
35

ISCIM 2013, pp. 35-42 © 2013 Authors

Measuring the sentence level

similarity

Ercan Canhasi
Faculty of Computer Science

University of Prizren
Prizren, Kosovo

ercan.canhasi@uni-prizren.com

Abstract - This article describes a method used to calculate
the similarity between short English texts, specifically of sentence
length. The described algorithm calculates semantic and word
order similarities of two sentences. In order to do so, it uses a
structured lexical knowledge base and statistical information
from a corpus. The described method works well in determining
sentence similarity for most sentence pairs, consequently the
implemented method can be used in computer automated
sentence similarity measurements and other text based mining
problems. We encapsulated the implemented algorithm in a .NET
library, to simplify the task of calculating sentence similarity for
end users.

Keywords - Sentence similarity, short texts similarity, short
texts comparison, semantic nets, corpus

I. INTRODUCTION

Sentence similarity measures are becoming increasingly
more important in text-related research and application areas
such as text mining, information extraction, automatic
question-answering, text summarizing, text classification,
machine translation and natural language processing (NLP).
The goal is to implement an effective method to compute the
similarity between very short texts, usually about one sentence
length. These computed sentence similarities could be useful in
Internet-related applications as well. For an example, in
improving Web page retrieval effectiveness, where titles are
used to represent documents instead of the actual text of the
web page or for achieving more accurate Web page search
results by comparing the search query with Web page titles.
Another example could be retrieving or searching images from
the web in which the image title or the short text surrounding
the image, could be use to categorize and find the best
matching results with higher precision than using the whole
document in which the image is included. In document
categorization instead of comparing the whole body of the
document (which could be very large) the computed similarity
of the document title and/or short description could be used to
semantically categorize documents. These mentioned examples
of usage show that the computing of short text similarity is
becoming more and more important in text-related research and
applications.

The traditional methods for detecting similarity between
documents are based on analyzing and counting shared words.

These methods are useful when dealing with large documents,
because similar large documents usually contain a high degree
of similar words. In short texts, there are not enough words for
these methods to be useful. Two sentences could have similar
meaning but are composed out of entirely different words. This
is mostly due to the complexity and flexibility of natural
language. Therefore a different method is needed to compare
short texts.

This paper aims to develop and implement a dynamic
method that can be used in applications that require an efficient
and fast computation of short texts similarity. It is expected to
be dynamic in only focusing on the sentences of concern, does
not require user’s manual input and is easily adaptable across
potential application domains. It will be presented as a
Microsoft .NET library, with an easy to understand and rich
enough access interface. The source is expected to be well
document and available publicly.

 The remainder of this paper is laid out as follows. The next
section reviews some related work. In Section 3 we describe
the used external tools and knowledge databases, the usage of
the information retrieved from these databases and the overall
method for computing the similarity between short texts.
Section 4 provides the method implementation description and
the overall review and documentation of the developed .NET
library with usage examples. Section 5 provides the testing
results and computed similarity for a set of sentences obtained
from various sources. Finally, Section 6 provides the short
summarization, draws some conclusions, and proposes further
related work.

II. RELATED WORK

There is extensive literature on measuring the similarity
between long texts [2], [3], [4], [5], and increasingly more
articles about measuring short texts similarity [6], [7], [8]. This
section briefly describes some other techniques that ate related
to our work. We consider three major categories of related
methods: surface-matching methods, corpus-based methods
and query-log methods.

A. Word overlaps or Surface-matching methods

Surface matching methods or also known as the “bag of
words” methods, are mostly used in Information Retrieval
systems. Given two text segments (n, m), the idea of surface-

36

matching methods is based on the number of words that occur
in both text segments. This technique relies on the assumption
that more similar texts share more of the same words, which is
efficient only if both texts are of sufficient lengths. Let’s say N
and M are the sets of words in texts n and m. Common
similarity measures presented in [9] are listed as follows:

Matching |	ܰ	 ∩ 	|	ܯ
Overlap |	ܰ	 ∩ ,|ܰ	|)݊݅݉	/	|ܯ	 (|ܯ|
Dice 2 |	ܰ	 ∩ |	ܰ	|)/	|	ܯ 	∩ 	 (|	ܯ	|
Jaccard |	ܰ	 ∩ 	ܰ	|	/	|	ܯ ∪ |	ܯ
Cosine |	ܰ	 ∩ 	ܵ	|/ඥ	|	ܰ	| 	× 	|	ܯ	|
Instead of using the described set of operations, we could

also describe texts as vectors in n-dimensional space, where n
is the number of all meaningful words in a natural language,
represented as a precompiled word list. It is therefore
straightforward to extend these measures as operations with
vectors, where each element may represent the frequency of the
word. As mentioned before, these techniques are effective and
usable only if we compare very long texts or texts with
sufficient number of words. With short texts these techniques
would have three obvious drawbacks:

1. Two sentences could have similar meaning but are
composed out of entirely different words.

2. Surface-matching methods usually exclude function
words like the, of, an, etc., because they are common to all
documents and are therefore not very helpful. For computing
sentence similarity these function words cannot be ignored,
because they carry structural information, which is useful in
interpreting sentence meaning.

3. The sentence representation as vectors is not very
efficient. The vector dimension n is huge, compared to the
number of words in a sentence. Therefore the resulting vector
would have many empty or null components.

There are also several possible extensions of these surface-
matching methods, for an example two words can be matched
if they are synonyms according to some thesauruses like
WordNet. Another possible extension of surface-matching
techniques are pattern matching methods, which are commonly
used in conversational agents and text mining. Pattern
matching methods includes incorporating local structural
information about words in the predicated sentences. A
meaning is represented as a limited set of patterns, where each
pattern is represented using regular expressions (usually
consisting of parts of words and various wildcards). The
similarity is then calculated using various pattern matching
algorithms. There are some obvious and severe drawbacks of
this technique. One of them is that this technique requires a
complete pattern set for each meaning to avoid mismatches. At
present, it is not possible to prove that a pattern set is complete.
This leads to the conclusion that there is no automatic method
for compiling such a pattern set and requires manual
compilation, which is a major drawback.

Although different statistics and extensions for surface-
matching methods have their own strengths and weaknesses,

their quality of measuring sentence similarity is usually very
poor and unreliable.

B. Corpus-based methods

One method to overcome the weakness of surface-matching
methods is to leverage the information derived from a large
corpus, such as Brown corpus or often even the Web. Corpus-
based methods use this statistical information of words from a
huge corpus, to calculate the sentence similarity. There are two
popular corpus-based methods: the latent semantic analysis
(LSA) [12], [13], [14] and the Hyperspace Analogues to
Language (HAL) model [10], [11].

LSA was firstly proposed by Landauer (1998). In LSA,
term co-occurrences in a corpus are captured by means of a
dimensionality reduction operated by a singular value
decomposition (SVD) on the term-by-document matrix T
representing the corpus. The SVD decomposes the term-by-
document matrix into three matrices ܶ = ܷ∑ ்ܸ where ∑ ்ܸ is the k-dimension diagonal matrix containing the k
singular values of T, and U and V are column-orthogonal
matrices. To reduce the dimensionality, the diagonal singular
matrix is then truncated by deleting small singular values. To
re-compose the original term-by-document matrix, all three
matrixes (U, V and T) are multiplied together. LSA can be
used as a technique to overcome some of the drawbacks of
surface-matching methods, which use standard vector space
model. It reduces the high dimensionality and sparseness. The
LSA similarity is computed in a reduced dimensional space, in
which second-order relations among terms and texts are
exploited. In this reduced dimensional space we have several
options, we could just measure the similarity with the standard
cosine similarity or some other similar similarity measure, or
we could form a vector for each of the two comparing
sentences and then measure similarity by computing the
similarity of these two vectors. LSA does have a few
drawbacks, one of them is that the dimension of term-by-
document matrix T is fixed and limited to a few hundred,
because of the computational limit of SVD. This causes that
the vector is also fixed and is this likely to be a very sparse
representation of a short text. LSA also ignores any syntactic
information from the two comparing sentences. By taking these
drawbacks into consideration, we conclude, that LSA is more
appropriate for large texts than short texts.

The second most popular corpus-based method is the
Hyperspace Analogues to Language (HAL) model, also known
as semantic memory. It was firstly introduced and developed
by Kevin Lund and Curt Burgress in 1996. Like the LSA, HAL
relies on the basic premise that words with similar meaning
repeatedly occur closely. For an example in a large corpus one
could expect to see the words mouse, dog and cat appear often
close to each other. These lexical co-occurrences are then used
to produce a high-dimensional semantic space. In this semantic
space, words are represented as points, and the position of each
word along the axes is related to the word’s meaning. Once this
space is constructed, a distance measure can be used to
determine relationships between words. HAL then builds a
word-by-word matrix based on word co-occurrences within a

 37

moving window of a predefined width. This window moves
over the entire corpus and records weighted lexical co-
occurrences - words closer to the target word are given a higher
weight than words farther away. These resulting weights are
then recorded in an ݊	 × 	݊ result matrix (n is the number of
words in the given vocabulary) with one row and one column
for each unique word appearing in the corpus. Next we form a
vector representing each word in 2n dimensional space by
concatenating the transpose of a word’s column to its row.
Using these word vectors, we then form the sentence vector by
adding together the word vectors for all words in the sentence.
The similarity between two sentences is the calculated by using
a metric such as Euclidean distance or something similar on the
constructed sentence vectors. However the author’s of the
article "Explorations in context space: Words, sentences" [15]
show that HAL was not as promising as LSA in computing the
similarity between short texts. One of the HAL’s drawbacks is
due to the building of the memory matrix (the matrix badly
captures sentence meanings) and its technique of forming
sentence vectors. The sentence vector becomes diluted when a
large number of words are added to it. This leads to the
conclusion that, as with LSA, HAL is more appropriate for
large texts than short texts [1].

C. Query-log Methods

Search engines like Google or Bing process millions of
search queries per day. The produced search query logs have
become a great resource for measuring similarity between short
texts. This information is then used for search query suggestion
generation, which is becoming more and more accurate and
useful. An example of generating query substitution is
presented in the paper “Generating query substitutions” [16]. In
this paper, their goal is to generate alternative query
suggestions to a given query. Firstly they generated
suggestions, which were based on the information about
whether the target query and suggestion had appeared in the
same session query log. These suggestions were then ranked
based on a regression model trained with three types of
features. The first type of feature is the usage of surface
characteristics, such as number of characters of the query and
resulting suggestion. The second type of feature is the usage of
substitution statistic, such as the mutual information between
the query and suggestion using their distribution in the logs.
The final feature is the usage of syntactic difference between
the query and the suggestion such as Levenshtein edit distance.
Due to the fact, that candidate suggestions were selected using
substitution statistic, they found that the only useful feature
was based on syntactic differences. Compared to the other
described related methods, the method proposed in “Generating
query substitutions” [16] did not aim to provide a similar
metric, but more of a generation task which is bound to
measuring the similarity between the query and the suggestion.
The limitation of this task as it was presented in the paper is
that the coverage for pairs of short texts segments is limited,
because subsets of the words in both segments must appear in
the same user session query logs.

D. Probabilistic models

Probabilistic models are based on idea of estimating the
probability that one sentence is a translation of another. This
translation probability then serves as the basis of the similarity

score for pairs of sentences. Statistical machine translation
systems aim to generate high-quality translations of sentences
between natural languages. Such systems make use of
parametrized statistical language models of both source and
target language, and a parametrized statistical translation model
that estimates the probability that a given target sentence is a
translation of the source sentence. Given these models and a
parametrization, the system searches a space of possible
translations and returns the sentence with the highest
probability. In their paper, they propose using statistical
translation models in much the same manner to estimate the
probability that one sentence is a translation of another.
However, as our problem is different from normal translation
problems (both sentences are in the same language), we can
make some assumptions. We will now briefly summarize their
path from more general model to a model adequate to our
problem. We will also add some motivation and description of
some specific terms.

They start with IBM's Translation Model 1. IBM Model 1
is a generative model. Generative modeling means breaking up
the process of generating the data into smaller steps, modeling
the smaller steps with probability distributions, and combining
the steps into a coherent story ([5]). They provide following
similarity function, based on IBM model 1:

ܵ(ܳ, ܴ) = 1(|ܴ| + 1)|ொ|ෑ ௧ܲ(ݍ|ݎ)|ோ|ାଵ
ୀଵ

|ொ|
ୀଵ

|ܴ| is the length of the sentence R |ܳ| is the length of the sentence Q

௧ܲ൫ݍหݎ൯ is a probability that j-th word in R is a translation
of i-th word in q

Then they made some additional assumptions. The original
model assumes that each sentence has a special null term at
position 1; this is the reason that the summation iterates
through |R| +1 terms. The null term is used to represent the fact
that the current term in Q doesn't align to any terms in R.

With that in mind, they make the distributional assumption
that		 ௧ܲ൫ݍหݎ൯ = where C is the background model ,(ܥ|ݍ)ܲ
inferred from the collection as a whole. This precedes form
intuition that – in the absence of any other evidence – an
unaligned word is likely to be present in a sentence with a
probability equal to its overall probability in the more
generalized background language model.

The probability of aligning to the null term dictates the
influence of the background language model on the resulting
translation. Because IBM Model 1 assumes that all reordering
are equally likely, the probability that a term in Q will align to

the null term is
ଵ|ோ|ାଵ. Then they generalize the original model

by assuming there exists μ null terms in each sentence, where μ
is a non-negative integer. This results in each sentence having
length |R| + μ, where |R| is the number of non-null terms in R.
This model can be described as:

38
 ܵ(ܳ, ܴ) = 1(|ܴ| + μ)|ொ|ෑܲ(ݍ|ܥ) +ஜ

ୀଵ ௧ܲ(ݍ|ݎ)|ோ|ାஜ
ୀஜାଵ |ொ|

ୀଵ is a probability that i-th term in Q appears in some (ܥ|ݍ)sentence ௧ܲ	each	in	terms	null	of	number	the	is	ߤ		
background model C

They simplify the model further, with assuming that each
word translates to itself; that is ܲ(ݍ|ܥ) = 1 if ݍ = .ݎ

This results in the following form:

ܵ(ܳ, ܴ) =ෑݐ ݂,ோ + μP(q୧|C)|ܴ| + μ|ொ|
ୀଵ ݐ ݂,ோ is the frequency of i-th word in the sentence Q in

sentence R

Above function is known as language modeling query
likelihood ranking function using Dirichlet smoothing
parameter μ. With μ=1, we get Berger and Lafferty's
Translation Model 0. All models here assume that every term
only translates to itself. We extended this model with
synonyms and so incorporated a more refined estimate of the
true translation probabilities. As parameter μ approaches 0, the
model becomes word overlap measure that will likely be good
at finding exact matches. At the other extreme, as μ gets large
more background terms are allowed, which is likely (and
known to be) good at finding topically relevant matches.

They defined similarity spectrum, where at one end there is
exact identity and at the other general topic relation. They
divided this spectrum into 5 parts: exact match, minor edit,
same facts, specific topic match, general topic match. They
found out that at the general and specific topic level, query
likelihood function with μ =2500 gives the best results. This
was expected, because past research has shown query
likelihood to be effective at identifying topicality. At other
levels the relative performance difference between techniques
was small, but Translation Model 0 (μ =1) was consistently the
most effective.

III. METHOD DESCRIPTION

This chapter describes the method we used for measuring
sentence similarity based on semantic knowledge databases
and corpus statistics. It is based on the article titled “Sentence
Similarity Based on Semantic Nets and Corpus Statistic” [1]
which we used as a basis for our implementation.

A. Similarity between words

The basis for calculating sentence similarity is calculating
word similarity. For helping us to achieve this task we used a
semantic knowledge base. It consists of a hierarchical structure
that models usage of the general English language. In this
database, words are organized into sets of synonyms called
synsets. Each synset represents a node in the hierarchical
structure.

To calculate similarity between two words we must first
determine the length of the path between the two synsets

containing these two words. There are three possible cases for
path length between two words:

1. both words are in the same synset

2. words are not in the same synset, but their respective
synsets contain one or more common words

3. words are not in the same synset and their synsets do not
contain any common words

In the first case, both words have the same meaning, so we
assign the path length between them to 0. The second case
implies that both words share some common features; in this
case we assign the path length to 1. Finally, in the third case,
the words do not have the same semantic meaning, so we find
the shortest path length between the synsets containing each
word [26].

We must also take into account that words closer to the root
of the hierarchical structure have more general concepts than
words further from the root. Because of this we must determine
the depth of the subsumer of both words. Subsumer is the node,
closest to the root of the hierarchical structure, on the path
between two synsets, containing our respective words.

The final formula for calculating words similarity is: ݓ)ݏଵ, (ଶݓ = ݁ିఈ ∗ ݁ఉ − ݁ିఉ݁ఉ + ݁ିఉ

where ݓଵand ݓଶare two words we want to calculate the
similarity of,	ߙ is in the range of [0, 1], ߚ	is in the range of (0,
1], l is the determined path length between both words and h is
the depth of the subsumer of both words. Factor ߙ determines
how much path length contributes to the overall word
similarity. As ߙ increases, so does the contribution of path
length. Similarly ߚ	factor determines the contribution of
subsumer depth. Contrary to		ߙ, as ߚ	increases, the relative
contribution of subsumer depth decreases. The value of ݓ)ݏଵ, .is in the range of [0, 1]	ଶ)ݓ

B. Similarity between sentences

In order to calculate similarity between two sentences T1
and T2, each containing their own set of words, we must first
define a joint word set of both sentences T. This joint word set
contains all the distinct words from both sentences. We keep
the word form as it appears in the sentence, for example: cat,
cats, mouse and mice are four distinct words and are all
included in our joint word set. We also include all function
words, because function words contain syntactic information
that we cannot ignore if the text is very short, or even sentence
length.

1) Semantic sentence similarity
To calculate the semantic sentence similarity we must first

calculate the lexical semantic vector of both sentences, denoted
as ݏ. Each entry in this vector corresponds to a word in the
joint word set. To calculate the entire vector for the first
sentence s1, we do the following for each word w in the joint
word set:

1. If the first sentence contains w, the entry in the
semantic vector š is set to 1. Then we multiply this

 39

value with the value for w from the Corpus statistics
to the power of two, and so ݏ = ݏ̂ ∗ ଶ(ݓ)ܫ

2. If the first sentence does not contain w, we calculate
the similarity between w and every word in the first
sentence to find the most similar word, denoted as
~w. If the similarity exceeds a pre-set threshold, the
entry in the semantic vector is set to the calculated
similarity; otherwise the entry is set to 0. Then we
multiply this value with the value for w from the
Corpus statistics and with the value for ~w from the
Corpus statistics, and so ݏ = ݏ̂ ∗ (ݓ)ܫ ∗ (ݓ~)ܫ

The final value for semantic sentence similarity is the
cosine coefficient between both lexical semantic vectors: ܵ௦ = ଵݏ ∗ ‖ଵݏ‖ଶݏ ∗ ‖ଶݏ‖

The value for Ss is in the range [0, 1].

2) Syntactic (word order) sentence similarity
After we have calculated the semantic sentence similarity,

we must calculate the word order similarity of both sentences.
This is important, because different word order can
significantly change the meaning of a sentence. For example:
Dogs can swim, but chicken cannot. We can change the word
order so the sentence looks like: Chicken can swim, but dogs
cannot. As a result, the meaning of both sentences is
completely different. We must therefore form word order
vectors for both sentences, namely ݎଵ	and ݎଶ. For the first
sentence, this is achieved by doing the following for each word
w in the joint word set:

1. If the first sentence contains w, we fill the entry in ݎଵ
with the corresponding index of w in the first
sentence.

2. If the first sentence does not contain w, we find the
word from the first sentence, which is most similar to
w. This word is denoted as ~w. If the similarity is
greater than the preset threshold, we fill the first
sentence’s vector entry with the corresponding index
of ~w in the first sentence. If the similarity is not
greater than the threshold, we fill the vector’s entry
with 0.

Threshold is important because we are calculating the word
similarity of different words and therefore the similarity
measures could be very low. Since that means the words are
not similar, we do not want to introduce such noise into our
calculation. If we increase the threshold, we could potentially
introduce more noise to our calculations, which is not
desirable. We repeat the process for both sentences, so we
obtain word order vectors for both sentences. The final value
for the word order similarity measure is calculated using the
following formula: ܵ = 1 − ଵݎ‖ − ଵݎ‖‖ଶݎ + ‖ଶݎ

Word order similarity measure between two sentences is
calculated as a normalized difference of word order. The
measure is sensitive to the distance between two words of the
word pair. If the distance increases, the measure decreases.

3) Final formula for calculating sentence similarity
 The final formula for calculating sentence similarity is a
combination of semantic sentence similarity and word order
similarity measure. The final formula looks like this: ܵ൫ ܶ, ܶ൯ = ߜ ∗ ܵ௦ + (1 − (ߜ ∗ ܵ

where factor ߜ determines the relative contribution of semantic
similarity and word order similarity measure to the overall
sentence similarity. Factor ߜ should be in the range of (0.5, 1],
because semantic similarity is more important than word order
similarity [25]. The value of ܵ൫ ܶ, ܶ൯	is in the range of [0, 1].

C. Corpus statistics

Corpus statistics is important for calculating sentence
similarity, because we need to weigh the importance of
different words that occur in a sentence [24]. Different words
contribute differently to the meaning of a sentence. This is
especially important, because we need to keep all function
words (for example “of”, “the”, “as” …), which contribute a
lot less to the meaning of the sentence than other words.
Words that occur more frequently in a corpus contains less
information than words that occur less frequently [3].
Therefore the information content of a word has to be derived
from the probability that a word is contained in a corpus.
Information content of a word is calculated as (ݓ)ܫ = 1 − log	(݊ + 1)log	(ܰ + 1)
where n is the frequency of the word w in corpus and N is the
total number of words in the corpus increased by 1 to avoid
division by zero). Finally, the I(w) value of is contained
within the interval [0, 1].

IV. METHOD IMPLEMENTATION

In this section we present methods and models used in our
experiments, data used in our measures and evaluation of these
methods.

A. Methods

We decided to implement the described method in C# and
.NET 4.0 using Visual Studio 2010. As previously described,
two databases were used, namely WordNet [17] and the Brown
Corpus [18]. We combined and grouped all of our implemented
methods in a .NET library, which can then be used in various
applications. This section briefly describes the two databases,
how we implemented the methods for retrieving the desired
data, provides the visualization of the overall flow of the
method and describes the final library and the demo GUI.

1) WordNet
WordNet is a large lexical database of English language,

developed at Princeton University by a group led by Miller
[19]. Nouns, verbs, adjectives and adverbs are grouped into
sets of cognitive synonyms called synsets, each expressing a

40

distinct concept. Synsets are interlinked by means of
conceptual-semantic and lexical relations. In other words
synset represents a group of words, in which all words have a
similar meaning. All synset also include pointers to other
related synsets and thus forming a tree-like hierarchical
structure ranging from many specific terms at the lower levels
to a few generic terms at the top (see Fig.1 for an example).
Each node or synset is represented in one word sense. If a word
has more than one sense, it will appear in multiple synsets at
various locations in the tree. WordNet defines relations
between synsets and relations between word senses. A relation
between synsets is a semantic relation, and a relation between
word senses is a lexical relation. In this paper we are only
interested in the semantic relation. WordNet is also freely and
publicly available for download [20]. The version used in this
paper is WordNet 3.0, which has 206,941 words, organized
into 117,659 synsets. We used WordNet as the main semantic
knowledge base for calculating of semantic similarity.

Fig. 1. Example of WordNet tree-like hierarchical structure

To extract the required information from WordNet we used
an already developed public .Net Framework library called
WordNet.Net [21], which is maintained and managed by Troy
Simpson. Malcolm Crowe is the author of the legacy library
code which is superseded by several WordNet database
versions and library enhancements/bug fixes.

As described in the previous chapter we used WordNet to
calculate the semantic similarity between words. To calculate
the desired similarity using the proposed formula between two
words ݓଵ and ݓଶ, we performed a search of the semantic net
for the shortest path between the synsets containing the
compared words ݓଵ and ݓଶ including the depth of the first
common subsumer of both synsets. The easiest way to
accomplish this is to treat tree-like structure as an undirected
graph and measure the shortest path length between the found
synsets. The path length is measured in links/edges, where the
shorter the path from one synset to another, the more similar
they are. A shared parent of two synsets is known as a
subsumer. After extracting the required information from
WordNet, the similarity is calculated using the proposed
formula, described in the previous chapter.

For example, the shortest path between “automotive” and
“bicycle” as presented in Figure 2 is “automotive-wheeled
vehicle-bicycle”, where the minimal path length is 2 and the

common subsumer is “wheeled vehicle” with a depth of 5 from
the root node. The path length and the depth of the common
subsumer give us a simple way to compute the relatedness
distance between two word senses. However WordNet does
have a few limitations, the first being that it is possible for two
synsets from the same part of speech to have no common
subsumer, which means that a path cannot be always found
between the two synsets. We resolved this limitation by using a
unique root node, which then means that a path will always
exist between any two noun/verb synsets. The second
limitation is that we only compare the word senses which have
the same part of speech. This means that we do not compare a
noun and a verb because they are located in different databases.
When considering a word, we first check if it is a noun and if
so we will treat it as a noun and if it is a verb or an adjective it
will be ignored. Finally we check if it is not a noun, if so we
will then check if it is a verb.

2) Brown Corpus
 We used Brown Corpus to extract and calculate all of the
necessary statistical information need for our calculations.
Brown Corpus was compiled in 1960s by Henry Kucera and
W. Nelson Francis at Brown University, Providence, Rhode
Island as a general corpus. The Corpus consists of 500 samples,
distributed across 15 text categories and originally (1961)
contained 1,014,312 words [23].

 The original Brown Corpus is available in plain text format.
For easier access we used a reformatted XML version [23],
which contains the same samples as the original Brown Corpus
represented in XML format. The required information from the
corpus is the number of times a selected word appears in the
corpus. This number of word repetition is then used in the
described formula. To retrieve the required information from
the Corpus, we read the complete Brown Corpus in to the
RAM memory. This is possible, because of a relatively low
number of words, approximately 49 thousand distinct words
and because of the fact that nowadays computer RAM
memories are relatively large and thus have enough space to
read the complete corpus. Another advantage of using the in-
memory database instead of an ordinate disk-based database is
that it speeds up the overall process of the similarity
calculation. To store corpus words into memory, we used a C#
dictionary object which is an equivalent to a hash-table.
Dictionaries are very convenient for retrieving random
elements quickly, which make them very appropriate for our
purpose. Each word in the dictionary has a counter which
counts the number of repetition of this exact word in the
corpus.

3) .NET library
 We encapsulated all of the calculations in a .NET library, in
order to make the usage as simple as possible for the end user.
Usage of the library is very simple, since there is only one
entry point which initializes all of the required components in
order to calculate the similarity value. The entry point for the
calculations is in the class named CalculateSentenceSimilarity.
The main method, named run, takes two strings as arguments
(two sentences) and returns a value of type double, which
represents the sentence similarity of given sentences.

An example call to the library looks like:

 41

double sentenceSimilarity =
CalculateSentenceSimilarity.run(sentence1, sentence2);

Value of the variable sentenceSimilarity is between 0 and 1. A
larger value means more similarity between the compared
sentences. Value 1 is returned if sentences are the same and 0 is
returned if sentences are completely dissimilar (i.e. not similar
at all).

4) Program flow
The following figure Fig. 2 describes the basic program

flow for calculating sentence similarity:

Fig.2. Basic program flow for calculating sentence similarity

V. RESULTS

Although a few related articles have been published, there are
currently no suitable benchmark text sets for the evaluation of
sentence similarity methods. In order to evaluate our sentence
similarity measure, we compared our results with our
reference article results [1]. We used the same 16 sentence
pairs as they were presented in the reference article and the
results are shown in Table 1. We used the following constants
in our described method, which yielded the best sentence
similarity results: Alpha = 0.2; Beta = 0.5; Delta = 0.7;
Threshold = 0.4

To get these parameters, we estimated the similarity of 8
sentence pairs by hand. Using these human estimations we then
tuned the parameters to get the best match between calculated
similarity and estimated similarity.

Table 1 - Results comparison

First
sentence

Second
sentence

Our results [1]

I like that
bachelor.

I like that
unmarried
man.

0,558 0,561

I have a pen. Where do
you live?

0,277 0

John is very
nice.

Is John very
nice?

0,599 0,997

Red
alcoholic
drink.

A bottle of
wine.

0,665 0,585

It is a dog. That must be
your dog.

0,701 0,739

Red
alcoholic
drink.

Fresh orange
juice.

0,721 0,611

It is a dog. It is a log. 0,182 0,623
Red
alcoholic
drink.

An English
dictionary.

0 0

It is a dog. It is a pig. 0,179 0,790
Dogsare
animals.

They are
common
pets.

0,756 0,738

I have a
hammer.

Take some
nails.

0,621 0,508

Canis
familiaries
are animals.

Dogsare
common
pets.

0,806 0,362

I have a pen. Whereis
ink?

0,102 0,129

Red
alcoholic
drink.

Freshapple
juice.

0,474 0,420

A glass of
cider.

A full cup of
apple juice.

0,253 0,678

42

Results shown in Table 1 are in most cases very similar in both
methods. There are also cases where results differ by a small
margin.

VI. CONCLUSION

Nowadays sentence similarity is becoming more and more
important. A lot of different applications and system require an
automated and efficient method for computing the similarity
between short texts. Our presented method and library should
fulfill most of these needs and can be used and adopted to
various domains and applications. As presented in the previous
chapter our implemented method gives quite good sentence
similarity results, which is comparable to a human’s
interpretation. We believe that our presented method is
comparable to other implementations found online. However,
as described in the chapter related work, there are still a lot of
other different possibilities of measuring short texts similarity,
where each has its advantages and disadvantages.

REFERENCES

[1] Y. Li, D. McLean, Z. A. Bandar, J. D. O’Shea and K. Crockett,

“Sentence Similarity Based on Semantic Nets and Corpus Statistic”
IEEE Transaction on knowledge and data engineering, Vol. 18, No. 8,
August 2006

[2] V. Hatzivassiloglou, J. Klavans, and E. Eskin, “Detecting Text
Similarity over Short Passages: Exploring Linguistic Feature
Combinations via Machine Learning,” Proc. Joint SIGDAT Conf.
Empirical Methods in NLP and Very Large Corpora, 1999.

[3] C.T. Meadow, B.R. Boyce, and D.H. Kraft, Text Information Retrieval
Systems, second ed. Academic Press, 2000.

[4] F. RYO, Y. TSUYOSHI, K HIROAKI, M. TETSUYA, T. YOSHINORI
and O. NOBORU, "Measuring Similarity between Documents using
Term Frequency and Concept Dictionary", Joho Shori Gakkai Kenkyu
Hokoku, VOL.2003, NO.4(NL-153)

[5] H. Huang, H. Yang and Y. Kuo, "A Fuzzy-Rough Set Based Semantic
Similarity Measure Between Cross-Lingual Documents", 2008 3rd
International Conference on Innovative Computing Information and
Control

[6] D. Metzler, S. Dumais and C. Meek, "Similarity Measures for Short
Segments of Text"

[7] Wen-tau Yih and Christopher Meek, "Improving Similarity Measures
for Short Segments of Text", Microsoft Research, One Microsoft Way,
Redmond, WA 98052, USA

[8] M. Sahami and T. D. Heilman,"A Webbased Kernel Function for
Measuring the Similarity of Short Text Snippets", WWW 2006, May
23–26, 2006, Edinburgh, Scotland.

Manning, C. D., and Sch¨utze, H. 1999. Foundations of Statistical
Natural Language Processing. The MIT Press.

[9] Lund, K., Burgess, C. & Atchley, R. A. (1995). Semantic and
associative priming in a high-dimensional semantic space. Cognitive
Science Proceedings (LEA), 660-665.

[10] Lund, K. & Burgess, C. (1996). Producing high-dimensional semantic
spaces from lexical co-occurrence. Behavior Research Methods,
Instruments & Computers, 28(2),203-208.

[11] Susan T. Dumais (2005) "Latent Semantic Analysis". Available:
http://onlinelibrary.wiley.com/doi/10.1002/aris.1440380105/pdf

[12] Thomas K Landauer and Susan Dumais, "Latent semantic analysis",
Scholarpedia 2008, 3(11):4356. Available:
http://www.scholarpedia.org/article/Latent_semantic_analysis

[13] Thomas Landauer, Peter W. Foltz, & Darrell Laham (1998).
"Introduction to Latent Semantic Analysis". Available:
http://lsa.colorado.edu/papers/dp1.LSAintro.pdf

[14] BURGESS, C., LIVESAY, K., AND LUND "Explorations in context
space: Words, sentences", 1998, discourse. Disc. Proc. 25, 2–3, 211–
257.

[15] Jones, R.; Rey, B.; Madani, O.; and Greiner, W., "Generating query
substitutions", 2006, In Proc. of WWW ’06.

[16] G.A. Miller, “WordNet: A Lexical Database for English,” Comm. ACM,
vol. 38, no. 11, pp. 39-41, 1995.

[17] Brown Corpus Information, http://clwww.essex.ac.uk/w3c/cor
pus_ling/content/corpora/list/private/brown/brown.html, 2005.

[18] Christiane Fellbaum (1998, ed.) WordNet: An Electronic Lexical
Database. Cambridge, MA: MIT Press

[19] George A. Miller (Emeritus), Christiane Fellbaum, Randee Tengi, Helen
Langone, Adam Ernst and Lavanya Jose, "WordNet", 2006,
http://wordnet.princeton.edu/wordnet/

[20] Simpson T., Crowe M., 2005, WordNet.Net
http://opensource.ebswift.com/WordNet.Net

[21] Wikipedia, “Brown Corpus”, 15. March 2011.
http://en.wikipedia.org/wiki/Brown_Corpus

[22] Nltk, “Natural language toolkit development”, 17. March 2011
http://nltk.googlecode.com/svn/trunk/nltk_data/packages/corpora/brown
_tei.zip

[23] P.Resnik, “Using Information Content to Evaluate Semantic Similarity
in a Taxonomy,” Proc. 14th Int’l Joint Conf. AI, 1995.

[24] P. Wiemer-Hastings, “Adding Syntactic Information to LSA,” Proc.
22nd Ann. Conf. Cognitive Science Soc., pp.989-993, 2000.

[25] R.Rada, H.Mili, E.Bichnell, and M.Blettner, “Development and
Application of a Metric on Semantic Nets,” IEEE Trans. System, Man,
and Cybernetics, vol.9, no.1, pp. 17-30, 1989

