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ABSTRACT 

The article deals with nonlinear analysis of the thin plates. Nonlinear numerical shell 
model, whose flexural state is based on the Germain-Kirchhoff theory, takes into account 
geometrical nonlinearity. Material model of the flat shell finite element is isotropic elastic 
material. The material is defined by the Poisson’s coefficient υ and Young modulus of 
elasticity E. 

The geometrical nonlinear numerical model of the space surface structures is presented 
in short. The numerical model is implemented in the software made in the program language 
Fortran. As the result of the calculation program gives the space equilibrium path of the 
desired node, shows the state of the stress field of the surface structure and gives the 
deformation of the whole structure in each incremental step.  

The model application on the surface elements is illustrated by the thin square plate 
structure. The plate is discretised with the surface finite element. The minimal acceptable 
finite element discretisation is taken into account. More density discretisation gives more 
accurate results.  

The results, made by commercial software or by another authors or by the theory, are 
compared with this one. 

INTRODUCTION 

The space surface structures are analyzed with the numerical model based on the finite 
element technique. The structure is discretised on the small pieces, finite elements. In that 
way the complex structure is maximum simplified, because the solution on the first element is 
repeated on the next one. This fact is very useful for the computer programming and software 
developing.  

The aim of the simulation of the real structure by the numerical model is to find out the 
kind of behavior of the structure. In other words, the model has to show the deformations and 
the inner forces in each element of the structure and the stability of the whole structure too.  

The program modulus LJUSKA, developed at the Faculty of Civil Engineering 
University of Mostar, analyses the stability of the space surface structures.  

Only the necessary part of the theory, which led to the formulation of the new shell 
finite element, will be shown. That part is connected with the flexion state of the shell finite 
element, based on the statement explained at [2]. 



 
2 

GEOMETRICAL NONLINEAR MODEL 

In reality the equilibrium state of the loaded structure happens in the state of the 
deformed structure. The consequences are the differences of the equilibrium equations 
between two states, the undeformed and the deformed. The equations become nonlinear, and 
harder for solving.  

The rigid structures are characterized with small deflection, while the more deformable 
structures might be characterized with large deflections. The assumption of the theory of 
stability is equilibrium in the deformed state. Depending on the way of forces showing there 
are two formulations 

-  Total Lagrange formulation, and 
-  Update Lagrange formulation. 
This numerical model, based on the Total Lagrange formulation, is shown in [1]. 

MODEL DEVELOPED ACCORDING TO THE THEORY OF THIN PLATES 

The plates are the surface structures which are, depending of the theory of analyses, 
divided in to two categories, thin and thick plates. Here, we are dealing with the thin plates. 
The theory of small deformation is used if the maximum deflection of the plate is smaller than 
the thickness of the plate. If the maximum defection is close to the thickness of the plate the 
theory of large deflections has to be used.  

The thin plate theory is used according to the Germain-Kirchhoff assumptions. The 
consequences of the assumptions give the vector of relative deformation of the plate in the 
form  
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Adequate stress vector is 
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where E represents the Young modulus, and ν represents the Poisson coefficient. The 

equilibrium at the differential element of the plate is shown at Figure 1.  
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Figure 1 Differential plate element - load and forces  

 
The equilibrium conditions of the thin plate differential element give three partial 

differential first order equations. 
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If T forces are eliminated from the equitation (3), the equilibrium conditions could be 

represented with the differential second order equation.  
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If the flexural constant of the plate is defined with DS
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then the value of each moment from the equation (4) using equation (2) will be  
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If the equations (4), (5) and (6) are connected together and reordered they will provide 

the new partial forth order differential equation. It describes the deformation form of the plate. 
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STATE OF FLEXION ACCORDING TO THE DISPLACEMENT METHOD  

If the deflections w of the plate are known in each point of the plate, the displacement 
field p is defined and could be represented as  

 

{ }( , )p w= ξ η = ⋅H u  (8) 

 
where H is matrix of the shape functions and u is the vector of the displacements. The 

plate finite element has independent fields of the translational and rotational displacements. 
For the thin plate element the vector of the unknown displacement ui

 

 for the each node of the 
finite element looks like  
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and the corresponding vector of the shape functions Hi
 

 is 

[ ]1 2 3i i i ih h h=H  (10) 

 
where hi1 represents the displacement shape function, hi2 the shape function of the 

rotation around the axes ξ and hi3 the shape function of the rotation around the axes η. The 
shape functions are taken from the [2]. 
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STATE OF FLEXION – VIRTUAL WORK PRINCIPE  

Let the finite element be exposed to the influence of the static forces f. Then, using the 
virtual work principle, could be written  
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If the equation for the node forces s looks like (12), than the node forces vector, in the 

node i, looks like equation (13). 
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Than the vector of the relative deformation ε in some point of the finite element could 

be written as  
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The above mentioned deformation matrix identify with B 
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is consisting from n sub matrix Bi
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Stress and strain are connected by the constitutive law, which for the elastic material 

represents the generalization of the Hooke’s law. If the vector of the inner forces looks like  
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than the elastic matrix D for the flexural state of thin plates is described by equation 

(18).  
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Assumption of positive orientations of the inner forces, deflections and deformations is 

shown at Figure 2.  
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Figure 2 Positive orientations of the forces, deflections and deformations on the plate FE  

 
If we put in the equitation of virtual work (11) the corresponding equations for 

displacement, deformation and material, it becomes  
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Using the matrix operations the above equation in short becomes 
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If the T is transformation matrix, than the transformation of the forces and the matrix of 

the elements from the local to the global coordinate system are described as  
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EXAMPLE 

The model is first checked on the patch testes. This example verifies the developed 
numerical model with the results of the author [2] and the analytic solution [3].  

The example deals with the reinforced concrete square slab dimension 10.0m x10.0m, 
with the thickness of t=0.1m, loaded with the normal concentric force F=100.0kN in the 
middle of the plate and the Young modulus E=1.2 MPa. The table 1 shows the displacements, 
while Figures 3 – 5 show the distribution of the bending moments together with their values. 

Table 1 Displacement w of the middle of the plate 
 

Case  Free standing plate Fixed plate 
 w M(υ=0.0) M(υ= 0.3) w M(υ=0.0) M (υ= 0.3) 
Author [2]  12.2 23.06 30.17 6.15 19.32 25.11 
Analytic 11.6 - - 5.59 - - 
LJUSKA 
(developed software) 

12.202(υ=0.0) 
11.257(υ=0.3) 

16.02  
21.038 

6.06(υ=0.0) 
5.62(υ=0.3) 

11.997  
15.803 

TOWER 
(comercial software)  

10.971(υ=0.0) 
10.395(υ=0.3) 

19.05  
21.600 

4.89(υ=0.0) 
4.81(υ=0.3) 

14.900  
16.060 

  
 

 
Figure 3 Distribution of the moments Mxx

 
 in the fixed plate 

 
Figure 4 Distribution of the moments Mxy

 
 in the fixed plate 
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Figure 5 Stress σxx

 
 distributions in the fixed plate 

CONCLUSION 

The developed nonlinear numerical model is applied on the static loaded plate examples 
shown above. The aim of the example is to show, for relatively rare FE mesh, the good 
agreement of the deflections between this model, the analytical solution, the other author and 
the commercial software. Last three figures, which shows the bending moments and stresses, 
represent the graphical possibility of the developed software.  

The maximum deviation of the displacement w from the analytical solution (table 1) is 
under 5%. The deviations of the moment values from the one given by the author [2] are 
larger, but within the tolerance limit if they are compared with the commercial software 
Tower. This model doesn’t use the total fixing functions, like author [2]. The deviations in 
generalized forces can be explained with the fact that this model is developed using the 
displacement method instead of the force method.  
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