ones which are not needed using “if” functions. Finally,

each of the path coordinates are saved in different lists written in the code.

3.4.5 Generation of possible room combinations

As the path coordinates are calculated and saved for each space individually,

then they should be simulated simultaneously around the hall, so it can generate

different layouts. This step can be achieved in several ways by using different

procedures and libraries in python. However, it requires a lot of computational power

and time as the simulations have to check for all possible combinations. Therefore, in

this study it is presented an alternative way of generating room combinations. By using

the permutation sequences of the set of coordinates among each space defined it results

in all possible combinations. Hence, this solution guarantees that none of the possible

layouts that can be generated are missed. A graphical interpretation of how the

permutation combination is utilized in the code is shown in Figure 17.

46

Figure 17: The graphical description of the combinations using path coordinates for

different spaces, and the respective result of space arrangements

Nonetheless, it should be emphasized that this results in a huge number of space

arrangements which consider non-valid plans. This means that the permutation

combinations will provide any regular or irregular (spaces overlapping with each

other) therefore, additional operations must be taken into account for filtering illogical

layouts.

3.4.6 Fixing clashes

After generating the coordinate combinations, it is crucial to define functions

to filter overlapping of two or more spaces. Each of the combinations is checked

individually for overlapping between spaces. The overlapping results are returned

from a python library known as “shapely” [87]. Combinations that include overlapping

spaces are automatically deleted while the others are saved in a list in python. The

checking criteria is done for spaces and entrance separately as follows.

3.4.6.1 Overlap prevention of two or more spaces

Working on a plan layout it is important to find a balance between functionality

and aesthetics. Overlapping spaces can cause conflicts in both aspects, making the

47

production process unacceptable. Therefore, it is necessary to develop an algorithmic

condition that can help in preventing these situations. Overlap occurs when two or

more spaces occupy the same physical space, partially or completely. To prevent

spaces from this phenomenon, in this study an algorithmic criterion is used to estimate

the distance between spaces. This constraint will be an automatic function that would

serve to identify any potential risk of overlapping spaces and prevent any possible

conflict between them.

Figure 18: Illustration of different cases of possible combinations and overlap

evaluation

As presented in Figure 18, an illustration of several combinations of two spaces

of a residential plan where the corridor is the central point is presented. Cases (a) and

(b) demonstrate a typical example of overlapping that may occur during the

automation process of generative design. This is a phenomenon that can cause

functional and aesthetic conflicts, which results in illogical layouts and therefore have

to be filtered by the algorithm during the evaluation process. Similarly in cases (c) and

(d), the two spaces are combined so that they do not overlap with each other. This

makes the evaluation process to continue, as they pass the overlap criterion

successfully.

With this algorithmic constraint, automation can increase the efficiency and

quality of the generation process of spatial arrangement, enabling a higher speed and

precision in the evaluation of combinations and guaranteeing a higher quality of the

work done.

48

3.4.6.2 Filtering Entrance

Unlike the other spaces, the entrance is programmed as a one-dimensional

shape in the algorithm. The direction and width of the entrance is defined in the same

manner as other facilities. Nevertheless, the clash with circulating spaces must be

avoided. Therefore, a function is added particularly to prevent other spaces locate

through the entrance as shown in Figure 19.

Figure 19: An example for the correct location of rooms in a plan layout referred to

entrance (right), and incorrect location of space unit through the entrance (left)

3.4.7 Raw plan layout generation

To finalize the first phase of automation, a process of generating raw plan

layouts and storing them in a Python list is needed. These plans are generated using

the previously defined parameters and criteria although accurate, are not evaluated in

terms of the fitness function. Therefore, to evaluate them, a specific algorithm is

needed that will be implemented in the second phase.

In the Figure 20 it is shown a summary of the algorithm developed and used

for first phase to achieve the generation of raw plan layouts.

49

Figure 20: Algorithmic flow chart of first phase used in plan layout design

automation method

50

3.5 Second Phase

The second phase of the methodology involves filtering the combined space

units from the first stage based on the validation criteria. All plans will pass certain

validation criteria defined in this study known as fitness value. These criteria include

three main factors that influence the validation of a plan, which are compactness of

the plan layout, functionality of spaces and parcel occupancy. All these values will

finally be determined in the goodness value target. All the relevant steps that will be

developed in this phase will be explained in detail below.

3.5.1 Validation of a good architectural plan layout

Housing is a fundamental human need, and developing good residential plans

is a great challenge for professional designers. At the present time, where technology

has influenced many aspects of living, automation has become a significant option for

improving construction processes and evaluating the quality of residential plans. A

good architectural layout provide suitable environment for living and developing daily

activities. This aims to provide the maximum of usability in the minimum of space,

responding to the needs of the occupants and incorporating aesthetic and functional

elements. Moreover, it affects the well-being and health of the inhabitants [93].

Validation of a good housing plan is a process of overall evaluation of the plan

to ensure that it meets all the necessary criteria and standards. This section explores in

depth the validation process and relevant factors for a good architectural layout in a

generative design context. In its focus is the selection of different values that have the

validity of a good arrangement. Moreover, information is gathered to filter the plans

and its verification, requiring it to reach the standards essential for a feasible design.

In this study, the validation of appropriate layouts is done based on the criteria of

Perimeter over Area, Room adjacency and Parcel occupancy.

51

3.5.2 Perimeter over Area (Compactness)

The ratio of the perimeter to area and its importance in the automation of

residential plans has vital role in the filtering and validation criteria [94]. The perimeter

of a residential layout is the total length of the exterior boundaries of the plan, while

the area is about the interior space of it. The area is calculated by multiplying the width

and length of each units. Perimeter and area are two crucial elements in producing and

defining residential plans. The perimeter helps identify the exterior dimensions of the

plan, while the area defines the space available for use in planning the interior of the

building. Thus, adding the importance of the perimeter principle in relation to the

surface of the building shows that the smaller this ratio, the better is the output of a

residential plan. When the perimeter is reduced in relation to the surface, there are

obvious advantages in terms of efficiency and aesthetics of the building. In addition,

a small perimeter has clear benefits in terms of cost-effectiveness. The smaller the

perimeter, the less materials and resources will be needed to construct the building.

This results in a reduction in construction costs and the use of resources needed for

construction.

The scholars have been interested in developing an accurate measure of

compactness. Ritter developed in 1822 a basic ratio of a shape's perimeter (P) to area

(A) to determine compactness of the building plan layout [95]. Several more measures

have since been proposed by other researchers [96, 97, 98, 99]. These measurements

are roughly classified into four groups: reference shape, geometric pixel properties,

dispersion of area elements, and area-perimeter measurement.

Ritter's (P/A) approach is classified as an area-perimeter compactness measure.

Nevertheless, this approach has a drawback as the measure varies when the shape's

size changes. To overcome this issue, the measure can be made by dividing the shape’s

area by the square of its perimeter. Among the several different names and

mathematical formulations [96, 97], the IPQ [100] has emerged as one of the most

commonly applied compactness measures in this field, which is defined as below:

CIPQ=
4πA

p2
 (5)

In the formula for the IPQ compactness measure, the perimeter P is squared to

eliminate the impact of scaling. The area of the shape is denoted by A, while the

52

compactness value is represented by CIPQ. A shape with a higher CIPQ value is

considered to be more compact than a shape with a lower CIPQ value.

The execution of the compactness filtering criteria is based on two main

parameters, the area of the plan layout and the outer perimeter. The calculation of the

plan is based on the cumulative area of each space which is found by multiplying the

width by its length. On the other hand, the perimeter of the plan is calculated using the

shapely library of python. Shapely provides multiple information as regards the lines,

rectangles, circles or irregular polygons. It is important to convert each of the room’s

information to coordinate so that it is adopted for the shapely library. The end result

provides the total exterior perimeter of the building. Considering these two parameters,

the necessary formula is utilized to find to calculate the compactness value.

Furthermore, the value is remapped from 0 to 100 so it can be unified and compared

at the same time with other filtering criteria which are described in following chapters.

3.5.3 Room Adjacency (Functionality)

Room functionality has an important role in plan layout design as it directly

impacts the usability and efficiency of a space. Rooms that are designed to be near

each other or have sharing walls offer several benefits as ease of movement, improved

communication, and increased accessibility.

In the following section, a matrix Table 17 will be presented, which has been

developed as a result of extensive research including a review of relevant literature,

architectural plans, and design strategies [101, 102, 103, 104, 105]. The matrix table

serves as a valuable tool for assessing the optimal spatial relationships between

different rooms or spaces within a building, based on the preferences and needs of the

occupants. The matrix assigns values to different pairs of rooms based on different

functions of each room, the frequency of use, and the potential for interaction between

spaces. The values range from -1 to +3, with -1 indicating that the two rooms should

not be located next to each other, 0 indicating that there is no preference, and +3

indicating that the two rooms should be located right next to each other.

53

Table 17: Adjacency Matrix Input

SPACE TYPE LR D K MB B MBA BA S

Living Room LR 0 +3 +2 -1 +1 -1 -1 -1

Dining Room D +3 0 +3 -1 -1 -1 -1 +2

Kitchen K +2 +3 0 -1 -1 -1 +1 +3

Master Bedroom MB -1 -1 -1 0 +2 +3 -1 -1

Bedroom B +1 -1 -1 +2 0 +1 +2 -1

Master Bathroom MBA -1 -1 -1 +3 +1 0 +2 -1

Bathroom BA +1 -1 -1 -1 +2 +2 0 +1

Storage S -1 +2 +3 -1 -1 -1 +1 0

In this table of matrix, the highest adjacency preferences are between the Living

room, Dining room, and Kitchen, as they are often used together and it is desirable for

them to be located in close proximity. The Master Bedroom has a high adjacency

preference with the Master Bathroom. Additionally, all of the bedrooms have a low

adjacency preference with the living areas.

A. Living Room is to be shared by the kitchen and dining area.

(LR, D) = +3, (LR, K) = +2

B. Bedrooms are preferred to be grouped

(MB, B) = +2

C. Storage is to be shared by the kitchen and dining area

(S, K) = +3, (S, D) = +2

D. Master bathroom should be shared by the master bedroom and bathroom

(MBA, MB) = +3, (MBA, BA) = +2

This matrix can be a useful tool to guide the layout and design of a house to

ensure that the different rooms are located in the most desirable and functional way

possible.

The execution in python programming language is done by considering in the

54

main part the matrix developed before. The values used to validate the sharing walls

between different spaces are configured in the algorithm. While evaluating the plan,

for each of room pairs it is considered the evaluation value and assigned to the

functionality. Once all combinations are executed from the nested loop, then a general

value is calculated for this criterion. Afterwards, the remapping is applied for the

unification of values and comparison reasons with other criteria used for the validation

of the plan layouts. In addition, the matrix used for the sharing walls is provided in the

web-app which can be updated by the user with different values according to the

demand.

3.5.4 Parcel Occupancy

The parcel occupancy fitness criteria is based on the idea of the percentage of

the plan occupying the parcel’s surface. The parcel is defined as the space from the

external boundaries of the building considering the outmost coordinates of the

generated plan. In other words, the occupancy of this parcel defines a good fitness

value. Therefore, a maximum parcel occupancy fitness value will be represented by a

rectangular plan with no remaining unused spaces as shown in the figure below. By

using this value it can be easily determined the efficiency of using the maximum

possible parcel surface.

Figure 21: Validation of parcel occupancy, not fully occupied parcel (on the left),

fully occupied parcel (on the right)

55

The implementation of the parcel occupancy in the algorithms of this study is

done by considering the ratio of overall plan surface and the parcel area. The plan

surface is calculated from the example mentioned in the section above. While the

parcel area is calculated considering the four outermost boundaries of the building.

The code is written to get the maximum and minimum coordinates of the west-east

and north-east directions. Once these coordinates are ensured, then the calculation of

the parcel width and length and as a result, the area is easily performed. In addition,

the ratio of building vs parcel area for each of the plan layout generated is saved in a

python list after remapping their values from 0 to 100. In the end, this filtering criteria

shows the percentage of the plan fulfilling the parcel from its outer boundaries.

Every fitness value calculated is then multiplied by different coefficients which

are given by default according to literature suggestions but can be modified very easily

from the web-app according to user preferences.

3.5.5 User interaction

The second phase is developed in the environment of python programming

language. All calculations are structured in various functions which communicate

among each other. The final output of the results is visualized in the graphical user

interface (GUI). For the scope of this study, the GUI for the second phase is developed

as web-app utilizing the flask library. This is done to have a more responsive and

dynamic interface which enhances interaction and builds the bridge between the code

and user. As shown in figure# the user is prompted in the top of the web-app with the

evaluation criteria. The compactness, functionality and parcel occupancy can be set

according to the most preferable combination by the user or architect. Furthermore,

the values which are used to validate the functionality while considering the sharing

walls (Adjacency Matrix) can be edited and updated. Users may update one or more

values and click the button “Update Parameters” to reflect the changes. In this way,

the analysis of different categories, combinations and goals can be achieved.

56

Figure 22: The graphical user interface to update fitness values and Adjacency

Matric

Once the parameters are set, then the application demonstrates all the generated

plan layouts according to the highest goodness value as shown in Figure 22. The

window provides important information regarding the plan number or ID, the

compactness, functionality and parcel occupancy values remapped, parcel area in

square meters, building area and building perimeter. Furthermore, it gives the

goodness score in association with the percentage and rating stars. In addition, the

option to export the plan in AutoCAD drawings using the automation CAD script is

provided. Lastly, a fast preview of the plan configuration is shown below the

information mentioned above.

Figure 23: Web Application prepared for the outcome presentations and user

interaction

57

In the Figure 24 it is shown a summary of the algorithm developed and used

for the second phase to achieve the validation process of plan layouts.

Figure 24: Algorithmic flow chart of the second phase used in plan layout design

automation method

58

3.6 Third Phase

The third phase of the methodology deals with extracting generated plans in

AutoCAD software. This is an important step in visualizing all the project data to

architectural drawing layouts. At this stage, each plan selected for extraction into

AutoCAD will be considered as an individual project package, containing all the data

required to be assigned as an architectural plan. Complex plan information is simply

accessed with AutoCAD scripts and includes visualizing the dimensions of the plan,

identification of the arrangement of important elements, and other graphical

representations. Using scripts to extract final plans is also an efficient tool for

architects and designers. This frees them up to focus on the other parts of design, since

they are no longer loaded by the technical effort of collecting and arranging data in

AutoCAD. Furthermore, because the automated extraction of plans uses the data

generated in the previous second phase, the possibility of probable errors are lessened.

3.6.1 Definition of AutoCAD Scripting

AutoCAD scripts are a set of written commands that are run to conduct

different tasks in the AutoCAD application. Scripts allow users to automate repetitive

actions including drawing objects, editing them, altering parameters, importing data,

and many more. These scripts offer a high level of flexibility and speed when

designing and visualizing. To develop scripts in AutoCAD, a simple text editor like

Notepad or an advanced AutoLISP editor like Visual LISP can be used. After

generating the script, the file is launched within AutoCAD by using the "SCRIPT"

command and providing the script's location, or simply by dragging and dropping the

file onto the workspace.

3.6.2 Preparation of the AutoCAD environment

All AutoCAD scripting commands in this study are processed in Notepad++

59

file. Preparing the workspace in AutoCAD begins by deleting any existing objects in

the workspace. This phase is crucial in ensuring that the new design starts with a blank

drawing page. Following this, it is necessary to clear all groups or layers, to ensure

that the script runs without errors when updating the new drawing. The purge

command will be used to clean out groups or layers. This will remove any unnecessary

element from the drawing file. After emptying the workspace, it is ready to start the

new design in AutoCAD software. This work environment preparation generates a

clean basis for the next design layout.

3.6.3 Drawing outer walls

The respective area included in that category of drawing. The methodology

followed to draw the outer walls is based on the outer coordinates of each of the spaces

involved in the plan layout after the automation of the second phase. These coordinates

are filtered for possible errors and then drawn using polyline command in AutoCAD

considering the script file. To represent the outer wall thickness the offset command

is utilized. The selection of the previously drawn polyline is done by using the group

name selection option from scripting. Furthermore, the hatch is specified by giving

adequate properties of hatch pattern, scale, color, transparency if applicable. Figure 25

below demonstrates the steps followed to achieve the drawing stage of outer walls.

60

Figure 25: First step of outer wall drawings - reflecting exterior coordinates

In Figure 26 it is shown the drawing polylines using the exterior coordinates

for the outer wall. On the left it is demonstrated a few code lines from the scripting

file. The second step involves the offsetting of the previously drawn polyline

considering the thickness of the outer wall which is given as input by the user. Figure

26 illustrates second step by associating sample of code for the offsetting procedure.

Figure 26: First step of outer wall drawings - reflecting offset coordinates

61

As the offsetting stage is finalized, a coordinate between exterior and interior

polyline is specified and used for hatching. A set of parameters as explained previously

it is applied if applicable as shown in Figure 27.

Figure 27: First step of outer wall drawings - reflecting hatching with a specifying

pattern

3.6.4 Drawing inner walls

For each in the rooms involved in the plan layout, it is important to determine

all the sites that corresponds to inner walls. For instance, the sides that are part of outer

perimeter, door must be excluded from the inner walls. This process is ensured by the

powerful library named shapely. It offers a wide range of polygon calculations

including overlapping of different polygons, area calculation, perimeter calculation as

well as sharing coordinates between two polygons. It is exactly the LineString module

used to detect either two polygons (in this case rooms) are sharing common walls. The

set of criteria is defined for the coordinates of polygons shared and not shared in

combination with each other. Therefore, if the room is sharing coordinates with outer

perimeter, then this coordinates should not be part of inner walls. In the other hand the

common coordinates between two spaces which at the same time are not part of the

62

outer wall shall be accepted as inner walls. Furthermore, in the third phase these

coordinates are represented as polylines, offset by the thickness of the inner walls,

filled with the hatch pattern for the same elements and assigned in the respective layer.

The figures shown below represent the scenarios mentioned in this section to draw the

inner walls.

Figure 28: (On the left) example of rejected coordinates provided by python shapely

library, (on the right) example of accepted coordinates provided by python shapely

library

63

Figure 29: Demonstration of steps followed to draw inner walls: a) drawing the

polylines, b) offset of the polylines, c) applying hatch

3.6.5 Drawing windows

To achieve third phase, preparing the scripts for AutoCAD, it requires several

drawing tools in coordination with precise dimensions with respective to each room.

The methodology followed to draw windows is based on the insertion of blocks.

Initially a block is prepared manually representing the window. Afterwards, the code

is prepared to calculate the center coordinate of each of the windows allocated in the

plan layout. The drawings in the blocks defined before are centered in the 0,0,0 (x,y,z)

coordinates to match with the previously calculated window origins. Finally, the script

is coded to insert the block to the respective coordinates calculated previously. In the

Figure 30 it is shown a representation of calculated coordinates in correspondence with

the origin of window block.

64

Figure 30: (In the left) representation of calculated coordinates for the arrangement

of the window block, (in the right) the insertion of window blocks in the previously

window calculations

Once the coordinates are calculated, the blocks are inserted individually at their

respective places as represented in the right side of the Figure 30.

3.6.6 Naming the rooms

In order to name the rooms the script is adopted to utilize the single text

command in AutoCAD. In this thesis, the text for each of the rooms is located in the

center. Each of the room dimensions and coordinates for room corners has been

imported in the second phase in python. Considering this data, it is easy to specify the

center point for each of the spaces for plan layout. From this stage, the insertion of the

text is done by considering the calculation of center coordinates, while other

parameters such as text color, size and font are defined in the function. The figure

below illustrates the naming of the rooms at their center points.

65

Figure 31: Calculation of center points and allocation of text while naming each of

the rooms

3.6.7 Allocating doors and furniture

For the allocation of furniture, initially it is designed a matrix of rules and

constraints for each of the rooms in the plan layout. The structure of the matrix is based

in the four corners of each room to allocate furniture and doors. From previous data

generated in the second phase, the coordinates for the doors are categorized in one of

the corners of each room. The algorithm is prepared to automatically avoid the corner

assigned to the door and use the other three remaining corners to arrange and orient

the furniture involved in the respective unit space. To draw a meaningful plan, the

rules set before in the matrix are utilized in this step. For instance, if door is located in

the first corner, initially it is crucial not to place any furniture in the same corner and

moreover set the ideal corner for the suitable furniture. Figure 32 demonstrates the

rules on the left set for the living room in relation with the allocation of the furniture.

66

Figure 32: Sample of a part of the matrix used for the definition of rules and

constraints for furniture and doors.

As shown, on the left it is presented the set of criteria for the allocation of the

furniture and door based on the four corners of the room. The example considered is

part of the living room which involves the door itself, the sofa and TV furniture.

Focusing on the left criteria, reading the first column from top to bottom can be

interpreted as follows: if the door is located at first corner, then sofa must be located

at second corner, the TV in the third corner, while the fourth one is left internally

empty but can be replaced by any furniture demanded by user. This case is illustrated

by the representative example given on the right. Furthermore, reading the second

column from top to bottom, consequently is interpreted as follows: if the door is

located in the second corner, then the sofa must be located in the firs corner, TV in the

fourth one while third corner (opposite to the door) is left empty intentionally. In the

same way can be proceeded to interpret the third and the fourth columns, thus full-

fling all the possible combinations on one room. In the same trend the matrix is

structured for all the other rooms in the plan layout.

The allocation of furniture and door is done based on the corner coordinates

following the methodology presented in the section named “drawing windows” which

consists in the insertion of previously prepared blocks. To each of the blocks prepared,

it is given different attributes as orientation, rotation, scaling and naming. The figure

67

below illustrates the possible combinations for the door orientation at the first corner.

Figure 33: Possible orientations of the door for the first corner in one room

As shown in the Figure 33, out of eight possible scenarios only one can be

accepted as the correct implementation. The logic has been implemented in the

algorithm prepared to deal with allocation of furniture and doors.

3.6.8 Drawing dimensions

The dimensions are projected to be located in the four sides of the plan layout.

This is one phase which clearly shows that the computer solutions sometimes do not

provide the efficiency of the professional designers. This is illustrated by the fact that

the script will consider sometimes any small dimensions between two different

coordinates of the outer wall which could be ignored by the architect or merge with

other coordinates to provide one dimension. Nevertheless, the coordinates are

calculated based on the coordinates for each of the size of the plan layout with

reference to the global centroid. For instance, the coordinates of the left side of the

68

plan are taking into account for every outer coordinates of the same side considering

the range included from top to the bottom part as shown in Figure34.

Figure 34: Illustration of the dimensions for the left side for the plan layout.

3.6.9 Preparation of the template

The methodology of importing blocks to outfit the third phase of AutoCAD

drawings is implemented also for the preparation of drawing template. It is prepared

manually once and saved as a block tool which is than inserted in the centroid of the

plan layout and scaled to fit the entire drawing inside. Considering this solution, the

architect has the opportunity to chance the template, or specifically some of its detail

manually any time and the script will recognize the new updated template for new

implementation. It is crucial to emphasize for this study that every block considered

for furniture, door or template is saved in .dwg file and can be downloaded in addition

to script file from the web-app provided.

69

Figure 35: Demonstration of the arrangement of the template related to the plan

drawing

3.6.10 Turning on the layers

To prepare the entire script it is a matter of programming skills and adequately

sorting all the commands of AutoCAD in the script file. However, due to the huge

amount of command lines which will be implemented by AutoCAD macros

considering the short delay of time increases the probability of crashes and freezes of

the entire command list. Another important issue is the reference point set considering

the coordinates calculated by python which can interfere by the other existing objects

in the working space of AutoCAD. To avoid this issue, after each of the drawing

phases presented in the previous sections, their current layer is turned off. To finalize

the scripting procedure, the last step considers the turning on of all layers. In the

environment of python programming this is set up using nested loop for each of the

layers assigned before, in addition to the commands needed to re-activate these layers.

In the Figure 36 it is shown a summary of the algorithm developed and used

for the third phase to achieve the extracting process of plan layouts in AutoCAD

software.

70

Figure 36: Algorithmic flow chart of the third phase used in plan layout design

automation method

71

CHAPTER 4

ANALYSIS AND RESULTS

4.1 Overview

The implementation of code, constraints and overall automation idea

demonstrated in the methodology chapter must be checked in order to confirm either

the results are satisfactory or the code needs to improve more. For this purpose a set

of analyses are conducted to verify the satisfaction of code outputs. The structure of

the analyses it is divided into three groups; the analysis based on the algorithmic

development checks, architectural layout checks and computational optimizations as

shown in the upcoming sections. Each of the analyses provided is supported by

examples taken directly form the code output. Furthermore, general statistics and

comparisons are presented in tabular and graphical ways.

4.2 Analyses for algorithm checks

The analyses for the algorithmic checks includes every possible verification of

the code, constraint, input implementation in the algorithm. Since the code itself it is

divided in three main phases, the analyses are also categorized accordingly.

4.2.1 Verifications regarding first phase

The verification done for the first phase involve a set of trials from the initial

user input considering the graphical user interface prepared up to the final raw plan

layout generation. Each of the tests is presented as follows:

72

4.2.1.1 Demonstration of space layout assignment

For the assignment of the space layout, a graphical user interface (GUI) is

prepared considering required inputs to allow the entrance of different spaces in a plan

layout. The GUI is prepared as web-application aiming to have access flexibility for

the utilization. As shown in Figure 37, the app provides various several options to

assign the layout spaces. The user can add a room, add multiple versions of specific

spaces (e.g. Living room), use pre-generated templates for housing plan typologies

(1+1, 2+1, 3+1) and customize different setting options and finally run the analysis.

Figure 37: The GUI prepared as web application for user interaction

4.2.1.2 Verification of space orientation

Once several spaces are inputted from GUI, the user can run the analysis. The

running process is independent from any interaction and make the entire procedure

effortless. Nevertheless, the code must be verified for possible mistakes before

73

concluding the final outputs. Therefore, in this section it is considered the verification

of the space orientations which are distributed based on integrated standards or user

preferences in north, south, east or west directions. For testing purposes, the code is

modified to assign the direction in a specific orientation, thus concluding either

constraints are set properly. As shown in Figure 38 the rooms on the left are set to be

placed only in North direction, in the middle in South and West direction and in the

right in all compass directions.

Figure 38: Analyses performed for space orientation based on compass direction

Confirmed also from the results gathered from these analyses, it can be

concluded that constraints applied for the space orientation are configured correctly.

4.2.1.3 Verification of path coordinate calculation and corner

preventions

The verification of the path coordinates and corner prevention of the first phase

is done using a set of rooms while observing each of the possible combination

generated. The Figure 39 demonstrates the correct generation of path coordinates for

the entrance in west direction. The same analyses are performed for other spaces in

different direction as well. In the end it is concluded that the algorithm prepared does

a great job in calculating all path coordinates and makes sure no one is skipped. On

the other hand, the corner restriction for the rooms is maintained while for the entrance

is prevented. Again this indicates a smooth execution by the algorithm of the idea

74

proposed in this study to be generated. Nevertheless, the combinations must be

constrained for space overlapping to provide a correct combination of plan layout.

Moreover, Figure 39 illustrates an incorrect location of master bathroom which clashes

with master bedroom. In the upcoming section more analyses are run in order to check

the new features in the algorithm as regards to these constraints.

Figure 39: Several location of entrance confirming path coordinates

4.2.1.4 Permutation combinations, overlap prevention and raw plan

generation

As illustrated in the previous section, in addition to the path coordinate

generation, the room combinations in different plan layouts provide meaningful results

from the algorithm. However, the clashes between the different spaces need to be

checked. Turning on these constraint, results in less generated plan layouts but filtered

from overlapping issues. As shown in Figure 40 the plan layouts not only maintain the

corner minimum dimension, ensure the correct coordinate path in the right orientation

but also gives satisfactory results that none of the spaces overlaps. Therefore, can be

concluded that the algorithm for preventing overlapping works fine thus providing the

final version of row plan layouts.

75

Figure 40: Analysis conducted by the algorithm for the overlap prevention

4.2.2 Verifications done for second phase

The second phase deals with filtering procedures used to the raw plan layouts

in regard to the plan validation. The plan validation is represented by the goodness

value which is based on three main fitness functions. These fitness functions are

selected as; compactness, functionality and parcel occupancy which are explained in

more details in addition.

4.2.2.1 Verification of general information

The fitness functions are based on different formulas which includes the

perimeter and area of the building, the area of the parcel as well as the validation of

the sharing walls between two consecutive spaces. For this reason, it is important to

make necessary checks for these parameters before analyzing the other fitness

functions. The figure below demonstrates an example of several parameters calculated

by the algorithms on the left while on the right there are shown the same outputs by

hand calculation.

76

Figure 41: (On the left) parameters calculated by the algorithm, (on the right) the

parameters calculated in AutoCAD

Results calculated with hand match exactly the results calculated by the

algorithm, which shows a good correlation and proper code implementation.

4.2.2.2 Checks for compactness

The compactness is based in the ratio of perimeter and area of the building. The

parameters are confirmed from the previous section. Therefore, the analysis based on

the compactness, can be performed by setting different values of this fitness function

among the others used. This would be represented by different percentages shown on

the graphical user interface prepared for the second phase in the web-application as

shown in Figure 42.

77

Figure 42: (on the left) a maximum compactness value reached, (in the middle) an

average value of compactness reached, (on the right) a low compactness value

reached.

The illustration shows that the percentage gives meaningful validation as

belongs the compactness value. The plan with more compactness layout has the greater

percentage while the other with weakest compactness got less value. This indicates a

correct calculation of this parameter.

4.2.2.3 Checks for functionality

Similarly, the checks for functionality are done for the second fitness function.

As shown from the Figure 43, depending in the validation criteria setup to the

algorithm for the sharing walls, this parameter goes in line with the architectural logic.

This also indicates that the calculation of the sharing walls and validation of the

functionality fitness value is done properly.

Figure 43: (left) a maximum functionality value reached, (middle) an average value

of functionality reached, (right) a low functionality value reached.

78

4.2.2.4 Checks for parcel occupancy

The parcel occupancy is calculated considering the ratio of the building area

versus outer most parcel area covering the external boundaries of the building.

Considering this fitness function, the percentage of the parcel occupied is calculated.

Figure 44, shows different cases of the parcel occupancy. As shown, the plan which

fills the biggest percentage of the external boundaries gets the most percentage

indicating the higher priority over the others. This also confirms the correctness of the

code as regard to the parcel occupancy fitness value.

Figure 44: (on the left) a maximum parcel occupancy value reached, (in the middle)

an average value of parcel occupancy reached, (on the right) a low parcel occupancy

value reached.

4.2.3 Verifications done for third phase

The third phase involves the final AutoCAD drawings from one of the plan

layouts selected by the user. This process integrates many functions which needs to be

checked for possible mistakes or bugs. As the detailed description of each of these

functions is given in methodology chapter, an interpretation on the verification of final

results is presented in this section.

79

Figure 45: Finalized version of the AutoCAD drawing

Figure 45 shows the finalized version of the AutoCAD drawing for one of the

plans selected by the user. As shown, the script does a pretty good work in almost all

details. The drawing of outer walls, rooms and inner walls is done properly. In

addition, the orientation, scaling, direction and location of furniture and doors seems

to be precise and concise. The patterns for hatching, text and layers also provide an

idea of human replication as concerns the AutoCAD drawings. The main advantageous

of the third phase is that it allows to generate the script for AutoCAD in less than 0.3

seconds and the entire process is effortless. On the other hand, small issues can be

detected to the dimensions. Occasionally the script gives additional and unnecessary

dimension details in short distances. This can be categorized as one of the limitations

of this study which can be improved in further ones.

4.3 Analyses for architectural layout checks

The analyses for the architectural layout checks include adjustments and

80

calibration of parameters mentioned in the above section which are important for the

final output of the architectural plan layouts evaluated by goodness value. This is

achieved by alternating several combinations between the fitness functions included

in this thesis. Thus the compactness, functionality, parcel occupancy coefficients are

adjusted in different scaling to verify in the end the most preferable layout as well as

to set a default value which will be considered as calibration for the second phase. The

scaling used for the fitness values are grouped into three main scenarios as shown in

Table 18.

Table 18: Weight / coefficient of fitness values for different scenarios

Compacness

weight

Functionallity

weight

Parcel occupancy

weight

Scenario No. 1 80/10/10 10/80/10 10/10/80

Scenario No. 2 60/20/20 20/60/20 20/20/60

Scenario No. 3 40/30/30 30/40/30 30/30/40

In this way, combining between different scenarios and different fitness weight

(coefficient) in total there will be 9 different scenarios. For instance, one scenario

could be the first weight of compactness combined with the first weigh of functionality

and parcel occupancy (C:80, F:10, P.O:10). Hence, combining between several

coefficients while trying for different scenarios it is possible to conclude which among

these gives promising results. The conducted analyses and their outputs are presented

in the following sections.

4.2.4 Normalization of fitness parameters

As explained in the previous sections, the combinations are applied for the

compactness fitness function is considered using the sample of 1+1 house typology

from the ready library of the application. Several combinations are compared among

them as shown in images below. Initially the comparison for the fitness values for

compactness are done using the coefficients 80, 60, 40 as shown in the Figure 46. The

81

results are tabulated for the top six plans by providing the coefficients for the fitness

values as 10, 20, and 30 respectively.

Figure 46: Comparative assessment for the top six plans based on compactness value

As illustrated also by the plans in the Figure 46, while changing the coefficients

from 80 to 60 there is a re-evaluation for the last four plans (#3-#6). This indicates a

fundamental influence of the compactness coefficient in the validation of the plan

layouts. On the other hand, dropping the value from 60 to 40 does not provide any

obvious changes for the considered templates. Hence, it can be concluded that for the

compactness fitness value the measure coefficients which effect the validation are 80

and 60.

The second parameter used for comparison is the functionality considering the

previously described coefficients as shown in Figure 47. Unlike the compactness

impact, the trend for the functionality changes in all the categories selected for the

validation. As shown in the figure dropping the values from 80 to 60 provides a great

change in the plan layouts. Furthermore, comparing the value from 60 to 40 seems to

follow the same trend while validating according to functionality fitness value.

82

Figure 47: Comparative assessment for the top six plans based on functionality value

Therefore, it can be concluded that each of the coefficients used for the

functionality impact directly in the validation of the generated plan layouts.

The analysis are extended also for the parcel occupancy fitness value

considering the above mentioned parameters. As shown in Figure 48 the top four plans

while comparing 80 to 60 fitness value, are validated with the same values.

Figure 48: Comparative assessment for the top six plans of parcel occupancy value

83

The only difference which effects the validation is shown in the fifth and the

sixth plan. Nevertheless, unlike the other previous two fitness values, the parcel

occupancy seems to have major impact while comparing 60 to 40 coefficients. As

shown in the figure, except the top two plans which almost fully occupy the parcel,

the other four are validated in a different way compared to the other values. Therefore

it can be concluded that for parcel occupancy, the most influential parameter seems to

be between 60 and 40.

Another good comparison to suggest the final default values for each of the

fitness values included in this thesis, is to show the impact of each of the categories in

one graph. As mentioned before, there are considered three combinations for

compactness, functionality and parcel occupancy. These combinations are same for all

which considers coefficient as in the first group 80, 10, 10, in the second group 60, 20,

20 and in the third group 40, 20, 20. It is very important to emphasize that when the

category example 80/10/10 is used, it demonstrates an impact of compactness over the

other two fitness values. Therefore, for simplicity to demonstrate in the same graph all

the values, labels are used instead of categories. For example C80 represents the

category 80/10/10. Furthermore, C40 would represent the category 40/30/30. The

same procedure is followed for other fitness parameters. For instance, F60 means the

combination 20/60/20 is used. The accumulation of all combinations is presented in

the Figure 49.

Figure 49: The influence of each fitness value category in compactness,

functionality and parcel occupancy

84

As illustrated in the figure, all nine combinations are demonstrated for

compactness, functionality and parcel occupancy. Reading from the bottom of the

chart, the combination C80 shows a good performance of compactness in the

generated plans, however it gives a major impact in the functionality in plan number

#3 and #4. Furthermore, C60 shows good correlation of compactness for all the plans,

acceptable functionality but the results in the parcel occupancy are fluctuating for plan

number #3 and #4. The same trend is followed in the combination when C40 is used.

Nevertheless, comparing these three combinations it seems that the combinations

between C60 and C40 are more preferable.

Reading from the chart for functionality fitness parameter, when combination

F80 is used, it shows very poor validation of compactness value for plan #1, #2, #5

and #6. The functionality itself is highly evaluated but the same trend as compactness

is followed in the parcel occupancy. On the other hand F60 combination influences

directly in compactness plan number #3 and #4, gives good results in functionality and

acceptable results in parcel occupancy. Once again, when the combination with

coefficient 40 (F40) is used, all the fitness parameters seem to validate highly top six

plans. This proves that, coefficient 40 is a good indicator for functionality which does

not compromise the values of compactness and parcel occupancy.

The value 80 used for parcel occupancy (P80), gives low evaluation of plan #3

to #6 for compactness values. Simultaneously, it effects highly plan number #5 and #6

in functionality parameter. Exactly the same behavior, is seem when using the category

P60 for all three fitness parameters. However, setting the coefficient the parcel

occupancy to 40 gives good results for functionality, acceptable results for

compactness and parcel occupancy. Thus, it is once more confirmed that coefficient

40 provides more reliable validation for the automated plan layouts generated by the

algorithm.

4.2.5 Customization of adjacency matrix parameters

The adjacency matrix parameters are tabulated and integrated in the algorithm

considering the Table 17. The information is gathered from different studies,

85

publications and guidelines given in references of this study. Nevertheless, there are

different studies suggesting different values for the matrix adjacency matrix which in

some cases they do not match with each other. Concluded from all the materials

studied for this thesis, the entire process of setting the adjacency matric seems to be

subjective. The values integrated in the algorithm are based on the majority and recent

publications which seems to provide meaningful validations for the generated plan

layouts.

The analyses conducted for the adjacency matrix parameters is based on the

validation of functionality fitness value when these parameters are modified. In this

way, it can be concluded that the algorithm considers the matrix properly without

skipping any of its values. The example shown in Figure 50 corresponds to the plan

layout validated two times by modifying the adjacency matrix.

Figure 50: The adjacency matrix modification parameters and their influence in the

functionality value

The figure illustrates that, the functionality value changes from 88% to 100%

86

if these parameters are modified accordingly. Therefore, this subjectivity concept can

be taken into control if these parameters are modified based on the user demand. In

this study the adjacency matrix is integrated in the GUI prepared in the web

application.

4.2.6 Calibration of algorithm

The calibration of the algorithm, takes into account a separate additional

analysis to verify if any of the plans generated automatically is missed due to any

possible coding error. The calibration presented in this study is based on in preparation

of one plan manually and then assign the same number of spaces to the algorithm.

Therefore, the outcome of the algorithm it is expected to produce a large numbers of

plan generations which one of them corresponds with the manually drawn plan. To

achieve this step, a plan with a living room, master bedroom and a bathroom is

prepared in the framework of third year studio courses at Epoka University as shown

in Figure 51 - left and as anticipated the algorithm it generates the same configuration

as shown on the right of the Figure 51.

Figure 51: Analysis for calibration purposes. The original plan (on the left), the twin

generated plan (on the right)

87

This proves that as designed in this thesis, the algorithm does not miss any of

the plan generation in the automation procedure. Moreover it seems from the generated

plan compared with the original one that just a few information are done differently

from each other. For example, the inside door location is shifted by the script in other

sides for bathroom and living room. Nevertheless, the generation satisfies very good

result.

4.4 Analyses for computational checks (CPU)

The algorithm presented in this study is tested by multiple analyses which

confirm for its accuracy and result satisfaction. However, the time duration to produce

large number of plan layouts during first phase is relatively high. For instance, the

overall number of permutation combinations in a 3+1+ typology is about seventeen

trillion. After filtering procedure, the number of combinations reduces to sixty nine

thousand. For this reason, it is understandable that the computational cost matters a lot

in such studies. In this thesis, the duration of the algorithm is highly improved by

parallelizing the execution of the code in several CPUs. This is done using

multiprocessing library which considers the number of CPU cores of the computer

[106].

Figure 52: The improvement in execution time for scenarios with 1 CPU core (on

the left) and 6 CPU cores (on the right) from the same device

88

From the analyses conducted, it results that the parallelization of the CPUs

impacts highly the duration of the algorithm. For example, thirteen hour running code

in standard unparalleled code with six physical cores device would be improved more

than fourteen times (fifteen minutes) when parallelized fully. In addition, the same

code executed in another device with 32 physical cores, takes less than six minutes.

Hence, the acceleration of the running time is massively improved by this method. In

the Figure 52 the statistics gathered from multiple analysis parallelized and

unparalleled are shown for a 6 physical core CPU device. As seen from the figure, the

parallelization does not show a very good job when considering few spaces but it

improves tremendously the execution time when the number of spaces is increased.

89

CHAPTER 5

DISCUSSION AND CONCLUSION

5.1 Overview

In this study, several analysis are conducted for each of the phases and steps

structured as algorithm to prove that the code is implemented in a right way.

Furthermore, analyses are extended to validate the generated plan layouts according

to the architectural design. The final outcomes are summarized in the previous chapter

and concluded as follows:

 In the first phase, all the checks are in line with the structure designed

for the algorithm and the final output as raw plan layout is successfully

filtered from the constraints defined in the code.

 The fitness parameters included in this study, are calculated for each of

the automated plan, remapped and then used in the goodness value

formula during the second phase. The massive number of analysis

conducted proves that the second phase, including the calculation of

fitness parameters as well as the validation of each plan layout is done

adequately.

 Moreover, a graphical user interphase (GUI) for the adjustment of

fitness parameters is provided in this thesis and configured in the code

for further user implementations.

 The second phase provides the generated plan in simplified shapes for

an immediate user interaction which is supported additionally by the

third phase.

 In the third phase the transferring of generated plan data is done to

AutoCAD software considering detailed elements such as inner wall,

outer wall, furniture, window, inner doors, entrance, dimensions, text,

hatch, layers and drawing template.

 While considering the combination of nine plan categories in the same

90

chart, it is concluded that the most favorable combinations are when

coefficients 40, 30, 30 are used. Moreover, considering the importance

of the functionality in a detached house plan layout, in this thesis by

default as well as suggested values for the fitness parameters used are

considered 30 for compactness, 40 for functionality and 30 for parcel

occupancy. These values are also suggested for other studies, however

for the user satisfaction, the web application provided in the framework

of this thesis provides a dynamic interaction, allowing professional

designers to modify this values.

 The adjacency matrix is prepared based on recent publications and

studies and presented in the graphical user interface (GUI). From the

analysis performed, it is concluded that the matrix is integrated properly

in the code. As the entire process of parameter selection in the matrix is

subjective, the user is provided with the editable version of these

parameters and free access to change according to their preferences.

 Due to the large number of generated plan layouts verifying either the

code is set up properly or not, in this study it is presented a calibration

considering a previously existing or draft drawn plan layout. The results

shows significant matching between the existing and automated plan.

 The core part of this study is to provide an automation procedure for

detached house in short amount of time. Therefore, the duration of code

execution has a higher impact while utilizing this method. The

parallelization of CPU cores presented in this study plays a vital role in

shortening the overall execution time.

5.2 The study innovation

A deep investigation on previous studies is presented in the literature review

considering the automation of plan generations. Different researchers have provided

various techniques, constraints and methods in the generation of layouts using

different tools [107, 61, 108, 51, 49, 26, 73]. The innovation of this study is based on

91

a different technique, methods tools and structures which are explained as follows:

 The proposed methodology for the realization of the entire automation

process is based on the “Centrum” method. This method takes into

account the hall/corridor as the main unit and a stationary point for all

the other rooms.

 One of the main disadvantages of the automation procedure confirmed

in literature review is the architect’s ability to code and the duration of

the algorithm execution [65, 62, 66]. This study uses Python as a

suitable and practical programming language for beginners and

implements one of the most sophisticated techniques based on the CPU

parallelization to improve highly the execution time of massive

generated layouts.

 Another contribution for the country and architect’s society is the

implementation of Albanian local standards in the algorithm.

 Furthermore, the local standards are not to be seen as obstacles as the

product provided in this thesis allows the user to easily adopt any other

norms.

 In literature, there are proposed a lot of additional tools to be integrated

for the conversion of the data to regular AutoCAD drawing plans [71,

60, 65, 66, 68, 70, 69]. In this thesis a unique procedure is implemented

to achieve this step utilizing the AutoCAD scripting method. It provides

not only a direct integration in one programming language, but

immediate and fast drawings directly in AutoCAD software utilizing all

its features.

 In literature there are presented a lot of techniques which require the

user interaction from downloadable software [59, 13, 51, 107]. This

requires the user to download the software, adopt to the operation

system of the device and repeat the same process in case of updates or

upgrades. In this thesis for the first time, the output and user interaction

it is integrated in one central platform which operates in cloud and can

be accessed through a web application prepared. This ensures that any

update or upgrade can be reflected in the real time without interrupting

92

the surface. Each user may have access through the log in pages

considering the demo or full package provided by the developer.

 The main advantage of using this web application is that it is

compactable with any operating system, any device either it is desktop,

tablet or mobile running on windows, mac, android or iOS.

 Finally, the execution of the code can be performed by a central super

computer established by a developer, so the user gets the most

complicated results in a very short amount of time.

5.3 Limitations

As any study, the proposed methodology in the current thesis has its own

limitations. Considering all the phases proposed and developed in the previous

chapters, the main limitations are described as follows:

 The inputted shapes which the algorithm understands are based on the

regular rectangular shapes.

 The algorithm does not provide a plan generation for balconies, loggias

or other rooms that are not directly connected to the stationary point

(example: master bathroom inside the master bedroom).

5.4 Future work

The improvements to the method provided in this study can be done in different

ways and scales. Undoubtedly, the further developments and establishment of the

entire code in cloud as well as preparing the customer packages would be a great

business idea for the presented method. In addition, possible other improvements for

the future work are shown as follows:

 Providing a more extensive study taking into account the addition of the

93

floor number and the integration of stairs in the building.

 Providing a similar study for residential apartments maybe a very

interesting and good contribution for not only our country and architects

but also in literature.

 The rectangular shape spaces maybe changed by more complicated

geometrical designs to reach a different level of architectural layout.

 Furthermore, the hall can be extended to more flexible shape to be

adopted better in the generated plan layout.

 A 3D modelling phase can be generated by AutoCAD scripting for

drawing and rendering purposes.

 A constructive project must be prepared before the implementation in

site, therefore, fundamental checks for the structural elements may be a

good future work.

 The analyses can be extended by involving more fitness parameters as

the influence of light in the interior spaces, thermal impact and

acoustical coverage.

94

REFERENCES

[1] Chi-Han Peng, Yong-Liang Yang, Peter Wonka, "Computing Layouts with Deformable

Templates," in ACM Transactions on Graphics, New York, NY, United States, ACM

SIGGRAPH, 2014, pp. 1-11.

[2] Victor Calixto, Gabriela Celani, "A literature review for space planning optimization

using an evolutionary algorithm approach: 1992-2014," in XIX Congresso da Sociedade

Ibero-americana de Gráfica Digital 2015, 2015.

[3] R. Olcayto, "Eisenman: computers dumb down design," BdOnline, 16 May 2008.

[Online]. Available: https://www.bdonline.co.uk/eisenman-computers-dumb-down-

design/3113566.article. [Accessed December 2022].

[4] INSTAT, "Lejet e ndërtimit," Instituti i statistikave, Tiranë, 2022.

[5] Aliaj Sh., Koçiu S., Muco B., Sulstarova E., Seismicity, seismotectonics and seismic

hazard assessment in albania, Tiranë: Akademia e shkencave e , 2010.

[6] Freddi F., Novelli V. R., Gentile R., Veliu E., Andreev S., Andonov A., Greco F.,

Zhuleku, "Observations from the 26th November 2019 Albania earthquake: the

earthquake," Bulletin of Earthquake, vol. 19, pp. 2013-2044, 2021.

[7] E. Fasoulaki, "Integrated Design A Generative Multi-Performative Design Approach,"

Massachusetts Institute of Technology, 2008.

[8] S. Wolfram, "Cellular automata as models of complexity," vol. 311, no. 5985, pp. 419-

424, 4 October 1984.

[9] Chad Adams, Hirav Parekh, Sushil J. Louis, "Procedural Level Design using an

Interactive Cellular Automata," in GECCO ’17 Companion, Berlin, Germany, 2017.

[10] O.K. Tonguz, Wantanee Viriyasitavat, Fan Bai, "Modeling Urban Traffic: A Cellular

Automata Approach," Communications Magazine, IEEE, vol. 47(5), pp. 142 - 150,

2009.

[11] Jokar Arsanjani, Jamal and Helbich, Marco and Ali Mousivand, "A Morphological

Approach to Predicting Urban Expansion," Transactions in GIS, vol. 18, 2013.

[12] Eduardo Valente, Camelia Avram, José Machado, Adina Astilean, "An Innovative

Approach for Modelling Urban Road Traffic Using Timed Automata and Formal

Methods," Journal of Advanced Transportation, vol. 2018, 2018.

[13] Anthony G. O., Yeh, Xia Li, Chang Xia , "Cellular Automata Modeling for Urban and

Regional Planning," in Urban Informatics, Singapore, Springer Singapore, 2021, p.

865–883.

95

[14] Jianxin Yang, Wenwu Tang, Jian Gong, Rui Shi, Minrui Zheng, Yunzhe Dai,

"Simulating urban expansion using cellular automata model with spatiotemporally

explicit representation of urban demand," Landscape and Urban Planning, vol. 231, p.

104640, 2023.

[15] Amir Mahmood Ghafari, Muhammad Zaly shah, Omidreza Saadatian, Elias Salleh,

"Cellular automata in urban planning and development," Journal Design + Built, vol. 5,

2012.

[16] Yan Liu, Michael Batty, Siqin Wang, Jonathan Corcoran, "Modelling urban change with

cellular automata: Contemporary issues and future research directions," Progress in

Human Geography, vol. 45, pp. 3-24, 2021.

[17] M. Hansmeyer, "Computational Architecture: L-Systems," [Online]. [Accessed

December 2022].

[18] C. Jacob, "Evolving Evolution Programs: Genetic Programming and L-Systems,"

Genetic Programming, , pp. 107-115, 1996.

[19] M. Hansmeyer, "Computatuonal Architecture," [Online]. Available:

https://www.michael-hansmeyer.com/l-systems. [Accessed 2023].

[20] Ruoxi Sun, Jinyuan Jia, Marc Jaeger, "Intelligent Tree Modeling Based on L-system,"

2009.

[21] Mariatul Kiptiah binti Ariffin, Shiqah Hadi, Somnuk Phon-Amnuaisuk, "Evolving 3D

Models Using Interactive Genetic Algorithms and L-Systems," in International

Workshop on Multi-disciplinary Trends in Artificial Intelligence, 2017.

[22] H. Gautier, R. Měch, P. Prusinkiewicz, C. Varlet-Grancher, "Architectural Modelling of

Aerial Photomorphogenesis in White Clover (Trifolium repens L.) using L-systems,"

Annals of Botany, vol. 85, pp. 359-370, 2000.

[23] Peter Wonka, Michael Wimmer, rançois Sillion, William Ribarsky, "Instant

Architecture," in Association for Computing Machinery, New York, NY, USA, 2013.

[24] Fasoulaki, E, "Integrated Design A Generative Multi-Performative Design Approach.,"

Massachusetts Institute of Technology., 2008.

[25] Mine Özkar, Sotirios Kotsopoulos, "Introduction to shape grammars," CM SIGGRAPH

2008 Classes, p. 36, 2008.

[26] Ana Belčič, Sara Eloy , "Architecture for Community-Based Ageing—A Shape

Grammar for Transforming Typical Single-Family Houses into Older People’s

Cohousing in Slovenia," Buildings, vol. 13, 2023.

[27] J. Reis, "Shapes: Seeing and Doing with Shape Grammars," in 2022 17th Iberian

Conference on Information Systems and Technologies (CISTI), Madrid, Spain, 2022, pp.

1-5.

96

[28] Jonathan Dessi-Olive, Timothy Hsu , "A Simulation-Validated Shape Grammar for

Architectural Acoustics," Nexus Network Journal, vol. 24, pp. 55-73, 2022.

[29] "Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building

Skin," ASCAAD 2021, pp. 479-492, 2021.

[30] Jan Halatsch, Antje Kunze, Gerhard Schmitt, "Using Shape Grammars for Master

Planning," in Design Computing and Cognition, Netherlands, Springer Netherlands,

2008, pp. 655--673.

[31] Hau Hing Chau, Xiaojuan Chen, Alison McKay, Alan de Pennington , "Evaluation of a

3D Shape Grammar Implementation," in Design Computing and Cognition '04, Springer

Netherlands, 2004, pp. 357-376.

[32] M. A. Dias, "Informal Settlements: A Shape Grammar Approach," Journal of Civil

Engineering and Architecture, vol. 8, pp. 1389-1395, 2014.

[33] G Stiny, W J Mitchell, "The grammar of paradise: on the generation of Mughul," School

of Architecture and Urban Planning, University of California, Los Angeles, California,

2008.

[34] H. H. Chau, "Preserving brand identity in engineering design using a grammatical

approach," University of Leeds, 2002.

[35] Andrew N. Sloss, Steven Gustafson , "2019 Evolutionary Algorithms Review," in

Genetic Programming Theory and Practice XVII, Springer, Cham, 2020, p. 307–344.

[36] Maciej Nisztuk, Paweł B. Myszkowski, "Hybrid Evolutionary Algorithm applied to

Automated Floor Plan Generation," International Journal of Architectural Computing,

vol. 17, pp. 260-283, 2019.

[37] Vincent J.L. Gan, H.K. Wong, K.T. Tse, Jack C.P. Cheng, Irene M.C. Lo, C.M. Chan,

"Simulation-based evolutionary optimization for energy-efficient layout plan design of

high-rise residential buildings," Journal of Cleaner Production, vol. 321, pp. 1375-

1388, 2019.

[38] Morteza Rahbar, Mohammadjavad Mahdavinejad, Amir H.D. Markazi, Mohammadreza

Bemanian, "Architectural layout design through deep learning and agent-based

modeling: A hybrid approach," Journal of Building Engineering, vol. 47, p. 103822,

2022.

[39] L. Caldas, "Generation of energy-efficient architecture solutions applying

GENE_ARCH: An evolution-based generative design system," Advanced Engineering

Informatics, vol. 22, pp. 59-70, 2008.

[40] Katarzyna Grzesiak-Kopec, Barbara Strug, Grazyna Slusarczyk, "Evolutionary Methods

in House Floor Plan Design," MPDI, no. 8229, p. 14, 2021.

[41] Payman, "Swarm Intelligence," Jet Propulsion Laboratory, Pasadena, 2004.

97

[42] Eric Bonabeu, Marco Dorigo, Guy Theraulaz, "Swarm Intelligence - From Natural to

Artificial Systems," in Santa Fe Institute Studies in the Sciences of Complexity, Oxford

University Press, 1999.

[43] Yuichiro Yoshida, Hooman Farzaneh, "Optimal Design of a Stand-Alone Residential

Hybrid Microgrid System for Enhancing Renewable Energy Deployment in Japan,"

Energies 2020, vol. 13, p. 18, 2020.

[44] Marco Dorigo, Vittorio Maniezzo, Alberto Colorni, "Ant system: optimization by a

colony of cooperating agents," IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), vol. 26, pp. 29-41, 1996.

[45] Rob Roggema, Popov Nikolay, "Swarm Planning: Development of Generative Spatial

Planning Tool for Resilient Cities," Towards Smarter Cities, vol. 1, pp. 519-527, 2015.

[46] A. Agirbas, "Façade form-finding with swarm intelligence," Automation in

Construction, vol. 99, pp. 140-151, 2019.

[47] P. Polinceusz, "Structure of architecture--tensegrities in the construction of architectural

space.," Architecture, Civil Engineering, Environment, vol. 12, no. 1, p. 45, 2019.

[48] Tran Q, Do V, Dinh T, "Traffic signal timing optimization for isolated urban

intersections considering environmental problems and non-motorized vehicles by using

constrained optimization solutions.," Innovative Infrastructure Solutions, vol. 7(5),

2022.

[49] Abbas Babazadeh, Hossain Poorzahedy, Saeid Nikoosokhan, "Application of particle

swarm optimization to transportation network design problem," Journal of King Saud

University - Science, vol. 23, pp. 293-300, 2011.

[50] Helin POLAT, Zeynep Yeşim İLERİSOY, "A Geometric Method on Facade Form

Design with Voronoi Diagram," Research Article, vol. 3, no. 2, pp. 179 - 194, 2020.

[51] A. Abbas, "Voronoi Diagram Applications Towards New Sustainable Architectural

Language," Journal of Engineering Research, vol. 6, no. 4, 2022.

[52] Yijun Lu,Wei Wu,Xuechuan Geng,Yanchen Liu,Hao Zheng, Miaomiao Hou , " Multi-

Objective Optimization of Building Environmental Performance: An Integrated

Parametric Design Method Based on Machine Learning Approaches.," Energies, vol.

15, 2022.

[53] Giulia Angelucci, Fabrizio Mollaioli, "Voronoi-Like Grid Systems for Tall Buildings,"

Frontiers in Built Environment, vol. 4, pp. 1-20, 2018.

[54] Kathleen M. Carley, Michael J. Prietula, "Social Science Computer Review," in

Computational Organization Theory, Psychology Press, 1994, pp. 611-624.

[55] Michael W. Macy, Robert Willer, "From Factors to Actors: Computational Sociology

and Agent-Based Modeling," Annual Review of Sociology, vol. 28, pp. 143-166, 2002.

98

[56] H. Yi, "Visualized Co-Simulation of Adaptive Human Behavior and Dynamic Building

Performance: An Agent-Based Model (ABM) and Artificial Intelligence (AI) Approach

for Smart Architectural Design," in Sustainability, Korea, 2020.

[57] John c. Kunz, Raymond e. Levitt, Yan Jin, "The Virtual Design Team: A Computational

Simulation Model of Project Organizations," Communications of the Association for

Computing Machinery, vol. 41, pp. 84-92, 1998.

[58] Gregory J Smith, Mary Lou Maher, John S Gero, "Designing 3D Virtual Worlds as a

Society of Agents," in Key Centre of Design Computing and Cognition, Sydney, 2003.

[59] Christoph Sydora, Eleni Stroulia, "Rule-based compliance and generative design for

building interiors using BIM," Automation in Construction, vol. 120, p. 103368, 2020.

[60] Xiao-Yu Wanga, Yin Yang, Kang Zhang, "Customization and generation of floor plans

based on graph transformations," Automation in Construction, vol. 94, p. 405–416,

2018.

[61] Graziella Laignel, Nicolas Pozin, Xavier Geffrier, Loukas Delevaux, Florian Brun,

Bastien Dolla, "Floor plan generation through a mixed constraint programming-

genetic," ELSEVIER ScienceDirect, 2021.

[62] Machi Zawidzki, Kazuyoshi Tateyama, Ikuko Nishikawa, "The constraints satisfaction

problem approach in the design of an architectural functional layout," in Engineering

Optimization, England, Taylor & Francis, 2011, p. 943–966.

[63] Jeremy Michalek, Ruchi Choudhary, Panos Papalambros, "Architectural layout design

optimization," in Engineering Optimization, England, Taylor & Francis, 2002, pp. 461-

484.

[64] Xuejun Cao, Zhijun He, Yunhe Pan, "Automated design of house-floor layout with

distributed planning," Computer-Aided Design, vol. 22, pp. 213-222, 1990.

[65] Paul Merrell, Eric Schkufza, Vladlen Koltun, "Computer-Generated Residential

Building Layouts," ACM Transactions on Graphics, p. 13, December 2010.

[66] Wamiq Para, Paul Guerrero, Tom Kelly, Leonidas Guibas, Peter Wonka, "Generative

Layout Modeling using Constraint Graphs," in IEEE Xplore, 2020.

[67] SIU-PAN LI, JOHN H. FRAZER, MING-XI TANG, "A CONSTRAINT BASED

GENERATIVE SYSTEM FOR FLOOR LAYOUTS," CAADRIA proceedings, pp. 417-

426, 2000.

[68] Nitant Upasani, Krishnendra Shekhawat, Garv Sachdeva, "Automated generation of

dimensioned rectangular floorplans," Automation in Construction, vol. 113, p. 103149,

2020.

99

[69] Wenming Wu, Xiao-Ming Fu, Rui Tang, Yuhan Wang, Yu-Hao Qi, Ligang Liu, "Data-

driven interior plan generation for residential buildings," ACM Transactions on

Graphics, vol. 38, pp. 234:1-234:12, 2019.

[70] Wenming Wu, Lubin Fan, Ligang Liu, Peter Wonka, "MIQP-based Layout Design for

Building Interiors," Computer Graphics Forum, vol. 37, pp. 511-521, 2018.

[71] Graziella Laignel, Nicolas Pozin, Xavier Geffrier, Loukas Delevaux, Florian Brun,

Bastien Dolla, "Floor plan generation through a mixed constraint programming-genetic

optimization approach," Automation in Construction, vol. 123, p. 103491, 2021.

[72] P. Svanerudh, "Architectural constraints for design automation of multi-storey titn'iber

houses," Automation and Robotics in Construction, pp. 181-186, 1999.

[73] P. Charman, "A constraint-based approach for the generation of floor plans," in

Proceedings Sixth International Conference on Tools with Artificial Intelligence,

France, 1994, pp. 555-561.

[74] Jingyu Zhang, Nianxiong Liu, Shanshan Wang, "Generative design and performance

optimization of residential buildings based on parametric algorithm," Energy &

Buildings, vol. 224, p. 111033, 2021.

[75] Romualdas Bausys, Ina Pankrašovaite, "Optimization of architectural layout by the

improved genetic algorithm," Journal of civil engineering and management, vol. 11, pp.

13-21, 2005.

[76] B. Zyrtare, Fletorja Zyrtare e Republikës së Shqipërise, Tiranë: Botim i Qendrës së

Botimeve Zyrtare, 2015.

[77] E. Hasu, "Governing domestic space: Townhouserelated living, gardens and the

homemaking process in Finland.," in Proceedings of the 6th Annual Architectural

Research Symposium , Finland, 2014.

[78] Nigel Oseland, Ian Donald, "The Evaluation of Space in Homes: A Facet Case Study,"

Journal of Environmental Psychology, vol. 13, pp. 251 - 261, 1993.

[79] Helena Monteiro, Fausto Freire, Nelson Soares, "Life cycle assessment of a south

European house addressing building design options for orientation, window sizing and

building shape," Journal of Building Engineering, vol. 39, p. 102276, 2021.

[80] Nicolas Pardo, Christian Thiel, "Evaluation of several measures to improve the energy

efficiency and CO2 emission in the European single-family houses," Energy and

Buildings, vol. 49, pp. 619-630, 2012.

[81] Helena Monteiro, Nelson Soares, "Integrated life cycle assessment of a southern

European house addressing different design, construction solutions, operational

patterns, and heating systems," Energy Reports, vol. 8, pp. 526-532, 2022.

100

[82] Fletorja Zyrtare e Republikës së Shqipërise, Tiranë: Botim i Qendrës së Botimeve

Zyrtare, 2015.

[83] Brijesh Mainali, Krushna Mahapatra, Georgios Pardalis, "Strategies for deep renovation

market of detached houses," Renewable and Sustainable Energy Reviews, vol. 138, p.

110659, 2021.

[84] G. v. Rossum, "Python tutorial, Technical Report CS-R9526," Centrum voor Wiskunde

en Informatica (CWI), Amsterdam, 1995.

[85] Y. v. Havre, "Python for Architects," 2012. [Online].

[86] time, "time — Time access and conversions¶," Python Software Foundation, 2021.

[Online]. Available: https://docs.python.org/3/library/time.html. [Accessed 2023].

[87] S. Gillies, "The Shapely User Manual," Python Software Foundation , 2023. [Online].

Available: https://shapely.readthedocs.io/en/stable/manual.html. [Accessed 2023].

[88] importlib, "importlib — The implementation of import," Python Software Foundation,

2022. [Online]. Available: https://docs.python.org/3/library/importlib.html.

[89] tkinter, "tkinter — Python interface to Tcl/Tk," Python Software Foundation, 2021.

[Online]. Available: https://docs.python.org/3/library/tkinter.html. [Accessed 2022].

[90] Python, "datetime — Basic date and time types," Python Software Foundation, 2022.

[Online]. Available: https://docs.python.org/3/library/datetime.html. [Accessed 2022].

[91] itertools, "itertools — Functions creating iterators for efficient looping¶," Python

Software Foundation, 2021. [Online]. Available:

https://docs.python.org/3/library/itertools.html. [Accessed 2023].

[92] Igor Mujan, Aleksandar S. Anđelković, Vladimir Munćan, Miroslav Kljajić, Dragan

Ružić, "Influence of indoor environmental quality on human health and productivity -

A review," Journal of Cleaner Production, vol. 217, pp. 646-657, 2019.

[93] N. Gohardani, "Architecture and design research: Reflections in relation to the design

process," Archnet-IJAR, vol. 5, 2011.

[94] Wenwen Li , Michael F. Goodchild & Richard Church, " An efficient measure of

compactness for two-dimensional shapes and its application in regionalization

problems," International Journal of Geographical Information Science, p. 25, 2013.

[95] Frolov, "Measuring shape of geographical phenomena - history of issues.," Soviet

Geography Review and Translation, 1975.

[96] Miller, "A quantitative geomorphic study of the drainage basin characteristics in the

Clinch Mountain area, Virginia and Tennessee," Columbia University Department, New

York, 1953.

101

[97] L. Richardson, "A note: measuring compactness as a requirement of legislative

apportionment," Mid-west Journal of Political Science, vol. 5, pp. 70-74, 1961.

[98] Santiago, R.S., Bribiesca, E., "State of the art of compactness and circularity measures,"

International Mathematical Forum, vol. 4, 2009.

[99] Zhao, Z.Q., Stough, R.R., "Measuring similarity among various shapes based on

geometric matching.," Geographical Analysis, vol. 37, 2005.

[100] R. Osserman, "Isoperimetric inequality," Bulletin of the American Mathematical

Society, vol. 84, p. 1182–1238., 1978.

[101] Eugénio Rodrigues, David Sousa-Rodrigues, Mafalda Teixeira de Sampayo , Adélio

Rodrigues Gaspar, Álvaro Gomes, Carlos Henggeler Antunes , "Clustering of

architectural floor plans: A comparison of shape representations," Automation in

Construction, vol. 80, pp. 48-65, 2017.

[102] Feng Shi, Ranjith K. Soman, Ji Han, Jennifer K. Whyte, "Addressing adjacency

constraints in rectangular floor plans using Monte-Carlo Tree Search," Automation in

Construction, vol. 115, p. 103187, 2020.

[103] Javid Ahmadi,Seyyed Mehdi Maddahi, Reza Mirzaei, "Generative Design of Housing

Spatial Layout Based on Rectangular Spaces," Advances in Civil Engineering, vol. 2023,

2023.

[104] Ying-CHun Hsu, RObert J. Krawczyk, "Space adjacency behavior in space planning,"

in CAADRIA, 2004.

[105] K. Shekhawat, "Automated space allocation using mathematical techniques," Ain Shams

Engineering Journal, vol. 6, no. 3, pp. 795-802, 2015.

[106] P. S. Foundation, "multiprocessing — Process-based parallelism," Python, 2022.

[Online]. Available: https://docs.python.org/3/library/multiprocessing.html.

[107] Bahraminejad, F. and Babaki, K., "Application Of Voronoi Diagram As An

Architectural And Urban Planning Design Tool'," Indian Journal of Fundamental and

Applied Life Sciences, pp. 1776-1783, 2014.

[108] P. Rubinowicz, "Chaos and Geometric Order in Architecture and Design," Journal for

Geometry and Graphics, vol. 4, no. 2000, pp. 197-207, 2000.

102

APPENDIX

More information about the web application of the centrum automation procedure

can be found below:

www.anisacenaj.com/centrum-gd

http://www.anisacenaj.com/centrum-gd

